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Abstract: One of the major obstacles to the identification of therapeutic interventions for central
nervous system disorders has been the difficulty in studying the step-by-step progression of diseases
in neuronal networks that are amenable to drug screening. Recent advances in the field of human
pluripotent stem cell (PSC) biology offers the capability to create patient-specific human neurons
with defined clinical profiles using reprogramming technology, which provides unprecedented
opportunities for both the investigation of pathogenic mechanisms of brain disorders and the
discovery of novel therapeutic strategies via drug screening. Many examples not only of the creation
of human pluripotent stem cells as models of monogenic neurological disorders, but also of more
challenging cases of complex multifactorial disorders now exist. Here, we review the state-of-the
art brain cell types obtainable from PSCs and amenable to compound-screening formats. We then
provide examples illustrating how these models contribute to the definition of new molecular or
functional targets for drug discovery and to the design of novel pharmacological approaches for rare
genetic disorders, as well as frequent neurodegenerative diseases and psychiatric disorders.

Keywords: pluripotent stem cells; high-throughput screening; drug discovery; precision medicine;
neurodegenerative diseases; psychiatric diseases; rare diseases; neurons; glia

1. Introduction

Neurological disorders, such as neurodegenerative diseases and psychiatric disorders,
are significant healthcare concerns since they trigger severe impairments in quality of
life and have a large world prevalence [1]. The causes behind these diseases are multi-
factorial and not well understood. Neurological disorders are chronic with devastating
consequences that can continue for years after diagnosis. Many insurmountable ethical and
practical obstacles exist to conduct research on human subjects and primary brain samples,
so experiments and conclusions have mainly relied on animal models both in vitro and
in vivo. However, differences in physiology, genetics and developmental patterns between
human and animal brains have led to discordance between preclinical drug studies and
clinical trials [2–7]. Implementing relevant yet flexible human cellular models would help
conducting drug discovery and hopefully decrease this high clinical failure rate.

Human pluripotent stem cells (PSCs), with their ability to self-renew and then dif-
ferentiate into different types of brain cells, represent such an opportunity [7]. In 1998,
Thomson et al. published, for the first time, a methodology for isolating and culturing
human ESCs from blastocysts [8]. These embryonic stem cells (ESCs), which need to be
harvested from human embryos, represented a valuable but very limited resource for
human disease models. In 2007, Shinya Yamanaka’s team showed that PSCs could be
reprogrammed from a small sample of skin fibroblasts by expressing, combined, the four
pluripotency-associated transcription factors SOX2, OCT4, KLF4and c-Myc. To differentiate
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them from genuine PSCs derived from embryos, he named them induced pluripotent stem
cells (iPSCs, [9]). Since then, more studies have described the successful reprogramming
of iPSCs from different somatic cell types such as blood monocytes and epithelial urine
cells [10–13]. Although there may be some methylation profile differences between iPSCs
and ESCs due to the reprogramming process, they are considered equivalent regarding
cell morphology, proliferation and differentiation capacity [14,15]. Importantly, iPSCs
can be derived from patients who have neurological disorders, allowing researchers to
study nervous system diseases within an endogenous human genetic background. The
development of PSC-based technologies offers unique possibilities to investigate disease
progression and perform drug discovery studies.

2. Integration of PSC-Derived Models in The Process of Drug Discovery
2.1. Strategies for Drug Discovery

Historically, therapeutic compounds were discovered by identifying the active ingredi-
ent in traditional remedies and testing those with given drug activity against pre-identified
biological targets that were hypothesized to be disease modifiers, using the so-called
candidate drug-based strategy. Progress in molecular biology and lab automation has
progressively led to more systematic and agnostic approaches, including compound library
screening, which consists of testing collections of thousands of small synthetic molecules or
natural compounds with a cellular model. Cell-based drug screenings can be conducted at
a single molecular target level, at a pathway level or at a phenotypic level [16,17]. Molecular
target-based screening, was, until recently, the prevalent model used. In this approach,
molecular targets are identified by basic research studies on disease models. The targets
are generally gene products such as mRNAs or proteins that are abnormally expressed
in a pathological context and are demonstrated to influence disease emergence or pro-
gression. Such molecular-based target screenings are usually developed in the context
of monogenic diseases, in which the function of only one gene product is involved and
possibly corrected, or if familial forms of more complex diseases exist and there is clear
target identification [18–20]. Robust biochemical assays are then developed in order to
identify hit compounds among large libraries using high-throughput screening techniques
(HTS). An alternative approach consists of identifying pathways or molecular signatures
rather than single-gene products that can be targeted by compounds [21]. The use of omic
techniques, such as transcriptomics, proteomics and metabolomics, can be integrated to
identified pathways that are associated with pathogenesis [22–26]. The epigenetic dimen-
sion can also be investigated in complex, non-Mendelian disorders by unbiased techniques
to identify novel pathways that can serve as biological targets for HTS [27,28]. Interestingly,
these pathways can be common to several diseases [29–31]. Finally, a phenotypic-based
approach can be applied. Compounds are screened for their ability to normalize functional
or phenotypic parameters in disease-relevant models, such as axonal transport, growth
processes, synaptic functions or neurodegeneration. Compared with molecular and path-
way approaches, functional screening represents a higher level of complexity; however,
this integrated and agnostic strategy is also more promising for disorders of unknown,
complex or multigenic origin. In phenotypic cell-based screenings, the assay is performed
on a support that is suitable for image-based high-content screening (HCS) to identify
positive hits [32–34].

