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Abstract: Despite increasing the number of studies for mapping remote sensing insect-induced forest
infestations, applying novel approaches for mapping and identifying its triggers are still developing.
This study was accomplished to test the performance of Geographic Object-Based Image Analysis
(GEOBIA) TreeNet for discerning insect-infested forests induced by defoliators from healthy forests
using Landsat 8 OLI and ancillary data in the broadleaved mixed Hyrcanian forests. Moreover,
it has studied mutual associations between the intensity of forest defoliation and the severity of
forest fires under TerraClimate-derived climate hazards by analyzing panel data models within the
TreeNet-derived insect-infested forest objects. The TreeNet optimal performance was obtained after
building 333 trees with a sensitivity of 93.7% for detecting insect-infested objects with the contribution
of the top 22 influential variables from 95 input object features. Accordingly, top image-derived
features were the mean of the second principal component (PC2), the mean of the red channel
derived from the gray-level co-occurrence matrix (GLCM), and the mean values of the normalized
difference water index (NDWI) and the global environment monitoring index (GEMI). However, tree
species type has been considered as the second rank for discriminating forest-infested objects from
non-forest-infested objects. The panel data models using random effects indicated that the intensity of
maximum temperatures of the current and previous years, the drought and soil-moisture deficiency
of the current year, and the severity of forest fires of the previous year could significantly trigger the
insect outbreaks. However, maximum temperatures were the only significant triggers of forest fires.
This research proposes testing the combination of object features of Landsat 8 OLI with other data for
monitoring near-real-time defoliation and pathogens in forests.

Keywords: GEOBIA; TreeNet; insect infestation; defoliators; Landsat 8 OLI; TerraClimate; climate
hazards; drought; forest fires; panel data

1. Introduction

Despite prosperous traditional approaches such as dendrological assessment and field observations
for identifying driving forces of insect outbreaks from individual tree to stand scales [1], remotely
sensed approaches are extensively progressing either for delineation insect-infested objects or for
the mensuration of infestations induced by abiotic and biotic agents throughout forest biomes [2–5].
However, some novel algorithms for data mining and machine learning such as TreeNet [6] for
delineation insect-infested objects from non-insect-infested objects of images, some high-resolution
climate data such as TerraClimate [7] for assessing drought and climate hazards dimensions, and
some associations such as interactions between insect outbreaks, forest fires, and climate hazards have
received less attention in earlier studies.
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Although monitoring the bark beetle infestation and coniferous defoliation are dependent on
high-resolution and multi-spectral images [8,9], detecting broadleaved defoliation has been predestined
by the spectral–temporal information of images, even by single near-infrared-derived vegetation
indices of images with high-temporal resolutions [10]. Moreover, Landsat images have indicated
high accuracy for detecting forest-infested patches using either classification algorithms in a specific
date [11] or by applying multitemporal spectral-derived indices [12–14]. Moderate stages of tree
infestation are significantly discernible through multitemporal spectral indices, while severe infestation
is highly discernible through classification approaches [15].

Several number of studies exerted data mining and machine learning algorithms such as
random forest [4,16,17] and decision tree [18] or maximum likelihood classification [19,20] to discern
insect-defoliated from non-insect-defoliated forests. However, numerous remote sensing-derived
indices are growing for quantifying the insect-induced defoliation intensity in terms of the long-term
archive of Landsat products [13,14,18]. For example, Townsend et al. [13] claimed that Landsat-derived
near-infrared (NIR) and short-wave infrared (SWIR) indices such as the normalized different infrared
index (NDII) and the moisture stress index (MSI) were superior to the Landsat-derived red and NIR
indices such as the normalized difference vegetation index (NDVI) for estimating the defoliation
induced by Lymantria dispar in the oak forests at five different times. Similarly, Rullán-Silva et al. [14]
examined the efficiencies of 10 Landsat-derived vegetation indices for estimating the defoliation
induced by Rhynchaenus fagi in the beech forests. They concluded that the MSI showed the highest
correlation with the intensity of defoliation with respect to the mixed-effects model. However, the
attitude of analyzing meaningful image-objects for the classification of infested and non-infested
forests [21] by the cooperation of image-derived features and GIS-based methods and databases is
developing, that is, Geographic Object-Based Image Analysis (GEOBIA) [22]. In addition, earlier results
of studies have demonstrated that the combination of object features derived from medium-resolution
images such as Landsat and SPOT with ancillary data such as topography has increased the precision
of discerning forest infestations induced by bark beetle [8]. Machine learning algorithms such as
random forest improved the classification efficiency with image-derived object features for mapping
forest infestations [23]. However, evaluating the efficiency of combination GEOBIA and other machine
learning methods such as TreeNet for mapping infested forests induced by defoliators has not been
addressed up to now.

