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ABSTRACT
Background. Abnormal methylation of TNFRSF10C was found to be associated
with different types of cancers, excluding colorectal cancer (CRC). In this paper, the
performance of TNFRSF10C methylation in CRC was studied in two stages.
Method. The discovery stage was involved with 38 pairs of CRC tumor and paired
adjacent non-tumor tissues, and 69 pairs of CRC tumor and paired adjacent non-
tumor tissues were used for the validation stage. Quantitative methylation specific PCR
(qMSP) method and percentage of methylated reference (PMR) were used to test and
represent the methylation level of TNFRSF10C, respectively. A dual-luciferase reporter
gene experiment was conducted to evaluate the promoter activity of TNFRSF10C
fragment.
Results. A significant association of TNFRSF10C promoter hypermethylation with
CRC was found and validated (discovery stage: 24.67± 7.52 vs. 3.36± 0.89; P = 0.003;
validation stage: 31.21 ± 12.48 vs. 4.52 ± 1.47; P = 0.0005). Subsequent analyses
of TCGA data among 46 pairs of CRC samples further confirmed our findings
(cg23965061: P = 4E−6; cg14015044: P = 1E−7). Dual-luciferase reporter gene assay
revealed that TNFRSF10C fragment was able to significantly promote gene expression
(Fold change = 2.375, P = 0.013). Our data confirmed that TNFRSF10C promoter
hypermethylation can predict shorter overall survival of CRC patients (P = 0.032).
Additionally, bioinformatics analyses indicated that TNFRSF10C hypermethylation
was significantly associated with lower TNFRSF10C expression.
Conclusion. Our work suggested that TNFRSF10C hypermethylation was significantly
associated with the risk of CRC.

Subjects Biochemistry, Genetics, Molecular Biology, Gastroenterology and Hepatology, Oncology
Keywords Colorectal cancer, Promoter, DNA methylation, TNFRSF10C

INTRODUCTION
Colorectal cancer (CRC) is the third most common cancer and the fourth most
universal cause of cancer-related death around the world (Ferlay et al., 2015). CRC has
an annual incidence of 1.2 million new cases and 600,000 deaths (Chen et al., 2014).
Though advanced screening and diagnostic technologies have developed continuously

How to cite this article Zhou et al. (2018), TNFRSF10C methylation is a new epigenetic biomarker for colorectal cancer. PeerJ 6:e5336;
DOI 10.7717/peerj.5336

https://peerj.com
mailto:duanshiwei@nbu.edu.cn
mailto:duanshiwei@nbu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5336
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.5336


(Buturovic, 2014; Kim et al., 2008; Wang et al., 2014), the outcomes for CRC patients
remain poor, and their average survival time is less than 30 months (Scartozzi et al., 2014).

Genetic and epigenetic studies are hot topics for CRC research (Fukushige & Horii, 2013;
Okugawa, Grady & Goel, 2015). CRC was found to be relevant to aberrant expression of
microRNAs (Mohammadi, Mansoori & Baradaran, 2016), altered histone modifications
(Gargalionis et al., 2012), and disrupted regulation of inflammation (Janakiram & Rao,
2014). DNA methylation is one of the important epigenetic modification mechanisms
(Dawson & Kouzarides, 2012), and it has been verified to be associated with CRC (Capuano
et al., 2015).

Tumor necrosis factor receptor superfamily member 10c (TNFRSF10C) is located
on 8p21.3 (23.01∼23.03 Mb), which is one of the most frequently deleted loci in CRC
(Chughtai et al., 1999).TNFRSF10C functions as one of the TNF-related apoptosis inducing
ligand-like (TRAIL) decoy receptors that could inhibit the intracellular signaling pathway
of apoptosis (Cheng et al., 2009; Van Noesel et al., 2002). Additionally, TNFRSF10C
expression was often found to be down-regulated in CRC (Macartney-Coxson et al., 2008),
and a decreased TNFRSF10C copy number was shown to accelerate CRC distant metastasis
(Tanenbaum et al., 2016). TNFRSF10C hypermethylation was found in mutiple cancers,
including glioblastomas (Vaitkiene et al., 2013), breast cancer (Tserga et al., 2012), basal cell
carcinomas (Stamatelli et al., 2014), melanoma (Venza et al., 2013), gastric cancer (Dauksa
et al., 2014), hepatocellular carcinoma (Shin et al., 2010), pancreatic adenocarcinoma
(Dauksa et al., 2012), ovarian neoplasia (Braga Lda et al., 2012), cervical cancer (Narayan et
al., 2016), pheochromocytoma (Margetts et al., 2005), cholangiocarcinoma (Amornpisutt,
Sriraksa & Limpaiboon, 2012), choroid plexus papilloma (Michalowski et al., 2006), and
prostate carcinoma (Hornstein et al., 2008). Meanwhile, accumulating studies showed that
TNFRSF10C hypermethylation might play an important role in tumorigenesis and tumor
progression (Shivapurkar et al., 2004).