Overall, the process of de novo drug discovery screening of new chemical entities
(NCE), from the initial HTS or HCS to the final marketing of a compound, requires
10–17 years. To limit cost and decrease time, one possible strategy is to use specific chemical
libraries that are smaller, but enriched with high drug-likeness compounds [35]. These
compounds have already been tested for their safety and bioavailability and most corre-
spond to drugs that are commercially available for human use. Positive hits represent
candidates for drug-repositioning approaches or starting points for the discovery of new
drugs, based on their known structure and mechanisms of action [36–38]. Compared to
de novo drug discovery, drug repositioning allows the timeline for marketing a given
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compound to be shortened to 3–5 years. Drug repositioning is particularly attractive for
rare genetic diseases [39,40] and for the identification of new molecules for subgroups of
patients who do not respond to gold standard treatments or suffer many unwanted side
effects that force treatment withdrawal.

2.2. Pluripotent Stem Cells as Biological Material

While extremely powerful, cell-based high-throughput screening (HTS) requires a
large quantity of cells relevant to the disease that can be produced repeatedly, robustly
and homogeneously. Ideally, these cells can be frozen to constitute large banks, in order
to allow sequential runs of screenings to be performed and selected compounds to be
further validated and characterized. Differentiated cells obtained from patient-derived
PSCs offer both flexibility and relevancy for model disorders that affect brain development
and functioning. Indeed, it is possible to obtain large quantities of cells without genetically
modifying them with oncogenes thank to their self-renewal ability. Then, it is possible
to differentiate PSCs into a variety of neuronal subtypes as well as glial cells. Protocols
of differentiation are based on the recapitulation of human neural development in vitro
(Figure 1). PSCs are exposed to developmental cues to guide them progressively along the
steps necessary to specify a particular brain cell type. The first step consists of restricting the
potency of the cells to the neural lineage to obtain neuro-epithelial structures resembling
the embryonic neural tube. One of the most widely used and simple technique is the
so-called dual SMAD inhibition, in which inhibitors of BMP and TGF-beta pathways are
used to convert homogeneously PSCs into neuro-epithelial structures, named rosettes.
The simple inhibition of these two pathways was demonstrated to be sufficient to release
the cells from pluripotency while blocking their engagement in alternative fates [41,42].
Regional specification of the neuro-epithelial structures is obtained in a second effort
by using patterning factors or morphogens. Dorso-ventral patterning is conditioned by
the gradual and antagonistic role of BMPs and SHHs, while rostro-caudal positioning is
under the control of the Wnt/beta catenin and FGF8 pathways [43,44]. The population of
regionally restricted neural progenitors can be further amplified and frozen or terminally
differentiated into post-mitotic neurons expressing brain region-specific markers and
corresponding neurotransmitters identities [45].

This strategy was successfully applied to differentiate PSCs into a variety of neuronal
subtypes relevant to neurodegenerative and neuropsychiatric diseases [46,47], such as
hippocampus CA3 pyramidal neurons, which exhibit the electrophysiological properties
of mossy fibers of the dendate gyrus [48]; hypothalamic-like neurons capable of secreting
orexigenic and anorexigenic neuropeptides and responding appropriately to the metabolic
hormones ghrelin and leptin [49]; GABAergic interneurons of the cortex and the basal
ganglia [50,51]; serotoninergic neurons of the raphe nuclei [52,53]; dopaminergic neurons
of the substantia nigra [44,54]; cortical pyramidal neurons [55–57]; and spinal motoneu-
rons secreting acetylcholine [58,59]. Glial cells can also be derived from PSCs, including
astrocytes [60–64], oligodendrocytes [65–68] and microglia [69–72], allowing the co-culture
and recapitulation of cell-autonomous and non-cell-autonomous mechanisms leading to
disease progression to be conducted [73–82]. Next to these “growth-factor”-mediated
protocols, several groups have described methods of direct conversion of PSC into sub-
types of neurons using forced expression of transcription factors. These protocols by-pass
essential steps of neural differentiation and have the advantage to reduce the time of
differentiation and homogenize neuronal production. Forced expression of NEUROG2
promotes the conversion of PSC into excitatory glutamatergic neurons [83]; ASCL1 and
DLX2, with or without LHX6, into GABAergic neurons [84,85]; ASCL1, with NURR1
and LMX1A, into dopaminergic neurons [86]; and NEUROG2, with ISL1 and LHX3, into
motoneurons [87]. Considerable efforts have also been made to standardize cultures of
PSC-derived brain cells into miniaturized formats, such as 384-well plates, allowing a
systematic analysis of pathological phenotypes and compound testing at large throughput
to be performed [56,88–98].
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Figure 1. Specification of different types of neurons starting from pluripotent stem cells. (A) Steps leading from PSCs to
terminally differentiated neurons. Stars indicate the self-renewing cell types that can be amplified and frozen to create large
cryopreserved banks of biological materials. (B) Schematic representation of the human fetal brain with the 5 different
regions, example of the type of neurons that emerge from these regions and the main morphogens involved in patterning. T,
telencephalon; D, diencephalon; M, midbrain; R, rhombencephalon; SC, spinal cord; BMP, Bone Morphogenetic Factor;
FGF-8, Fibroblast Growth Factor-8; RA, retinoic acid; SHH, Sonic Hedgehog.