Forests are mainly degraded by interactions between abiotic agents such as high temperatures,
drought, moisture variability, anthropogenic interventions, and forest fires and biotic agents such
as invasive species, tree mortality, insect infestations, and pathogens [24–27]. The abiotic agents
can trigger the effects of biotic agents, and their synchronization significantly results in tree species’
hydraulic deterioration and carbon starvation [11,24,25,27]. Climate change studies demonstrated
that defoliators’ population rate during a growing season is correlated to the temperature condition
of its hydrological year [28]. Temperature increases can enable insects to survive during the cold
season [29–31] and provide rich sources of nutrition from the mature leaves by changing the trees
phenology cycle; along with that, they can also increase the risk of insect outbreaks during the growing
season [32]. However, there is existing uncertainty about the effects of droughts on the insect outbreaks
in the forest biomes [33]. Increasing the droughts’ dimensions may result in providing conditions
for insect outbreaks [11], tree mortality [34], or increasing the forest fires severity [35]. However,
serious effects of insect defoliators emerge during the moderate drought condition or wetter seasons
following droughts occurring [11,24,33,36]. Changes in moisture capacity regarding either high
moisture availability [1,37] or low moisture availability [38] are identified as the main driver forcing of
some insect outbreaks. The synchronization of droughts following the conditions of above-average
moisture availability may result in providing an appropriate condition for insect outbreaks [24] as well.

Mutual interactions between insect infestations and forest fires were documented in some
studies [39]. Insect infestations may affect the fuel loads of the tree species and increase the severity of
forest fires at landscape-level scales [34,39,40]. However, some studies reported declining the severity
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of forest fires by increasing the mortality induced by insect attacks [41] or neutral effects of insects and
pathogens on the fire characteristics [42,43] particularly in the coniferous forests. Additionally, there is
evidence of the probability of increasing the risk of insect outbreaks in those trees that were damaged
or weakened following a low severity of forest fires [44] or in fire-induced larger patches of canopy
cover [45].

The Caspian Hyrcanian broadleaves and mixed forests have been degrading, as a virgin ecoregion
of the temperate forests’ biome, by a variety of biotic and abiotic agents such as deforestation [46],
forest fires [47], drought [48], and climate hazards with consequences of massive tree mortality [49]
in northeast (NE) Iran during recent decades. Droughts’ dimensions could significantly affect the
water content and greenness properties of Hyrcanian forests based on the MODIS-derived normalized
difference water index (NDWI) and NDVI [48,49]. The stages of moderate to extreme tree mortality
events showed a significant association with the high intensity of forest water content deficit derived
from the MODIS–NDWI; however, the severe defoliation only showed a significant relationship with
the intensity of forest greenness loss derived from NDVI in NE Iran [49]. In addition to climate
hazards, drought, and forest fires, there has been rising concerning reports about the outbreaks of some
insect defoliators such as Lymantria dispar, Erannis defoliaria, and Operophtera brumata [50,51] as well
as pathogens [52–54] throughout Hyrcanian forests during recent years. Therefore, this study used
TreeNet to delineate insect-infested forests from non-insect-infested forests using numerous Landsat 8
OLI-derived object features, topographic-derived features, and tree species types in Hyrcanian forest,
NE Iran. Moreover, it will explore the mutual relationships between the intensity of insect infestation
and the severity of forest fires in the presence of TerraClimate-derived climate hazard variables for
the period of time of insect outbreaks and forest fires within the TreeNet-derived insect-infested
forest objects.

2. Materials and Methods

2.1. Study Area

The eastern forests of the Hyrcanian ecoregion were selected for this research. This area is
extended from Gorgan to Galikesh in the Golestan province, NE Iran (Figure 1). These forests comprise
a mixture of broadleaved tree species such as Quercus castaneifolia, Fagus orientalis, Carpinus betulus,
Acer spp.,Tilia platyphyllos, and Parrotia persica [55]. The western parts were infested by the defoliators
of Erannis defoliaria and Operophtera brumata, while the eastern parts were affected by Lymantria dispar
(Figure 1). Moreover, the frequency of forest fire events has been increasing in this region during recent
years (Figure 1).
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Figure 1. Study area in the Hyrcanian forest ecoregion in the southeast Caspian Sea. Spatial scatter of
the insect defoliators and forest fires samples of 2012–2017 in northeast (NE) Iran. The eastern part of
the study area was affected by Lymantria dispar, while the western area was affected by Erannis defoliaria
and Operophtera brumata.