However, there was no literature about whether TNFRSF10C hypermethylation was
associated with CRC. In light of previous findings, we carried out a two-stage study in
order to investigate the performance of TNFRSF10C hypermethylation in CRC.

MATERIAL AND METHODS
Samples collection and ethics statement
Frozen tumor tissues and paired adjacent non-tumor tissues (5 cm away from the tumor)
were collected from 38 CRC patients from the Third Affiliated Hospital of Nanjing
University of Traditional Chinese Medicine (Jiangsu province, China) in the discovery
stage. Frozen tumor tissues and paired adjacent non-tumor tissues (5 cm away from
the tumor) of 69 CRC patients were collected from Zhejiang Tumor Hospital (Zhejiang
province, China) and Shaoxing First People’s Hospital (Zhejiang province, China) for the
verification. The corresponding clinical information was obtained at the time of surgery. All
patients were diagnosed by pathological examination. No radiotherapy or chemotherapy
was performed before surgery.We also used slides stained with hematoxylin and eosin (H&
E) to identify representative areas of invasive tumors (Fig. 1). Over 80% of tumor cells were
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Figure 1 Representative histopathological photographs. (A) Normal colorectal tissues. (B) Poorly-
differentiated CRC tissues. (C) Moderately-differentiated CRC tissues. (D) Well-differentiated CRC
tissues.

Full-size DOI: 10.7717/peerj.5336/fig-1

found in CRC specimens, and there were no tumor cells in the 5 cm adjacent non-tumor
specimens. In fact, the majority of CRC tumors are adenocarcinoma (96%), and other
histological types are rare, including signet ring cell carcinoma, squamous cell carcinoma,
undifferentiated tumor and myeloid adenocarcinoma (Ponz de Leon & Di Gregorio, 2001).
It is noteworthy that all CRC tumors in this study were adenocarcinomas. All the patients
in the present study had signed informed consent, and this study was approved by the
ethics committees of the above hospitals and Ningbo University.

DNA extraction and bisulphite conversion
We strictly followed the instructions of the EZNATM Tissue DNA Kit (Omega Bio-Tek,
Norcross, GA, USA) to extract the DNA from the tissue samples, and determined the
DNA concentration using a Nanodrop 2000 spectrophotometer (Thermal Scientific Co.
Ltd., Wilmington, MA, USA). The DNA solution was stored at −20 ◦C refrigerator
for use. Genomic DNA was bisulphite converted using the EZ DNA Methylation-Gold
KitTM (Zymo Research, Orange, CA, USA). Generally, 500 ng of the original DNA was
denatured by NaOH and the bisulphite was used to convert the unmethylated cytosine to
uracil, while the methylated cytosine remains unchanged.

Quantitative methylation specific PCR (qMSP)
Methylation-specific PCR (MSP) is a classic method to detect gene methylation, but
it is error-prone as PCR product needs to be removed from tubes for further analysis,
which tends to contaminate the work environment (Switzeny et al., 2016). Quantitative
methylation specific PCR (qMSP) in the current study is a closed-tube technique which is
one of the novel methylation quantitative methods.

In this study, a SYBR-GREEN based qMSP method was used to determine the gene
methylation level of the sample. It has advantages such as rapidity, simplicity, low cost,
and accurate quantification. ACTB was used as an internal reference. Normal human
sperm DNA treated with SssI methyltransferase (Thermo Fisher Scientiific, Uppsala,
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Sweden) was used as a positive control, and enzyme-free water was used as a blank
control. The qMSP assay uses bisulphite-modified DNA as a template to create a
20 µl qMSP system consisting of 10 µl of SYBR Green I Master mix (Roche, Basel,
Switzerland), 0.5 µl of each of the upstream and downstream primers, and 1.0 µl of the
DNA template, and the rest volumn was filed by ddH2O. The upstream qMSP primer of
TNFRSF10C was 5′-AGGTGCGACCCAGCCCAG-3′, the downstream qMSP primer of
TNFRSF10C was 5′-CGATAACGACGAACTT-3′, the upstream qMSP primer ofACTBwas
5′-TGGTGATGGAGGAGGTTTAGTAAGT-3′, the downstream qMSP primer of ACTB
was 5′-AACCAATAAAACCTACTCCTCCCTTAA-3′. The PMR (percentage of methylated
reference) in each sample was calculated by 2−11Ct quantification approach (Kristensen
et al., 2008). Specifically, the PMR of TNFRSF10C was calculated by this equation [PMR
= 2−11Ct