In summary, compared to other models previously used for neurological disorder-
related drug discovery, PSC-derived models combine the relevancy of human primary
neural cells and the flexibility of a cell line. Progenitors can be expended until reaching the
cellular mass necessary to perform target identification and to conduct high-throughput
screening of compounds. Once differentiated, patient-derived cells possess the molec-
ular, electrophysiological and morphological particularities of post-mitotic neurons of
the patient, offering the possibility to study the influence of their genetic background on
the expression of the disease and the differential response to drugs. In the last decade,
PSC-neural cells derived from patients affected by rare genetic diseases have paved the
way for disease modelling and drug discovery, mainly by examining the repositioning of
existing therapeutic compounds. Collections of iPSCs reprogrammed from individuals
with more frequent disorders are now available and offer an unpreceded substrate to better
understand more complex diseases, stratify patients, develop new early pharmacological
interventions and adopt precision medicine approaches (Figure 2).
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Figure 2. Integration of PSC-derived models in the process of drug discovery. Grey font highlights the part of disease
modelling, drug discovery and compound optimization performed on PSC-derived cells.

3. Paving the Way: Rare Genetic Diseases

Rare diseases are conditions that affect a small proportion of the population (fewer
than 200,000 persons in the USA or fewer than one in 2000 in Europe). The Orphanet portal
for rare diseases and orphan drugs (http://www.orpha.net, accessed on 15 September 2021)
currently lists more than 5800 rare diseases. Many are genetically inherited and the genetic
causes are clearly identified [99]. From the beginning of the human PSC history, rare genetic
disorders have been attractive models for proof-of-concept studies of disease modelling.
hESC derived from embryos after pre-implantation genetic diagnosis were a first source
of PSCs with natural, disease-inducing mutations. iPSCs now represent an opportunity
to create collections of cells from cohorts of patients with clear genotype–phenotype
correlations. Since only one gene product is involved, it is also a straight-forward strategy

http://www.orpha.net
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to correct or induce mutations by genetic engineering for in vitro validation, in a given
cell type, of the genotype-phenotype correlation. Accordingly, the first “pharmacological”
studies using PSC-derived neurons were aimed at demonstrating that several genetic
diseases hallmarks were recapitulated successfully in hESCs or iPSC-derived neurons and
that they could serve to validate candidate drugs at low throughput [100–103]. PSCs from
patients with rare genetic diseases were then the first to be used as proof of concept that
PSC-derived cells can serve as support to develop innovative compound identification
strategies using HTS. In monogenic diseases, only one gene product acts as the relevant
disease-modifier, implying a very clear path to the development of a screening assay with
only one molecular target to focus on. Accordingly, most screening conducted relied
on molecular target-based approaches and used libraries containing known bioactive
compounds, in order to identify lead compounds or new therapeutic targets or approved
drugs for direct repurposing. Several HTS experiments were successfully conducted using
PSCs from patients with neurological disorders. All of these studies illustrate the invaluable
advantage of working with cell types relevant to the disease.

3.1. Fragile-X Syndrome (FXS)

The first advantage is to be able to explore genes and pathways expressed at physio-
logical levels without the need to introduce exogenous gene expression systems. This was
exemplified in studies that screened compounds for genetic forms of ASD induced by the
loss of function of FRMP [104–106] and duplication of a segment of chromosome 7 [107].
FXS was the first neurodevelopmental disorder to be modeled with this aim using iPSCs.
FXS is a neurodevelopmental disorder characterized by mild-to-severe intellectual disabil-
ity and abnormal behaviors, such as attention deficit, anxiety and depression [108]. FXS is
also the most common known monogenic cause of autism, with 43–67% of male patients
meeting the criteria of autism spectrum disorders. At the genetic level, FXS is linked to
mutations (triplet repeats) in the 5′-untranslated region of the fragile X mental retardation
1 (FMR1) gene, which results in the absence of the FMRP protein. FMRP is a brain-specific
RNA-binding protein that regulates the transport and translation of many mRNAs that
play an important role in learning and memory [109]. Consequently, screenings were
conducted in neural progenitors to identify compounds that could increase FRMP levels.
Kaufmann and collaborators used FXS-patient iPSCs to develop an image-based HTS assay
measuring the levels of FRMP in neural stem cells using immunofluorescence [104]. In
all, 50,000 compounds were screened, including epigenetic regulators with known mode
of action (7%), molecules covering a broad chemical space and biological diversity (46%)
and a set of randomly selected compounds from an internal archive (47%). Four hits
were identified and further confirmed for efficacy and absence of toxicity in dose-response
experiments but were not further investigated for their mode of action or evaluated in
an animal model. At the same time, Kumari and collaborators described the screening of
5000 known tool compounds and approved drugs in neural stem cells differentiated from
an FXS patient-derived iPSC line using time-resolved fluorescence resonance energy trans-
fer assay for FMRP detection [105]. Interestingly, the primary screening was performed in a
1536-well plate format, a format rarely used for cell-based assays and six compounds were
identified that modestly increased FMR1 gene expression in FXS patient cells. Although
none of these studies resulted in clinically relevant compounds, they provide strong proof
of principle of the assays performed on patient-derived neural stem cells in a very high-
throughput format to identify new lead compounds for FXS drug development. More
recently, Li and collaborator used the newly described CRISPR/Cas9 system to create a
reporter line for detecting FMR1 gene reactivation in human neural cells and used it to
screen 1262 bioactive compounds [106]. This revealed two epigenetic regulators, 5-aza-dC
and 5-aza-C, that significantly restored FRMP levels in disease cells. This study demon-
strated that CRISPR/Cas9 can successfully be combined with iPSC-derived neural cells to
design customized screening lines by knocking the luciferase reporter into endogenous
target genes in order to obtain reporter lines and to reduce screening costs while increasing



