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Understanding how the tumor sup-
pressor p53 induces cell cycle arrest 

or apoptosis is critical for developing che-
motherapeutic strategies. We have gener-
ated targeted transgenic reporter mice 
with which we can study p53 activity at 
specific promoters, and propose a model 
in which p53 protein conformation is key 
to target gene selection.

The p53 pathway is inactivated in many 
cancers, thereby disabling an important 
signaling node that is crucial for the pres-
ervation of genomic integrity. p53 protects 
cells from damage by mediating a reversible 
growth arrest to allow repair of said dam-
age, or by inducing senescence or apop-
tosis. Given its critical role, p53 is often 
targeted in cancer therapy, which seeks to 
eliminate tumor cells.1 But to effectively 
harness its tumor suppressive power, one 
must understand how p53 determines the 
fate of cells in which it has been activated.

p53 is a transcription factor whose lev-
els are usually suppressed. When a cell is 
subject to stress, such as DNA damage or 
oncogene activation, p53 protein accumu-
lates, is activated and regulates the expres-
sion of its target genes. Depending on the 
transcription program induced, the cell 
then undergoes cell cycle arrest, senescence 
or apoptosis, all with the ultimate aim of 
tumor suppression.1 Notable p53 target 
genes include the cyclin-dependent kinase 
inhibitor p21, which plays a significant role 
in blocking cell proliferation,2 and PUMA 
(p53-upregulated modulator of apoptosis), 
which is crucial for p53-induced cell death.3

The response to p53 activation varies 
depending on the cell type and the stimu-
lus used.4,5 For instance, treating mice 
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with ionizing radiation causes extensive 
p53-dependent apoptosis in tissues such 
as the small intestine, spleen and thy-
mus, but not in the liver,6 while microar-
ray analysis of tissue culture cells revealed 
that different stimuli induce distinct sets 
of p53 target genes.5 These cell- and drug-
specific responses must be characterized 
and considered during the design of che-
motherapeutic regimens, in order to maxi-
mize efficacy while minimizing toxic side 
effects.

Despite extensive effort, the processes 
driving these cell fate decisions are still not 
well understood. Many different research 
groups have employed a wide variety 
of approaches to address this question, 
including structural studies of p53 itself, 
in vitro biophysical assays, and experi-
ments with tissue culture cells. We have 
recently added to this toolbox, by generat-
ing targeted transgenic reporter mice that 
enable us to monitor p53 activity at spe-
cific p53 response elements.7

Using Targeted Transgenic  
Reporter Mice to Study p53  

Target Gene Selection

We used targeted transgenesis to generate 
reporter mice in which enhanced green 
fluorescence protein (EGFP) provides 
a direct readout of p53 transcriptional 
activity. The Egfp gene is downstream 
of a Δfos minimal promoter and a single 
p53 response element from either the 
p21 or PUMA promoter. EGFP expres-
sion should thus be driven solely by p53 
binding to this response element. We 
performed in vitro experiments to dem-
onstrate that EGFP expression correlates 
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These modifications are mediated by 
enzymes such as kinases, phosphatases, 
methylases, acetylases and deacetylases. 
As p53 conformation determines its 
affinity for each response element, target 
gene expression depends on the relative 
abundance of p53 molecules adopting 
the relevant conformation. Therefore, 
p53 target gene selection is ultimately 
dependent on the tissue-specific activity 
of the enzymes responsible for p53 post-
translational modifications.

The second part of our model posits 
that the conformation of the p53 molecule 
is determined by the response element 
where it is bound. Each conformation 
incorporates different binding sites for 
various transcription cofactors (repre-
sented by molecules X and Y in Fig. 1B) 
that must be recruited in order for gene 
expression to proceed. If a tissue has high 
levels of cofactor X but little of cofactor Y, 
p53 activity at response element 1 would 
be higher than that at response element 
2, and vice versa. If levels of both cofac-
tors were similar, then p53 activity at both 
response elements would be the same. 
Therefore, target gene selection is depen-
dent on the tissue-specific expression of 
these transcription cofactors.

Support for our model comes from 
a recent publication describing differ-
ent quaternary structures of p53 when 
bound to DNA.12 Given our incomplete 
understanding of p53 protein structure (as 
discussed in detail below), these are tan-
talizing data indeed. They are nonethe-
less consistent with both scenarios of our 
model, whether the p53 adopts the confor-
mation specific to each response element 
before DNA-binding (Fig. 1A) or after 
DNA-binding (Fig. 1B).