×100%, 11Ct = sample DNA (CtTNFRSF10C–CtACTB) − fully methylated DNA
(CtTNFRSF10C–CtACTB)].

Sanger sequencing and capillary electrophoresis of qMSP product
We randomly selected sodium bisulphite-modified DNA for Sanger sequencing. If
compared with the original sequence, the uracil converted by bisulphite modification
is completely converted to thymine, and the methylated cytosine remains unchanged, then
the transformation process is verified thoroughly. In addition, the qMSP product was
analyzed by a fully automated high resolution capillary electrophoresis apparatus (Bioptic,
Taiwan, China) to verify that the fragment size of the product matches the theoretical
fragment length.

Dual-luciferase reporter gene assay
Previous studies indicated that a high correlation betweenmethylation levels of neighboring
CpG sites has been observed in CRC (Hu et al., 2017). Thus, the methylation profiles of
adjacent CpG sites are often similar. To be noted, since the 85 bp fragment (nucleotides
from +79 to +163 bp) in the methylation assay was too short to be constructed, we
alternatively used a 485 bp fragment (nucleotides from −121 to +363 bp) that contains
a 85 bp fragment (nucleotides from +79 to +163 bp) for the dual-luciferase assay. In
accordance with UCSC Genome Browser, the selected fragment overlapped with multiple
transcription factor binding sites, including CCCTC binding factor (CTCF) which played
a vital role in gene regulation including promoter activation and repression (Rakha et al.,
2004). For the above reasons, we chose the 485 bp fragment to test its promoter activity.

The human HEK293T cell line, obtained from the cell bank of the Chinese Academy
of Sciences (Shanghai, China), was cultured and constructed recombinant plasmids. The
fragment of TNFRSF10C promoter (−121 bp to+363 bp) was chemically synthesized. The
cells were cultured on 24-well plates. After 12 h, 0.5×105 cells per well were transfected
with recombinant plasmid according to the manufacturer’s protocol (TransLipid HL
Transfection Reagent, TransGen Biotech, Beijing, China). After 36 h of 293T cells
transfection, we used SpectraMax 190 (Molecular Devices, Sunnyvale, CA, USA) to
measure renilla and firefly luciferase activity. Reporter gene activity was assessed according
to the manufacturer’s protocol (Dual-Luciferase R© Reporter Assay Systems, Promega,
Madison city, WI, USA).
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Table 1 Clinical characteristics of CRC cases.

Variables Stage-one experiment Stage-two experiment Total

Number 38 69 107
Age (years) 65.0 (57.0, 71.0)a 59.0 (52.0, 67.5) 61.0 (54.5, 71.0)a

Gender (F/M) 10/27a 24/45 34/72a

Tumor size (cm) 4.54 ± 1.49 4.94 ± 1.89 4.79 ± 1.77
Differentiation (Well/Poor) 34/4 55/14 99/18
Lymph node metastasis (+/−) 18/20 39/30 57/50
TNM stage (I + II/III + IV) – 34/35 34/35
Pathological types (P/ U/ I) 8/28/2 22/44/3 30/72/5

Notes.
aMissing information for one case.
F, stood for female and M stood for male; Well, comprised high and medium differentiation; Poor, comprised low and
none differentiation; P, protrude type; U, ulcerative type; I, infiltrating type.

Bioinformatics analyses
Methylation data from a total of 443 colorectal adenocarcinoma patients were
extracted from the TCGA database (Methylation450k, https://genome-cancer.ucsc.edu/).
Meanwhile, to evaluate the association between mRNA expression and TNFRSF10C
methylation, an effective dataset of TCGA colorectal adenocarcinoma group containing
633 samples was downloaded from cBioPortal (http://www.cbioportal.org/). We compared
on the expression changes ofTNFRSF10C in two CRC cell lines (COLO320 andHT29) with
and without 5′-AZA-deoxycytidine treatment, which derived from the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo, accession no. GSE32323).