Cells 2021, 10, 3290 7 of 25

screening performance. This was possible only because iPSC-derived neural stem cells
physiologically express endogenous levels of FRMP and proved the value of screening
in human cells differentiated from PSCs. Together, these three studies demonstrate the
feasibility and relevance of HTS in the neural progeny of PSCs for neurodevelopmental
disorders.

3.2. Duplication of a Segment of Chromosome 7 (7Dup)

Validation that screenings can successfully be conducted for larger genetic aneuploi-
dies was then reported. Duplication of a segment of chromosome 7 at 7q11 comprising
26–28 genes is one of the best-characterized copy number variations (CNVs) underlying
autism. 7Dup patients show a range of autism spectrum disorder traits, especially vary-
ing degrees of language impairments and social restrictions [110]. Among the genes of
the 7q11.23 region, general transcription factor II-I (GTF2I) has key relevance. This gene
mediates signal-dependent transcription and plays a prominent role in various signaling
pathways [111]. Most importantly, convergent evidences have implicated GTF2I as a major
mediator of the cognitive–behavioral alterations in 7Dup [112]. Interestingly, deletion of
this gene is also related to another rare disease, the Williams–Beuren syndrome. Cavallo
and collaborators screened, using RT-PCR, 1478 compounds for their potential to increase
GTF2I mRNA levels in 7Dup iPSC-derived cortical glutamatergic neurons. Some HDAC
inhibitors were selected and further validated by quantifying the modulation of genes
included in the segment duplication and involved in the Williams–Beuren syndrome [107].

3.3. Metabolic Disorders

Neurodegeneration is another aspect that requires authentic neurons to develop pre-
dictive models for drug screening, since these post-mitotic cells are more sensitive to
metabolic stressors than peripheral cells. This was illustrated by studies of GM1 gan-
gliosidosis and Lesch–Nyhan disease [113,114]. GM1 gangliosidosis is a lysosomal storage
disorder characterized by abnormal accumulation of GM1 ganglioside. The main clinical
feature of the disease is neural dysfunction due to massive GM1 ganglioside deposition
in the central nervous system [115]. This abnormal deposition is caused by a deficiency
in lysosomal β-galactosidase (β-GAL) activity which limits the body’s ability to degrade
GM1 ganglioside in lysosomes leading to excessive GM1 ganglioside accumulation and
eventual impairment of several pathways, including the unfolded protein response (UPR),
endoplasmic reticulum calcium signaling and autophagy. Altogether, this induces pro-
gressive neurodegeneration. Kajihara and collaborators generated induced pluripotent
stem cells (iPSCs) derived from patients with GM1 gangliosidosis, differentiated neurons
and developed an image-based HTS assay to detect GM1 ganglioside accumulation. A
collection of 2217 compounds containing already approved drugs and major chemicals
used in pathway analyses was screened. The two best compounds, amodiaquine and
thiethylperazine, were then shown to restore the presynaptic deficit in disease-derived
neurons, upregulate the enzymes responsible for lysosomal glycosphingolipid degradation
and activate autophagy. Interestingly, the authors also validated the hit compounds in
a mouse model of GM1 gangliosidosis, demonstrating efficacy in reducing ganglioside
accumulation in the brain and protecting it from degeneration [113].