2.2. Data and Field Mensuration

This study identified the insect-infested regions from available reports, local media, and field
observations. The attributes of defoliated spots including the type of defoliators, the position,
the dominant type of host tree-species, and the evidence of current and previous egg laying were
documented. The accurate spatial extent areas of the defoliation were delineated using time-series
composite bands of Landsat 8 OLI [56] and the images of Google Earth (Figure 2) coincided with the
advanced larval stage of insect defoliators (Figure 1). A peak of attack was recognized in 2014; the
infested objects for this time were delineated from the healthy forest using GEOBIA and TreeNet. The
forest fires data were achieved from field surveying, local media, and the available historical database
that were provided by the Department of Natural Resources and Watershed Management of Golestan
province from 2010 to 2017. The burnt area, duration, and frequency of forest fires were used during a
fire season to reach the forest fire severity of a specific location.

We used monthly TerraClimate data for calculating [7] long-term dimensions of anomalies of
drought, temperature, and soil moisture from 1987 to 2017. We derived the annual intensity hazard
of climate variables from their dimensions as causes of triggering insect attack and forest fires for
modeling by the panel data approaches (see Section 2.3.3). The ancillary data such as the Topographic
Position Index (TPI), Terrain Ruggedness Index (TRI), and Topographic Wetness Index (TWI) were
derived from the ALOS PALSAR data elevation [57] for the study area. Forest types were vectorized
concerning the scanned maps of the forest management plans [58]. These data were used for mapping
insect-infested forests along with Landsat 8 OLI data.
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Figure 2. Site C (Figure 1): The images of Google Earth (GE) [59] and Landsat 5 TM (SWR, NIR, R)
show that the forest was in a healthy condition before the attack of Lymantria dispar in 2010 (a, b); the
symptoms of the infestation emerged on the Landsat 8 OLI (SWR1, NIR, R) as “olivenite green” in 2013
(c); the insect significantly infested the region based on the GE (d) and Landsat 8 OLI (e) images in
2014, while it declined in 2015 (f) and ended in 2016 (g).

2.3. Methodology

2.3.1. TreeNet-Based Insect Infestation Mapping

GEOBIA was used to delineate the insect-defoliated areas from the healthy forests through image
segmentation and TreeNet classification. We derived image objects from a set combination of the main
spectral and panchromatic channels of Landsat 8 OLI for the peak times of defoliation (May–June)
through the multiresolution segmentation algorithm. To minimize the mean heterogeneity of image
objects, we assigned optimal scale parameters by trial and error, with higher weights for the red, NIR,
and SWIR bands; the compactness value of 1; and the shape value of 0 in the eCognition Developer
9 [60].

• Object features

Various object features (95 features) were derived from the main channels of Landsat 8 OLI,
topography data, and forest types, as shown in Table 1. The object features were classified into four
main groups including spectral features, surface texture features, geometric features, and the features
derived from ancillary data in the GIS. A single database was created including all the derived features
of segment objects, and was utilized for classification using TreeNet.

• TreeNet classification

The stratified random sampling method was used for selecting samples of insect-infested objects
(defoliation >50%) and non-insect-infested objects for assessing the object features that control insect
outbreaks and discriminate them from the non-insect-affected forests. The TreeNet algorithm was
applied for determining influential variables depending on the test sets and generalizing the obtained
scores to all feature objects to distinguish between the insect-infested and non-insect-infested objects.
Classification in TreeNet is a particular form of regression that produces a possibility of response for a
variable and accurately ranks the predictor variables based on their importance from “most likely” to
“least likely” to the target variable. TreeNet creates boosting regression models through sequentially
fitting a very small tree in several stages. Accordingly, each stage learns from the available training
data by a specific learning rate [6].
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Table 1. Object features derived from Landsat 8 OLI channels and ancillary data (topographic and
forest data) for discriminating defoliated forests from healthy forests in NE Iran.

Object features Input data Features 1 (No.)