As described below, we also find evi-
dence for our model in other published 
reports, whether they examine p53 target 
gene regulation at the DNA level or at the 
protein level.

p53 Target Gene Selection  
at the DNA Level

p53 binds response elements which are 
extremely diverse. A p53-binding con-
sensus sequence has been defined as two 
10-nucleotide motifs, specifically three 
purines followed by C(A/T)(T/A)G and 

structure of the DNA, including nucleo-
some occupancy and positioning, are also 
different in the reporter constructs and the 
native promoters, as is the core promoter 
architecture. Furthermore, the p21 and 
PUMA promoters each contain more than 
one p53 response element. In our reporter 
construct, we incorporated the p53 bind-
ing site from the PUMA promoter that is 
primarily accountable for p53 responsive-
ness.3 Both response elements used in our 
reporter constructs have similar affinities 
for p53 in vitro,11 so we do not anticipate 
that binding affinity contributes signifi-
cantly to differences observed between the 
reporter constructs. Nonetheless, it is pos-
sible that post-translational modifications 
and interacting proteins modify p53 bind-
ing in vivo.

In summary, this reporter system was 
designed specifically to analyze p53 activ-
ity and how one might manipulate it. Both 
its strengths and its limitations should be 
taken into consideration when using it.

A Model for Target Gene  
Selection that is Dependent  

on P53 Conformation

In our p53 reporter mice, we observed 
that EGFP expression varied depending 
on the response element, even within the 
same cells and tissue, indicating that p53 
activity differs at each response element.7 
Given that the core promoter architec-
ture and epigenetic regulation of the two 
reporters are identical, these results indi-
cate that the primary DNA sequence of 
the p53 response element is sufficient to 
significantly affect target gene selection. 
Taking these and other published data 
into consideration, we propose a model 
that emphasizes the importance of p53 
protein conformation with respect to its 
interaction with different response ele-
ments, and discuss its implications for tar-
get gene selection (Fig. 1).

The conformation of p53 may be 
determined either by post-translational 
modifications that occur before DNA-
binding (Fig. 1A) or by DNA-binding 
itself (Fig. 1B). In the first part of our 
model, posttranslational modifications, 
such as phosphorylation, methylation 
and acetylation, dictate the conforma-
tion of each free p53 molecule (Fig. 1A). 

with p53 activity in a concentration-
dependent manner.7

One copy of each reporter construct was 
integrated into the locus of the housekeep-
ing gene hypoxanthine phosphoribosyl-
transferase (Hprt), which is permissive for 
gene targeting and in a region of transcrip-
tionally accessible chromatin. This stable 
integration ensures that these mice can be 
bred without the reporter becoming epi-
genetically silenced, which may have been 
a problem for other transgenic reporter 
mice.8-10 The key difference between our 
two strains of reporter mice is the sequence 
of the p53 response element used in the 
reporter construct. One can thus directly 
compare p53 activity at these two promot-
ers. Using the reporter mice, we could 
detect and quantify variations in the p53 
response that were dependent on cell type 
and stimulus.7 Our data are consistent with 
previous reports4,6,8,10 and validate the use 
of these mice as a model to study p53 activ-
ity. Using EGFP as a reporter allows us to 
exploit advances in microscope technology. 
For example, confocal microscopy analysis 
of embryos from our reporter mice showed 
that p53 is active during early embryonic 
development, including in the blastocyst 
cells from which embryonic stem cells are 
derived.7

To demonstrate that EGFP expres-
sion is p53-specific, we generated p53-null 
reporter mice by mating the reporter mice 
with p53-knockout mice.7 Even though 
we adopted a reductionist approach that 
should minimize the contribution of 
other factors affecting p53 target gene 
selection, given cell- and tissue-specific 
differences, it is important to verify that 
the EGFP expression observed in one’s 
experimental system of interest is indeed 
p53-dependent.

Studying p53 response elements in the 
context of reporter constructs allows us 
to focus on how p53 itself contributes to 
target gene expression, but this strategy 
does have caveats because it eliminates 
elements within the native promoter that 
would normally affect p53 target gene 
selection. These include enhancers, pro-
moters, binding sites for other transcrip-
tion factors as well as effects arising from 
the position of the particular p53 response 
element relative to the genes around it. 
The epigenetic landscape and quaternary 
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changes, which is a key feature of our 
model (Fig. 1).