LND is caused by deficiency of the purine salvage pathway enzyme hypoxanthine-
guanine phosphoribosyltransferase (HGPRT), an X chromosome-encoded protein [116].
LND is characterized by severe neuropsychiatric disorders, which present with choreoa-
thetosis, dystonia, aggression and self-injurious behavior [117]. Mutations in the HPRT1
gene, which code for HGPRT, are different for each individual but patients exhibiting the
most severe neurological symptoms consistently have mutations that totally block protein
synthesis [118]. To optimize the chance that a compound is efficient for most children
with LND, independent of the type of mutation affecting HPRT1 gene, one strategy is to
identify the compounds that activate alternative metabolic pathways that compensate for
the deficiency of purine salvage in a target-agnostic manner. From a metabolic point of
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view, neural stem cells and neurons mainly rely upon recycling as a source of purine, while
most other somatic cells rely, instead, upon de novo synthesis, a specificity that renders
the brain more vulnerable to HGPRT deficiency than other organs [119]. In this context,
the use of authentic human neural stem cells and neurons rather than peripheral cells
such as fibroblast or blood cells was instrumental. Ruillier and collaborator decided to
conduct a functional screening in neural stem cells and neurons derived from iPSCs of
children affected with LND treated with azaserine, an inhibitor of the synthesis of purine
de novo, in order to selectively induce cell death in HGPRT-deficient cells [114]. More than
3000 molecules were screened for their ability to rescue HGPRT-deficient cells from azaser-
ine toxicity. Six pharmacological compounds were identified, all possessing an adenosine
moiety, that corrected HGPRT deficiency-associated neuronal phenotypes by promoting
metabolic compensations in an HGPRT-independent manner. Among these compounds,
S-adenosylmethionine was reported in several case studies to ease the neuropsychiatric
symptoms in LND [120–124], demonstrating the relevance of the screening strategy.

3.4. Cyclin-Dependent Kinase-Like 5 (CDKL5) Deficiency

Working with authentic and neuronal networks offers the opportunity for phenotypic
and functional screening. This is of particular interest for diseases that involve abnormal
excitability such as epilepsy. This was exemplified in a study by Negraes and collabo-
rators, who conducted a phenotypic and target agnostic assay monitoring spontaneous
calcium activity in 3D neuronal cultures as a read-out for network electric activity, which
is abnormally increased in CDK5L-deficient neurons [125]. CDKL5 gene encodes for a
serine/threonine kinase highly expressed in the central nervous system. Mutations in this
gene cause CDKL5 deficiency disorder (CDD), characterized by neurodevelopmental delay,
motor dysfunction, autistic features and early-onset intractable seizures, a defining trait
that led to the standalone classification of this pathology [126]. Patients iPSC-derived 3D
cortical spheroids exhibited hyperexcitability as measured as spontaneous calcium oscilla-
tions allowing a collection of 1112 compounds modulating different neuronal signaling
pathways to be screened. Ivabradine, solifenacin, AZD1080 and crenigacestat were shown
to reverse the phenotypic abnormality and were further investigated for their ability to
ameliorate other CDD cellular phenotypes, including outward radial cellular migration
defects. Due to their ability to regulate abnormal epileptic electrical activity in human neu-
rons, these compounds open new therapeutic opportunities for other types of pathologies
that include intractable seizures regardless of the initial trigger.

3.5. Phelan–McDermid Syndrome (PMS)

One final advantage of modelling neurological disorders with authentic neurons ob-
tained from patient-derived iPSC is the development of personalized medicine strategies.
This was achieved in PMS [127]. This is the first study in which a compound identified by
HTS in a patient-derived cell line was actually evaluated directly and repurposed in the
same patient. PMS is a neurodevelopmental disorder characterized by global developmen-
tal delay, intellectual disability, severe speech delays, poor motor tone and function, and
ASD [128]. Genetic screening of the genome region identifies SHANK3 as the main gene
involved in the ASD features associated with PMS. De novo truncating mutations inducing
haploinsufficiency of the SHANK3 gene were estimated to be present in 0.69–2.12% of
individuals with ASD [129,130]. SHANK3 is an abundant component of the postsynaptic
density, where it acts as a scaffolding protein recruiting key post-synaptic elements, such
as glutamate receptors, and linking them to the actin cytoskeleton [131]. Neurons differ-
entiated from iPSCs of individuals with SHANK3 haploinsufficiency exhibited impaired
electrophysiological responses to glutamatergic synapses’ stimulations, which could be
corrected by re-introducing SHANK3 cDNA expression, validating their value for drug
discovery [132]. In this study, iPSCs were derived from two children with PMS in order
to constitute neuronal networks in a screening format (384-well plates). Patient-derived
neurons exhibit reduced SHANK3 mRNA and protein expression, reduced neurite size,
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decreased glutamatergic synapses and decreased spontaneous network activity. In all,
202 marketed drugs were tested on these neurons and two of them, lithium and valproic
acid, were demonstrated to increase SHANK3 levels (mRNA and synaptic protein), res-
cue neurite length and synapse numbers and, at least partially, restore network activity.
Lithium was consecutively administrated during one year to one of the two patients and
clinical examination showed significant improvement in the child’s social performance.
This study demonstrated the feasibility of using patient derived-iPSC to select patient
specific treatment, an approach described as personalized medicine.

Taken together, these studies using rare genetic disorders as models demonstrated
that PSC-derived neural stem cell and neurons can be suitable biological materials to
conduct compound screening at high throughput, can allow compounds that modulate
endogenous targets that are not physiologically expressed in other cell models to be
identified, are suitable for neurodevelopmental and neuropsychiatric diseases as well
as neurodegenerative diseases and offer unique opportunities for phenotypic screening.
This opens a path for research in prevalent multifactorial diseases and the promotion of
precision medicine.