Spectral features
(32)

Blue, Green, Red, NIR,
SWIR1, SWIR2

Mean (6), StdDev (6) of the spectral bands
Mean and StdDev of spectral indices (14) (IPVI [61] GEMI [62],

ARVI [63], GVI [64], NDVI [65], EVI2 [66], NDWI [67]
Principal components (6) [68] Greenness (2), Wetness (2) [69],

Brightness (1), Max. diff. (1)

Surface
texture-features (56)

Single bands and all
bands in all directions

GLCMall dir. (Homogeneity (7), Contrast (7), Dissimilarity (7),
Entropy (7), Mean (7), Angle second moment (7), StDev (7),

Correlation (7)) [70,71]
Geometric features

(3) Objects Area (1), Compactness (1), Asymmetry(1) [71]

Ancillary data (4) ALOS PALSAR
Forest data

Topographic Wetness Index [72], Topographic Position Index
[73], Terrain Ruggedness Index [74], Forest types

1 StdDev: Standard deviation; IPVI: Infrared percentage vegetation index; GEMI: Global environment monitoring
index; ARVI: Atmospherically resistant vegetation index; GVI: Green vegetation index; NDVI: Normalized difference
vegetation index; EVI2: Enhanced vegetation index 2; NDWI: Normalized difference water index; GLCM: gray-level
co-occurrence matrix.

We applied TreeNet in Salford Predictive Modeler 8.3 [75] to build our model with respect to its
classification precision, working with both parametric and non-parametric variables, handling big data
and missing datasets, connecting to GIS, plotting the univariate and bivariate relationships between
the response and predictor variables through partial dependency plots (PDPs), yielding reliable results
despite existing non-stationary in data, and ranking the predictor variables in terms of their importance
in the model [6,76,77]. One-third of the samples were randomly assigned for the testing set, and
the remaining were considered as the learning samples. We set the number of trees and maximum
nodes per tree to 500 and 6, respectively. The shrinkage method was chosen as “auto” to eliminate the
complexity of overfitting and to set the learning rate of the model, which was calculated to be 0.01.
Moreover, we evaluated the number of optimal trees using the criterion of the area under the receiver
operating characteristic (ROC) curve and the misclassification rate for the test samples. The confusion
matrix was used to assess the performance of the classification model with respect to the test samples
using four measures: (1) Sensitivity: the proportion of the insect-infested objects that are correctly
classified, (2) Specificity: the proportion of the non-insect-infested objects that are correctly classified,
(3) Precision: the proportion of the actual classified insect-infested objects divided by total number of
the insect-infested class testing objects, and (4) an F1 statistic derived from the sensitivity and precision
metrics as shown in Equation (1), in which its values close to one indicate a high sensitivity of the
model:

F1 statistic =
2(Sensitivity× Precision)

Sensitivity + Precision
(1)

2.3.2. Intensity of Insect Infestation, Severity of Forest Fire, and Climate Hazards

The intensity of defoliation was retrieved by analyzing the long-term deficit of NDWI-derived
forest-water content within the TreeNet-derived insect-infested polygons. We calculated the dimensions
of defoliation including the severity, frequency, and duration of the yearly defoliations from the
anomalies of the Landsat NDWI from 1987 to 2017. The yearly hazard intensity of defoliation was
mapped concerning the introduced approach by Abdi et al. [49], which is a combination of standardized
values of defoliation dimensions through the fuzzy gamma operator [78].

We obtained the spatial variations and characteristics of daily forest fires from diverse resources
from 2010 to 2017. Several studies verified the strength of Landsat-derived burn severity indices such
as the differenced Normalized Burn Ratio (dNBR) [79] and the Relativized dNBR (RdNBR) [80] for
large fires; however, some fires’ characteristics such as size area, duration, and the type of fire may
restrict these indices applications for post-fire monitoring in northeast Iran. Therefore, the severity of
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forest fires was calculated from the combination of the ground-based characteristics of fires including
the frequency, size, and duration of fires within segment objects. The fire characteristics’ values
were standardized between zero (low) and one (high) by exerting the membership function of fuzzy
linear [81]. The severity of forest fires was obtained by overlaying the standardized layers of fire
characteristics using the fuzzy gamma operator [78] during a fire season.

TerraClimate data were applied to model the hazard intensity of climate variables throughout the
hydrological years (October to September) from 1987 to 2017. The features (i.e., severity, frequency,
and duration) of yearly anomalies of the climate variables were combined to obtain the hazard
intensity indices of drought, maximum temperatures, and soil moisture deficit using the fuzzy gamma
operator [78] as well.