Statistical analysis
Nonparametric Wilcoxon paired test was used to assess the methylation differences
between tumor and paired adjacent non-tumor tissues. Nonparametric Wilcoxon paired
test and paired samples t test were used to perform subgroup analysis of TNFRSF10C
methylation and clinical characteristics. Spearman Correlation rank test was used to
assess the correlation between TNFRSF10C methylation and TNFRSF10C expression.
Furthermore, Kaplan–Meier survival analysis was implemented to assess the difference
of overall survival between CRC patients with hypermethylated and hypomethylated
TNFRSF10C promoters. A two-sided P < 0.05 indicated a significant difference.

RESULTS
In the current study, we recruited 107 CRC patients to study the relationship between
TNFRSF10C methylation and CRC (Table 1). There were 30 prominent types, 72 ulcerative
types, and five infiltrating types. The average age of CRC patients was 61 years (range: 28–86
years old).

Aberrant methylation of promoter CpG island is associated with transcriptional
inactivation of gene (Teodoridis, Strathdee & Brown, 2004). Since methylation often occurs
at the position of CpG dinucleotides, we selected sites at the CpG island position in the
promoter region (+79 ∼+163, 85 bp, chr8: 22960393–22960677) in the current study
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Figure 2 Primers and target amplification sequence in TNFRSF10C promoter CpG island (CGI) re-
gion. (A) F and R were forward and reverse primers, respectively. CpG sites in amplified sequences were
signed in grey; Bold CpG sites marked with * were the probes (cg23965061 and cg14015044) detected in
Methylation 450k microarray. (B) The top row of the sequence represents the original sequence of the tar-
get fragment, and the second row shows the converted sequences; CG dinucleotides which remained un-
changed were outlined in blue, and C with corresponding converted T were outlined in black. (C) The re-
sult of capillary electrophoresis for amplification fragment (85 bp).

Full-size DOI: 10.7717/peerj.5336/fig-2

(Fig. S1). Two Methyl450 CpG sites (cg23965061 and cg14015044) in TCGA data were
presented in the amplification fragment (Fig. 2A). Our Sanger sequencing result showed
that the amplified fragment matched the target sequence and the bisulphite conversion
was well performed (Fig. 2B). Capillary electrophoresis (Fig. 2C) verified that the length of
amplified product was 85 bp as we expected.
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Figure 3 Hypermethylation of TNFRSF10C and its prognostic value. (A) Comparisons of TNFRSF10C
methylation levels between tumor tissues and paired adjacent non-tumor tissues. The plot described as
mean with SE. (B) The relationship between TNFRSF10C promoter methylation and overall survival in
CRC patients.

Full-size DOI: 10.7717/peerj.5336/fig-3

Our two-stage association study comprised a total of 38 CRC patients in the discovery
stage and 69 CRC patients in the validation stage. Our discovery-stage results showed
that TNFRSF10C methylation was significantly increased in tumor tissues than in paired
adjacent non-tumor tissues (mean PMR with standard error (SE), 24.67± 7.52 versus 3.36
± 0.89, P = 0.003). And this association result was further confirmed in the validation-stage
analysis (mean PMR with SE, 31.21± 12.48 in tumor tissues versus 4.52± 1.47 in paired
adjacent non-tumor tissues, P = 0.0005, Fig. 3A).

Fortunately, there were 30 patients’ survival data obtained from the medical card
in our cohort. Kaplan–Meier analysis was implemented to assess the prognostic effect
of TNFRSF10C methylation in our cohort. Our results confirmed that CRC patients
with methylated TNFRSF10C promoter had a poorer overall survival (OS) than those
with unmethylated TNFRSF10C promoter (P = 0.032, Fig. 3B). Therefore, it could be a
potentially clinical biomarker for better prognosis of CRC patients.

As shown in Table 2, we performed subgroup analysis between TNFRSF10C methylation
and corresponding clinical information in CRC. Subgroup analysis was performed in the
combined samples of discovery stage and validation stage. Our results revealed that the
association of TNFRSF10C hypermethylation with CRC was specific to patients with TNM
stage I+ II tumors (P = 0.002) and patients with high and medium differentiation tumors
(P = 4E−5).