4. Neurodegenerative Diseases

Neurodegenerative diseases are among the leading causes of disability and a major
cause of death worldwide. The first defining feature of these disorders is, of course, the
death of neurons following a period of neuronal dysfunction and synaptic loss. The
anatomical distribution of neurodegeneration determines the clinical pattern of individual
disorders, which varies widely, but all of these disorders share progressive loss of cognitive
and motor functions to varying degrees, which eventually leads to institutionalization
and death. Pharmacotherapy is so far aiming at reducing clinical symptoms but does not
stop disease progression. Misfolding, accumulation and aggregation of disease-specific
proteins are universal features of neurodegenerative diseases that preceded the death
of neurons by several years [133,134]. therefore, current investigations into therapeutic
compounds are mainly focused on abnormal protein conformation and accumulation.
However, PSC-based disease modelling additionally offers the possibility to follow disease
progression and identify new molecular targets for earlier therapeutic interventions. They
also offer the opportunity to develop strategies covering several disorders in a less specific
manner. Examples of the contributions for the two most common neurodegenerative
diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD), are provided.

4.1. Alzheimer’s Disease

AD is the most common cause of elderly dementia. This neurodegenerative disease
is clinically characterized by progressive and gradual cognitive impairment, synapse loss
and substantial loss of neurons in later stages. Currently, there are only two approved
clinical treatments for AD, acetyl-cholinesterase inhibitors and N-methyl-D-aspartate re-
ceptor antagonists, both with very limited therapeutic effects. Early-onset AD is linked to
autosomal-dominant inherited mutations in the genes encoding amyloid precursor protein
(APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2). These cases are referred to as familial
Alzheimer’s disease and are well characterized. In contrast, the etiology of 95% cases of
late-onset AD, referred to as sporadic Alzheimer’s disease, is not known and may involve
various triggers, including genetic and environmental factors [135]. Neuropathological hall-
marks of AD are the formation of extracellular amyloid plaques, composed of aggregated
amyloid β peptides (Aβs) and neurofibrillary tangles, formed by hyperphosphorylated tau
proteins [136,137]. Both have received a great deal of attention in an effort to develop new
pharmacological strategies [138]. Modelling of familial early-onset AD demonstrated that
neurons differentiated from patient-derived iPSCs successfully recapitulated characteristic
AD phenotypes, including the formation of Aβ aggregates and neurofibrillary tangles,
which can be reversed by candidate pharmacological treatments, confirming the value of
the model in the search for new pharmacological approaches [139–143]. Aβ accumulation
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and tau hyperphosphorylation were also reported using iPSCs derived from sporadic
cases [144].

Aβ pathological peptides are produced by sequential cleavage of amyloid precursor
protein (APP) by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. These two
enzymes are currently the most investigated targets for disease-modifying drugs in AD.
However, strong inhibition of γ-secretase and BACE1 widely perturbs the processing of nu-
merous endogenous substrates important for physiological functions other than APP and
causes serious side effects after long-term treatment. Phenotypic, target-agnostic screening
of PSC-derived neurons could help to identify compounds with alternative modes of ac-
tion, aimed at preventing Aβ accumulation and the resulting neuronal toxicity. Cell death
induced by Aβ oligomers was one of the easiest read-outs to exploit for drug screening.
Xu and collaborators screened a proprietary GSK library of several hundred compounds
targeting kinase pathways using a luciferase-based method to quantify neuronal death
induced in PSC-derived forebrain neurons by exposure to oligomers of β-amyloid 1-42
(Aβ1-42) proteins [145]. They identified 19 hits rescuing cell death and impaired neurite
outgrowth deficits in this model. Mechanism of action studies demonstrated that the com-
pounds targeted the CDK2 protein; therefore, this was proposed as a potent new target to
protect neurons from Aβ toxicity in AD. The neuroprotective potential of CDK-2 targeting
compounds was additionally confirmed in another HTS of 1000 compounds, spotting five
hits acting as Cdk-2 modulators [146]. However, while successful, the screening cascades
designed in these studies allowed the compounds blocking cell death downstream from
Aβ aggregation to be identified, but they do not propose approaches aimed at identifying
pathways that can be targeted to block early protein misfolding. Kondo and collaborators
developed a high-throughput electrochemiluminescence assay to quantify the A42/A40
Aβ peptide ratio in neurons differentiated from iPSCs with PSEN1 G384A mutation [139].
They screened 1258 pharmaceutical compounds, acquired 27 primary Aβ-lowering hits,
prioritized the hits by chemical structure-based clustering and selected six lead compounds.
To maximize the anti-Aβ effect, they tested a synergistic combination of bromocriptine,
cromolyn and topiramate as an anti-Aβ cocktail. The combination was evaluated in vitro
in iPSC-derived neurons from 13 individuals, including familial and sporadic AD patients,
confirming that the combination of anti-Aβ compounds could reduce Aβ aggregation in
all participants. This study proposed the design of a new screening platform allowing
researchers to systematically test compound libraries for efficacy against protein misfold-
ing and aggregation in a mechanistic agnostic manner, which showed great potential for
marketed drug repositioning, alone or in combination and to speed new chemical entity
identification and development.