2.3.3. Relationships among Insect Infestation, Forest Fires, and Climate Hazards

We examined mutual relationships between insect infestation and forest fires in the presence of
the hazard intensity of climate variables within the insect-affected objects using the panel data models.
To include both the spatial and time effects of the data, we performed the panel data models [82]
for the estimation of the intensity of defoliation affected by forest fire severity and climate hazards
(Equation (2)), as well as the severity of forest fires induced by insect defoliation and the climate
hazards (Equation (3)):

Insect in f estation = f n(Ft−1, Dt, Dt−1, Tt, Tt−1, St, St−1) (2)

Fire severity = f n(It, It−1, Dt, Dt−1, Tt, Tt−1, St, St−1) (3)

where It, Ft, Dt, Tt, and St are the averages of insect infestation intensity, fire severity, drought intensity,
high temperature, and soil moisture deficits in the current year (t); and It − 1, Ft − 1, Dt − 1, Tt − 1, and
St − 1 are the averages of these variables for the previous year (t − 1), respectively.

Panel data models

Analyzing the panel data was established based on the combination of multiple observations for the
same cross-sections and time series, which is written in a standard model as shown in Equation (4) [83]:

yi,t = β′Xit + Ziα+ εit (4)

For i = 1, 2, 3, . . . , N and t = 1, 2, 3, . . . , T; where N stands for the number of individuals
(cross-sections), and T is the number of times. The vector Xit refers to the k regressors (Equations (2)
and (3)). The vector β′ refers to unobserved coefficients, which need to be estimated. The term Ziα
expresses the cross-section specific effects. The error terms of the model were indicated by εit. Three
panel data models are defined regarding the nature of included variables in the vector Zi, including
the common effects, fixed effects, and also random effects models (Equations (5)–(7)).

The common effects model does not consider time and cross-sectional effects. The vector Zi
contains only one constant coefficient: α. The coefficients of this model are estimated by applying the
ordinary least squares (OLS) approach:

yi,t = β′Xit + α+ εit (5)

The fixed effects model assumes specific cross-sectional effects from different intercepts to obtain
unobserved heterogeneity. The parameter of fixed effect αi is constantly estimated over time with the
estimators’ normality assumption. This model assumes that cross-sectional effects are correlated with
the included regressors Xit:

yi,t = β′Xit + αi + εit (6)
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The random effects model assumes that unobserved cross-sectional heterogeneity is not correlated
to the included regressors Xit. The coefficients of this model are estimated using the generalized least
squares (GLS) estimator:

yi,t = β′Xit + α+ µit (7a)

µit = αi + εit (7b)

The random effects model is preferable to the fixed effect model if samples were taken from
a larger population and the estimations’ generalization to the population was aimed. The higher
accuracy of estimates and greater flexibility of this model in comparison with the fixed effects model
were reported [84,85] as well.

Testing for fixed effects and random effects

Tests were accomplished to make a distinction between panel data models. The Chow test
was used for testing fixed effects against common effects [83], which determines whether a single
regression model (common effects) is superior to the two separate regression models (fixed effects).
The Hausman’s specification test [86] was used for selecting whether the fixed effects model or the
random effects model is appropriate [87]. The Hausman test makes a distinction between a model that
assumes its cross-sectional effects are not correlated with its regressors (random effects), and a model
that assumes that these relationships are established (fixed effects) [83].

3. Results

3.1. Insect Defoliation Mapping

The highest performance of TreeNet was obtained after the formation of 333 trees with the optimal
ROC value of 93.4% for discriminating insect-infested and non-insect-infested forest objects. The
model results using 83 out of 95 predictor variables yielded an average correctness of 87% for testing
samples to predict the insect-infested and non-insect-infested forests (Table 2).

Table 2. Classification correctness of test samples for the TreeNet analysis to discriminate the
insect-infested from the non-insect-infested forests in NE Iran.

Measure Average Overall
accuracy Specificity Sensitivity Precision F1 statistic

Percent 87.15 86.76 80.56 93.75 81.08 86.96

Relative variable importance values describe that the top predictors are the mean of PC2, tree
species, and the mean of the red channel derived from the gray-level co-occurrence matrix (GLCM),
NDWI, and global environment monitoring index (GEMI) (Figure 3). The positive log-odds values of
the insect-infested class were significantly increased when the mean of the PC2 values had passed the
point of 0.70. Tree species with the domination of Carpinus betulus-Quercus castaneifolia and Carpinus
betulus-Acer spp.-Tilia platyphyllos exhibited the highest partial relationships with the insects’ presence.
The average log-odds values of the insect-infested class were increased from –0.287 to 0.314, where the
mean of the red band derived from GLCM ranged from 122 to 130. The average log-odds dropped at
values of 0.264 and 0.635 of the NDWI and GEMI, respectively, where the probability of infestation
also reduced (Figure 4).