We constructed a luciferase reporter vector containing synthetic TNFRSF10C promoter
fragment. Our dual-luciferase reporter gene assay showed TNFRSF10C fragment (-121 bp
to +363 bp) had a promoter activity, which was inferred by the comparison of reporter
gene expression between insert-containing pGL3-basic vector group and pGL-3-basic
vector group (Fold change = 2.375, P = 0.013, Fig. 4).

Additionally, TCGA data analysis confirmed a significantly increased TNFRSF10C
methylation of the promoter fragment in CRC tumor tissues (cg23965061: P = 4E−6,
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Figure 4 Dual-luciferase reporter gene assay in HEK-293T cell line. The pGL3-Basic and pGL3-
Promoter vectors were constructed as negative and positive controls, respectively. Bars represented the
means with standard deviations of three independent experiments.

Full-size DOI: 10.7717/peerj.5336/fig-4

Table 2 Subgroup analysis of different clinical characteristics in total samples.

Variables N (Pairs) PMR (T) PMR (N) P

Differentiation
High and medium 89 3.56 (0.35, 21.28) 1.64 (0.63, 3.31) 4E−5
Low and none 18 1.41 (0.39, 12.53) 1.23 (0.35, 2.85) 0.050

TNM stage
I + II 34 5.27 (0.67.30.75) 1.49 (0.56, 3.35) 0.002
III + IV 35 1.09 (0.14, 11.05) 1.55 (0.40, 2.98) 0.095

Lymph node metastasis
Positive 57 1.65 (0.26, 15.95) 1.63 (0.64, 3.41) 0.009
Negative 50 5.27 (0.57, 24.16) 1.58 (0.59, 2.89) 0.0003

Notes.
Stage-one experiment didn’t collect TNM stage information, with only 69 pairs of samples from stage-two experiment were
enrolled for the subgroup analysis. PMR referred to the percentage of methylated reference. T referred to the group of tumors,
N referred to the group of non-tumors. P value was calculated by nonparametric Wilcoxon paired tests. Bold value indicated a
statistical significance.

cg14015044: P = 1E− 7, Fig. 5A). All the above evidence indicated that TNFRSF10C
hypermethylation could be a risk factor of CRC. Analyses among 633 TCGA colorectal
adenocarcinoma samples showed a significantly inverse correlation between TNFRSF10C
methylation and TNFRSF10C expression (r =−0.379, P = 4E-14, Fig. 5B). Further data
mining of GEO data indicated that TNFRSF10C expression was significantly increased in
two CRC cell lines after 5′-AZA-deoxycytidine treatment (COLO320, fold change = 1.36;
HT29, fold change = 1.06, Fig. 5C).

DISCUSSION
In the present study, we explored the association between TNFRSF10C methylation and
CRC in the Chinese population. By carrying out a two-stage study, we found a significant

Zhou et al. (2018), PeerJ, DOI 10.7717/peerj.5336 8/16

https://peerj.com
https://doi.org/10.7717/peerj.5336/fig-4
http://dx.doi.org/10.7717/peerj.5336


Figure 5 TNFRSF10C methylation and TNFRSF10C expression. (A) Methylation levels of cg23965061
and cg14015044 among 443 pairs of tumor and non-tumor tissues from TCGA colon and rectum ade-
nocarcinoma database. The plot described as mean with SE. (B) Significant inverse correlation between
TNFRSF10C methylation and expression among 633 individuals from TCGA colorectal adenocarcinoma
database (r =−0.379, P = 4E−14); (C) The changes of mRNA expression levels in a CRC cell line (SW48)
with and without 5′-AZA-deoxycytidine treatment from GEO database (accession number GSE32323).

Full-size DOI: 10.7717/peerj.5336/fig-5

association between TNFRSF10C hypermethylation and CRC. Similarly, analysis of TCGA
database supported that TNFRSF10C was significantly hypermethylated in CRC tumor
tissues.

Although abnormal methylation of TNFRSF10C has been reported in other human
cancers, our study has the following advantages. First, most of the previous studies used
MSP, a technique that is difficult to quantify DNAmethylation levels (Malpeli et al., 2011).
In this study, we applied a qMSP method that is more suitable for molecular diagnostics
(Hibi et al., 2011). Previous studies showed that gastric cancer (GC) and CRC shared
several molecular characteristics, including abnormal methylation of tumor suppressor
genes, microsatellite instability, and gene mutations (Hu et al., 2017). Dauksa et al. (2014)
showed that the average methylation level of TNFRSF10C was significantly higher in GC
patients than in the control group. However, there is no study on TNFRSF10C methylation
inCRC. In this study, a two-stage studywas performed to test the association ofTNFRSF10C
methylation with CRC, thus improving the reliability of the conclusions. Finally, a dual
luciferase reporter gene assay was used to evaluate the potential regulatory mechanisms of
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TNFRSF10C methylation on gene expression. In conclusion, our study provides a better
understanding of the relationship between TNFRSF10C methylation and CRC.