p53 binds DNA as a tetramer, specifi-
cally as a dimer of dimers. Its interaction 
with DNA occurs in a cooperative manner 
that contributes to target gene selection, 
as cooperativity-enhancing mutations 
have been shown to favor apoptosis.21 
p53 oligomerization may be affected by 
protein partners such as the S100 fam-
ily of proteins and 14-3-3, which pro-
mote monomer and tetramer formation 
respectively.14 Each p53 molecule is also 
subject to a multitude of posttranslational 
modifications, such as phosphorylation, 
acetylation, methylation, ubiquitination, 
sumoylation and neddylation. These 
modifications may affect p53 confor-
mation, its affinity for DNA as well as 
its interactions with other proteins.22 
Accordingly, the first part of our model 
emphasizes their importance (Fig. 1A). 
Taken together, p53 target gene selection 
is heavily influenced by the complexity of 
p53 protein structure and the many fac-
tors that regulate it.

Furthermore, p53-binding proteins 
may drive p53 localization to specific 
DNA response elements or contribute to 

variety of tissues, thereby addressing this 
controversy.

Target Gene Selection at the 
Level of the p53 Protein

The conformation of the p53 protein 
plays a major role in regulating activity, 
although it has proven to be recalcitrant 
to structural study. p53 is very unstable 
and has multiple possible conforma-
tions.18 Each p53 molecule comprises 
two stably folded domains flanked by 
disordered linkers. The central DNA-
binding domain confers sequence speci-
ficity in terms of DNA-binding while 
the C-terminal domain is responsible 
for oligomerization.14 The intrinsically 
unstructured N-terminal region contains 
two transactivation domains (TAD) that 
fold upon binding to specific protein 
partners. For example, TAD1 at residues 
18–25 adopts a helical conformation 
upon binding to the transcriptional co-
activator p300.19 Interactions between the 
different domains modulate oligomeriza-
tion as well as DNA binding and release.20 
Therefore, p53 transcriptional activity is 
regulated by different conformational 

then three pymidines, which are separated 
by a linker that is 0–13 bases in length.13 
p53 affinity for each response element 
depends on the primary DNA sequence,11 
the linker length within the response ele-
ment14 and DNA topology.15 In vitro anal-
ysis revealed that genes involved in cell 
cycle arrest generally have response ele-
ments with a higher affinity for p53 than 
apoptosis genes.11 Cell cycle arrest genes 
thus generally require a lower threshold 
level of p53 for transcriptional activa-
tion. Indeed, p53 protein levels within a 
cell have been shown to affect target gene 
selection.5

However, the physiological signifi-
cance of p53 promoter occupancy is con-
troversial. Analysis of primary peripheral 
blood mononuclear cells revealed that 
p53 normally binds only a few target pro-
moters, and that the diversity of promoter 
recruitment increases significantly upon 
stress,16 an observation that supports the 
importance of the p53-DNA interac-
tion as the rate-determining step in tar-
get gene expression (Fig. 1A). However, 
chromatin immunoprecipitation (ChIP) 
‘ChIP-on-chip’ analysis of cell lines 
subject to genotoxic damage found no 
correlation between p53 localization to 
promoters and physiological outcome.16 
This result is consistent with part B of 
our model, in which cofactor expression 
and recruitment play major regulatory 
roles (Fig. 1B).

The conflicting data from these two 
reports suggest that the regulation of p53 
may be different in primary cells and in 
cancer cells. Additionally, even conven-
tional tissue culture growth conditions 
subject cells to stress that may activate 
p5317 and potentially complicate gene 
expression analysis. Our reporter mouse 
system enables us to take all of the above 
into consideration. We can derive primary 
cells for use in in vitro cell culture sys-
tems as well as study p53 activity in vivo 
in wild type mice. By mating our reporter 
mice with those of the appropriate geno-
type, we can also examine p53 activ-
ity in different mouse models of cancer. 
ChIP analysis of our reporter mice would 
enable us to examine how p53 binding to 
its response elements correlates with p53 
activity and target gene expression in a 

Figure 1. Model for p53 conformation-dependent target gene selection. (A) p53 conformation 
is determined by post-translational modifications prior to DNA-binding. These modifications 
include phosphorylation (P), methylation (Me) and acetylation (Ac). (B) The conformation of p53 
changes upon DNA-binding and varies depending on the response element where it is bound. 
Each conformation has different binding sites for assorted transcription factors (represented by 
molecules X and Y).
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ever-increasing selection of mouse models 
to study p53 in vivo, including our tar-
geted transgenic reporter mice. With this 
multidisciplinary approach, combined 
with systems biology, we can strive to con-
struct a “Grand Unified Theory of p53” 
that will aid us in our fight against cancer.
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