The TreeNet model was rebuilt with respect to the top influential object features that have gained
a minimum score of 15% importance relative to the most important variable. The insect-infested and
non-insect-infested map was created with the contribution of the top 22 predictor variables over the
study area (Figure 5).
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Figure 4. Univariate partial dependency graphs for the top five-predictor variables for classification of
insect-infested forests in NE Iran. Positive values of the outputs indicate a direct association of a class
of the categorical variables or values of the continuous variables with the focus class. Eight tree species
showing positive relationship with the infested class (a), the mean of PC2 and the mean of red band
derived from GLCM show a positive association at values of greater than 0.711 (b) and 126.30 (c), and
the mean values of the NDWI and GEMI show a positive relationship with the presence of infestation
until the values of 0.267 (d) and 0.697 (e).
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The hazard intensity of defoliation derived from the time-series anomaly of Landsat–NDWI was
mapped as an insect infestation indication within the delineated insect-infested forest objects from
2010 to 2017 (Figure 6). The maps demonstrated that the infestation intensity was considerable in 2011,
2014, and 2015 (Figure 6b,e,f).

3.2. Insect Infestation, Forest Fires, and Climate Hazards Modelling

The results of the Hausman test indicate that the random effects model was superior to the
fixed effects model for the variables expressing that control either the intensity of insect infestation
(X2 = 11.87, df = 7, p= 0.105) or severity of forest fires (X2 = 6.72, df = 8, p = 0.567). Furthermore, the
results of the Chow test showed that the fixed effects model was superior to the common effects in
both models (X2 = 37.39, df = 18, p = 0.004; X2 = 43.31, df = 18, p = 0.000).

The summary of the random effects model reveals that the drought condition (SPI), maximum
temperature (Tmax), and the deficit of soil moisture of the current year—along with the maximum
temperature, high soil moisture availability, and the severity of forest fires of the previous year—were
the significant variables, which are controlling the insect infestation intensity during 2010–2017 in the
study area (Table 3). However, the intensity of drought of the previous year was not significant, but its
coefficient is positive. Although the majority of climate hazards demonstrated positive coefficient with
the severity of forest fires, Tmax of the current year (β = 0.330, p < 0.05) and Tmax of the previous year
(β = 0.196, p < 0.01) were the only significant variables. The insect infestation (II) of the previous year
showed a positive relationship with the severity of forest fire as well; however, it is not statistically
significant (β = 0.106, p > 0.05) in NE Iran (Table 4).
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Figure 6. The yearly hazard intensity of defoliation for the time period of 2010 to 2017 (a–h) within the
insect-infested forest objects. The monthly anomalies of NDWI were obtained from the time series
of Landsat 5, 7, and 8 from 1987 to 2017. The dimensions of forest water content deficit including
severity, frequency, and duration were derived from Landsat–NDWI anomalies for the time period
of defoliation (2010–2017). The values of these dimensions were standardized by the membership
functions of fuzzy linear and fuzzy large between zero and one. The hazard intensity of defoliation was
obtained by overlaying the standardized layers of dimensions of the NDWI anomalies using the fuzzy
gamma operator within the insect-infested segment objects during a growing season in Hyrcanian
forests, NE Iran.
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Table 3. Results of panel data models for relationships between the intensity of insect infestation with
the intensity of climate hazards of the current year and previous year as well as forest fires of the
previous year in NE Iran.

Model Constant SPIt SPIt − 1 Tmaxt Tmaxt − 1 SoilMt SoilMt − 1 Firet − 1 R2

Common effects 0.204 0.184 * 0.070 ns 0.463 * 0.165 * 0.144 * −0.134 * 0.171 * 0.680
Fixed effects 0.290 ** −0.039 ns

−0.080 ns 0.762 ** 0.367 * 0.152 * −0.072 ns 0.154 * 0.798
Random effects 0.210 ** 0.153 * 0.048 ns 0.718 ** 0.321 * 0.146 * −0.126 * 0.194 * 0.706

** p value < 0.01, * p value < 0.05, and ns: not significant. SPI: standardized precipitation index; Tmax: maximum
temperature; SoilM: soil moisture deficit; Fire: forest fire; t: current time; and t − 1: previous time.

Table 4. Results of panel data models for relationships between the severity of forest fires with the
intensity of climate hazards and insect infestation of the current year and the previous year in NE Iran.