Lowering tau hyperphosphorylation is another attractive target for drug screening
in AD. Several strategies have been proposed to evaluate a compound ability to reduce
tau phosphorylation or, more globally, tau levels in neurons. Wang and collaborators [147]
used iPSC-derived glutamatergic neurons combined with a high-content screening as-
say to identify tau-lowering compounds in the LOPAC library of bioactive compounds
(>2000 compounds). They identified moxonidine and metaproterenol, two adrenergic re-
ceptor agonists, as a class of compounds with potential to reduce endogenous human tau
levels and delay AD disease progression. Van der Kant and collaborators adopted a more
specific approach by quantifying, using automated cell imaging, the level of pThr231Tau
in neurons differentiated from iPSCs of patients with the familial form of AD consisting
in the duplication of the APP gene [148]. A collection of 1684 approved and preclinical
drugs was screened for their efficacy in lowering neuronal pThr231Tau using immunofluo-
rescence to quantify the ratio of pThr231tau/total tau levels combined with cell viability.
Four inhibitors of cholesterol synthesis, namely, atorvastatin, simvastatin, fluvastatin and
rosuvastatin, showed the best activity on these read-outs. Mechanism of action studies
pointed to 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibition and sequential
proteasome activation as the main pathways involved in a compound efficacy. Conse-
quently, the investigators selected another compound to reduce cholesterol esterase activity
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in cells, which was better tolerated by astrocytes and neurons. Efavirenz was tested using
neurons derived from a cohort of patients with different forms of AD and demonstrated
the same efficacy but better tolerability than the lead compound simvastatin. Altogether,
this point to the cholesterol metabolism as a druggable axis regulating tau phosphorylation
and, consequently, Aβ accumulation via activation of the proteasome. Together, these drug
screening studies demonstrate new potential for marketed drugs in reducing Aβ toxicity
in AD and point to CDK2 and HMGCR inhibition as new opportunities to develop more
efficient treatments.

4.2. Parkinson’s Disease

PD is another well-described neurodegenerative disorder which affects over 6 mil-
lion people worldwide, predominantly over the age of 65 [149]. PD is characterized by
motor symptoms, including rigidity, resting tremor, bradykinesia and postural instability,
and non-motor features, including cognitive impairments, anxiety and depression [150].
The motor symptoms are due to the progressive loss of dopaminergic neurons in the
substantia nigra pars compacta, with approximately 50% of dopaminergic neurons lost
in the midbrain at the onset of motor symptoms [151]. The majority of PD cases are
idiopathic, with only about 10% attributed to heredity. Currently, pharmacologic treat-
ments are aimed primarily at correcting dopamine insufficiency. However, an effective
disease-modifying therapy has yet to be established. The pathological hallmarks of PD
are the presence of intraneuronal cytoplasmic inclusions of α-synuclein (α-syn), named
Lewy bodies, and dystrophic neurites that also contain α-syn deposits. The mechanisms
leading to the formation and the pathogenic significance of these inclusions remain un-
known. The reason why dopaminergic neurons are more prone to α-syn accumulation
and vulnerable to its toxicity is not well understood, but PSCs offer a unique opportunity
to model this phenomenon in a human genetic and epigenetic context. Several studies
have reported the aggregation and toxicity of endogenous α-syn in neurons differentiated
from PSCs of patients with familial forms of PD, which may be reversed by candidate drug
approaches [152–154]. Increased levels of aggregated α-syn in PD suggest that defective
protein handling and clearance contribute to its pathogenesis. Alpha-synuclein is degraded
by both the ubiquitin-proteasome system and the autophagy/lysosomal pathway and they
both represent attractive targets to modulate α-syn accumulation [155]. An analysis of
dopaminergic neurons derived from patients with idiopathic and familial forms of PD
identified that mitochondrial oxidative stress, leading to oxidized dopamine accumulation,
resulted in reduced glucocerebrosidase enzymatic activity, lysosomal dysfunction and
α-syn accumulation [156]. This toxic cascade was observed in human but not in mouse
PD neurons and could be blocked by mitochondrial antioxidants and calcium modulators.
This important link between mitochondrial and lysosomal/autophagy dysfunction in PD
pathogenesis, revealed thanks to patient-derived PSCs, was the focus of the development
of methods aimed at screening compound libraries for early intervention in PD [157]. In
order to identify therapeutic agents to ameliorate mitochondrial clearance, Yamaguchi and
collaborators used dopaminergic neurons obtained from patients with familial PD resulting
from Parkin or PINK1 mutations [20]. The proposed system recapitulates the deficiency of
mitochondrial clearance, ROS accumulation and increased apoptosis by treating of these
neurons with carbonyl cyanide 3-chlorophenylhydrazone. Accordingly, the image-based
high-content screening read-outs included the quantification of mitochondria size and area,
reactive oxygen species production with ROS dyes and neuronal death monitored with
caspase-3. In all, 320 pharmacologically active compounds were screened for their ability
to ameliorate these parameters. Four hits, MRS1220, tranylcypromine, flunarizine and
bromocriptine, were identified and further tested in idiopathic iPSC-derived neurons and
PINK1-inactivated Drosophila. Bromocriptine was the most efficient compound. Interest-
ingly, it was the second time that bromocriptine was identified by HTS on iPSC-derived
neurons as a molecule lowering protein misfolding and aggregation, since it was one of the
molecules proposed by Kondo as an anti- Aβ aggregation agent [158]. This demonstrates
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that neurons derived from PSCs can help in identifying common targetable pathways in
PD and AD.