TNM stage is the most important prognostic factor for patients with CRC (Wei et al.,
2015), and stage I+II often indicates the early stage with a favorable prognosis (Compton
et al., 2000). Additionally, subgroup analyses by clinical phenotypes indicated that the
association of TNFRSF10C hypermethylation with CRC was specific to patients with
TNM stage I+II tumors. Therefore, TNFRSF10C hypermethylation could be served as an
early diagnostic biomarker for CRC. Moreover, differentiation levels of cancer cells are
often inversely correlated with the malignancy of tumors (Jogi et al., 2012). Significant
association of TNFRSF10C hypermethylation with CRC was only found in patients with
high and medium differentiation tumors. Above all, we speculated that TNFRSF10C
hypermethylation might be an early event occurring in CRC carcinogenesis.

In the current study, there were significant differences in survival rate between
TNFRSF10C-hypomethylated and TNFRSF10C-hypermethylated patients. TNFRSF10C
promoter methylation is shown to be a significant predictive factor. Future work with
a larger number and in various ethnic groups is warranted in order to confirm that
TNFRSF10C promoter methylation as a commonly candidate biomarker on prognosis
prediction.

TNFRSF10C methylation inversely associated with mRNA expression (Cai et al., 2011;
Cheng et al., 2009; Shin et al., 2010; Vaitkiene et al., 2013) and protein expression (Sriraksa
et al., 2011; Venza et al., 2013). Due to the limited amount of tissues, sufficient mRNA
could not be obtained for additional gene expression assay. And the relationship between
TNFRSF10C methylation and expression should be verified in subsequent experiments.
Subsequently, TCGA analysis of 633 CRC samples confirmed thatTNFRSF10C methylation
was inversely correlated with mRNA expression. Our dual luciferase reporter assay revealed
that the fragment of TNFRSF10C in the methylation assay was able to promote gene
expression. Promoter hypermethylation of protein coding gene often induces expression
silencing (Mohn et al., 2008; Moore, Le & Fan, 2013). However, there are two potential
mechanisms of TNFRSF10C in the pathogenesis of cancer. As a TRAIL receptor,
TNFRSF10C primarily activates the NF-κb pathway of cancer cells (Murphy, Perry &
Lawler, 2008). TheNF-κBpathway is pro-apoptotic, which is implicated in the pathogenesis
of many humanmalignancies (Gilmore et al., 1996). Therefore, we inferred that CRC could
use the promoter CGI methylation to silence TNFRSF10C expression to obtain the
proliferation ability of cancer cells. And another mechanism suggests that TNFRSF10C can
inhibit apoptosis induction (Murphy, Perry & Lawler, 2008) by competing the binding of
TRAIL with TNFRSF10A and TNFRSF10B. TNFRSF10C’s down regulation will reduce its
resistance to apoptosis and represent a protective response to tumor progression (Cheng et
al., 2009), which is contrary to our observation. Therefore, future research needs to explore
the exact mechanism of TNFRSF10C methylation in the pathogenesis of cancer.

Previous prostate cancer-related studies showed that the TNFRSF10C promoter
methylation or deletion could regulate its gene expression in a dose-dependent manner
(Cheng et al., 2009). However, compared with tumor patients without TNFRSF10C
deletion, the frequency of promoter CGI hypermethylation was not significantly increased
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in TNFRSF10C-deficient tumor patients. Therefore, we speculated that TNFRSF10C
promotermethylation andTNFRSF10C deletionmay have different regulatorymechanisms
for gene expression. Unfortunately, our study was based on a candidate gene approach,
and we focused only on the role of TNFRSF10C promoter CGI methylation in CRC.
More studies should be conducted in the future to investigate the interaction between CGI
methylation and deletion in the TNFRSF10C promoter in CRC.

In conclusion, our results suggested a significant association of TNFRSF10C promoter
hypermethylation with CRC. TNFRSF10C hypermethylation might contribute to the
decreased expression of TNFRSF10C in CRC. However, the exact mechanism between the
aberrant methylation and gene silencing of TNFRSF10C in CRC should be explored in the
future.
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