Model Constant SPIt SPIt − 1 Tmaxt Tmaxt − 1 SoilMt SoilMt − 1 IIt IIt − 1 R2

Common effects −0.0169 ns
−0.085 ns 0.030 0.385 * 0.177 * 0.032 ns

−0.163 ns
−0.059 ns 0.105 ns 0.210

Fixed effects −0.032 ns
−0.113 ns 0.094 ns 0.254 ns 0.213 ** 0.049 ns

−0.126 ns
−0.031 ns 0.106 ns 0.550

Random effects −0.017 ns
−0.101 ns 0.117 ns 0.330 * 0.196 ** 0.041 ns

−0.148 ns
−0.020 ns 0.106 ns 0.236

** p value < 0.01, * p value < 0.05, and ns: not significant. SPI: standardized precipitation index; Tmax: maximum
temperature; SoilM: soil moisture deficit; II: insect infestation intensity; t: current time; and t − 1: previous time.

4. Discussion

This study exerted novel remote sensing-based data collections (e.g., Landsat and TerraClimate)
and approaches (e.g., TreeNet and panel data models) in order to discern insect-infested forests and
quantify the multitemporal intensity of forest defoliation, climate hazards, drought, and the severity of
forest fires along with modeling their temporal and spatial interactions in NE Iran.

We obtained reliable discrimination between insect-infested forests and non-insect-infested forests
(Table 2) using the important collections of Landsat 8 OLI-derived and ancillary object features using
the TreeNet algorithm. The summary of variable importance represented that the object features
extracted from the Landsat channels show higher performance in comparison with the main spectral
channels of Landsat (Figure 3). For example, the highest value recorded for the mean of PC2, and
after that the mean of red channel derived from GLCM and the mean values of vegetation indices,
including the NDWI and GEMI, respectively. Analyzing one partial dependency revealed that the
probability of the presence of defoliation increases along with the increase of average values of the PC2
and the mean of the red channel derived from GLCM, while it decreases by the increase of values of
the NDWI and GEMI (Figure 3). The PC2 was positively loaded on the visible bands of Landsat 8
OLI with a higher coefficient for the red and green bands, which high-defoliated forest objects have
obtained high values on PC2 (Figure 4b). The increase in the reflectance of some ranges of visible
wavelengths due to the vegetation stress was reported in earlier studies [88,89], which are near to the
green and red bands of Landsat 8 OLI. In contrast, PC2 was loaded negatively on the NIR and SWIR
bands, as the objects with high biomass showed lower values on the PC2. While our analysis indicated
that the PC2–Landsat 8 OLI is the top variable predictor, the third principal component (PC3) was
positively loaded on the red band, and has showed considerable importance value in discriminating
between insect-infested forest objects and healthy forest objects (Figure 3) as well. In addition, the
ability of PC3 was reported for identifying year-to-year forest defoliation by Lymantria dispar L. using
the time series of SPOT [90]. Moreover, the importance of Landsat-derived indices was presented for
detecting insect-affected forests for different types of insects in other biomes [13,14,18]. This study
results confirm that vegetation indices with respect to the NIR–SWIR (i.e., NDWI) are superior to those
vegetation indices that are depending on the visible NIR channels for the delineation of insect-infested
forest objects [13,14] in the Hyrcanian ecoregion as well.

Insect defoliators can affect the structure of vegetation [91]; therefore, image-derived textural
attributes are appropriate for detecting insect-defoliating forest objects. However, the mean of the red
channel derived from GLCM was among the top five predictors; Figure 3 indicates that about one-third
of effective predictor variables are categorized in the first-order or second-order textural attributes for
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detecting the defoliation induced by insects in NE Iran. The superiority of image textures derived
from GLCM and gray-level occurrence matrices (GLOM) [91,92] for detecting vegetation degradation
induced by insect defoliation has been particularly demonstrated for high-spatial resolution images.

The results of variable importance describe that the type of tree species has a significant effect on
the insect outbreaks as well. However, the partial dependence plot shows that mixed forest stands such
as Carpinus betulus and Quercus castaneifolia with the other tree species types were highly correlated
with the positive values of probability infestation in the Hyrcanian forests (Figure 4a). However, some
studies reported insect defoliation in the monospecific stands in the other forest biomes [9,14,93].

The results of interactions between the intensity of insect defoliation with the intensity of climate
hazards demonstrated that Tmax, drought, and soil moisture significantly increased the intensity of
insect infestation. Both current and previous temperatures presented significant coefficients (Table 3).
The high temperatures of the previous year can enable insects to survive during the winter [29–31]
and change the cycle of forest phonology with the insect outbreaks consequences during the growing
season [32].

Although some studies reported uncertainty about the effect of drought on the insect eruption [33],
this study’s analyses confirmed that drought condition is a key trigger of increasing insect outbreaks
in Hyrcanian broadleaved forests (Table 3). This area has experienced severe droughts from 2010
to 2011 [48]; however, the wetter seasons during 2012 and 2013 provided the condition for eruption
insects during moderate drought seasons. Also, these fluctuations in the wet and dry seasons have
been reported as a trigger of insect outbreaks [24]. The panel data models using random effects verified
that the soil moisture availability [1,37] in the previous year significantly increased the intensity of
insect infestation (Table 3). However, the effect of the deficit of soil moisture in the current year was
not significant; its positive coefficient indicates that it was more likely that it intensified the insect
eruption [38]. Therefore, the conditions of the previous year regarding its high temperatures and
availability of moisture have supplied the sources of nutrients for insects and caused massive outbreaks
in the current year with existing high temperatures and drought conditions. Earlier studies emphasized
that high temperature is the main cause of increasing the intensity of tree mortality in the Hyrcanian
forests [49].

Moreover, the random effects model indicated that the severity of forest fires of the previous year
was a significant driver in increasing the intensity of insect infestation (Table 3). The trends of forest
fires were dramatically increased following 2010 in the study area (Figure 1). Since the majority of the
type of fires are classified as surface fires and single-tree burning in the study area, the likelihood of
damaging trees [44] and opening fire-induced spaces [45] have increased the risk of insect infestation
in these spots. The presence insect defoliators was higher in the locations with a high density of fires
(Figure 1). In contrast, the intensity of insect defoliation either in the current year or in previous
year was not a significant trigger for increasing the severity of forest fires in the Hyrcanian ecoregion
(Table 4). The neutral effects of insect infestation on fire severity were demonstrated in the studies
accomplished by Meigs et al. [42] and Kane et al. [43] as well. However, some researchers concluded
that insect-induced tree mortality has decreased fuels and associated fire proneness, resulting in
declining fire severity [41]. We can justify these results for two reasons in Hyrcanian forests: (1)
insect infestations have not yet led to such a massive tree mortality that could load extensive fuels
for fires [34,39,40] in this area, and (2) human activities are identified as the main causes of fires in
this area, and mostly occurred in the condition of high temperatures [47]. This study confirmed that
the maximum temperature of the current year and previous year are the only significant variables
controlling forest fires in the Hyrcanian ecoregion (Table 4).

Landsat 8 OLI-derived features have shown reasonable efficiency for mapping insect-defoliated
Hyrcanian mixed broadleaved forests for the investigated periods. Alternatively, this study proposes
testing the capabilities of new data such as Sentinel-2 with higher spectral, spatial, and swat width
that can produce dense time series, which are more appropriate for monitoring near-real-time insect
infestation. There have been increasing reports about the outbreaks of other biotic agents such as bark
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beetles and pathogens in the Hyrcanian forests [52–54]; therefore, further investigations are required
for identifying the spatial extent of these agents and exploring their triggers. Furthermore, separating
mortality induced by insect defoliators from bark beetles or pathogens should be scrutinized.

5. Conclusions

This study has designed an object-based TreeNet framework to discern insect-defoliated forests
using Landsat 8 OLI-derived and ancillary object features. Furthermore, we performed panel data
models for quantifying the effects of TerraClimate-derived climate hazards on insect outbreaks and
forest fires along with mutual associations of insect infestation and forest fires in the Hyrcanian
broadleaved mixed forests, NE Iran. According to the analyses, we drew the following conclusions:

1. GEOBIA TreeNet indicated excellent performance with the contribution of Landsat 8 OLI-derived
and ancillary object features for discriminating insect-defoliated forests from healthy forests.

2. Although the object features of Landsat 8 OLI recorded a higher importance for discriminating
insect-defoliated objects, tree species has obtained the second rank of importance following the
mean of PC2. In addition, other top image object features were the mean of the red channels
derived from GLCM, the mean of NDWI, and the mean of GEMI, respectively.

3. The random effects model demonstrated higher performance in comparison with the fixed effects
and common effects models to model mutual interaction of the intensity of insect defoliation and
the severity of forest fire and their associations with the TerraClimate-derived climate hazards.

4. Maximum temperatures significantly triggered both insect outbreaks and forest fires. Although
the drought conditions of the current year and the availability of soil moisture of the previous
year were significant regarding the intensity of insect infestation, they have indicated neutral
effects on the severity of forest fires.

5. The severity of forest fires of the previous year has triggered the intensity of insect infestation;
however, the insect infestation was not effective for the forest fires.

6. Future studies will be required to explore the application of novel satellite images such as Sentinel-2
or the combination of Landsat 8 and Sentinel-2 for monitoring near-real-time insect-induced
defoliation, identifying infestations resulting from bark beetles and pathogens, and discriminating
between them.
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