4.3. Screenings for Compounds Targeting Several Diseases

Strategies for screening based on protein misfolding as a read-out have identified inde-
pendently common compounds that show promise for different disorders, suggesting that
less specific, phenotypic-based approaches may also lead to drugs with a larger spectrum
of action. Neurotrophic factor administration has long been proposed as a therapeutic
option for diseases in which the main component is cell death [159]. Brain-derived Neu-
rotrophic factor (BDNF) was one of the most investigated trophic factors [160,161]. BDNF
is synthetized and secreted by neurons upon release of transcription from the repressing
factor REST. With REST being expressed endogenously by cortical progenitors and neurons
differentiated from PSCs, this model was used to screen new chemical entities for their
ability to promote REST inhibition and endogenous BDNF synthesis [162]. HTS of a library
of 6984 new chemical structures using a luciferase assay measuring REST activity in neural
derivatives of hESC led to the identification of two benzoimidazole-5-carboxamide deriva-
tives. The most potent compound, X5050, was found to target REST degradation, but not
REST expression, RNA splicing or binding to the RE1 sequence. Differential transcriptomic
analysis revealed the upregulation of neuronal genes targeted by REST in wild-type neu-
ral cells treated with X5050. This activity was confirmed in neural cells produced from
iPSCs derived from a patient with Huntington’s disease. Acute intraventricular delivery of
X5050 increased the expressions of BDNF and several other REST-regulated genes in the
prefrontal cortex of mice with quinolinate-induced brain lesions. Altogether, this points to
X5050 as a lead compound to be chemically optimized and evaluated in different models
of neurodegenerative diseases. Astrocytes are another attractive target for drug discovery
in neurological disorders. Astrocytes are the predominant cell type in the nervous system
and play a significant role in maintaining neuronal health and homeostasis. Recently,
astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative
diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and
amyotrophic lateral sclerosis [163]. Reactive oxygen species (ROS) contribute to the pro-
gression of neurodegenerative disease, so preventing ROS-related astrocyte dysfunction
and death could, in turn, help prevent neuron damage and death [164]. Similar to neurons,
primary astrocytes are difficult to harvest for the adult brain and PSCs offer an attractive
alternative. High-throughput phenotypic screening using human ESC-derived astrocytes
was conducted with the aim of identifying compounds that could protect against oxidative
stress [165]. Astrocytes were exposed to hydrogen peroxide and apoptotic nuclei quan-
tified in 1536-well plates. In all, 4100 bioactive and approved drugs were screened and
nine hits, including norcantharidin, tyrphostin A1, oxyphenbutazone and enzastaurin,
were proposed as promising lead compounds for further optimization to protect from
ROS-induced neurodegeneration. Finally, neuroinflammation, another hallmark of neu-
rological disorders, is accompanied by the production of neurotoxic agents such as nitric
oxide [166]. An HTS assay using a stem cell-based model of neurodegeneration induced
by neuroinflammation was used to screen 44,000 new chemical entities form the LDC
compound collection (Lead Discovery Center, Dortmund, Germany) and a family of small
molecules was identified that shared the property of dually inhibiting both CDK-5 and
GSK-3 [167,168]. These molecules protected the cytoskeleton of human neurons co-cultured
with activated microglial cells and promoted survival. One compound, LDC8, showed
promising results in a zebra fish model of AD. Recent models of co-culture of neurons and
microglia derived from PSC should also provide useful biological substrates to screen for
molecules modulating neuroinflammation-induced neurodegeneration [169].

Together, these studies demonstrate the contribution of PSC-derived models to the
discovery of new axes of research for drug discovery for the two most common neurodegen-
erative diseases and illustrate how dynamic this new field is. However, neurons and glial
cells differentiated from PSCs remain relatively immature in vitro due to the protracted
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time necessary to reach full functionality. This may be a limitation of these models to study
age-related phenotypes, that, by definition, appear late in life and compromise translation
into clinics. Efforts have been put to reduce the time of maturation of these cells by using
protocols of direct conversion with forced expression of transcription factors, as described
earlier in this review, but also by promoting emergence of age-related phenotypes by
exposing cells to specific proteins, such as progerin, in order to fast-forward stem-cell
aging [170].

5. Psychiatric Disorders

Psychiatric disorders, including major depressive disorders (MDD), schizophrenia
(SCZ) and bipolar disorder (BPD), are estimated to affect one of every three individuals
during their lifetime [171,172]. MDD is one of the most common psychiatric diseases.
It is characterized by profound dysregulation of affect and mood and is also associated
with other abnormalities, including cognitive dysfunction, sleep and appetite disturbance,
fatigue and many other metabolic, endocrine or inflammatory alterations [173]. It has
been reported that nearly 5% of the population in the developed countries meets criteria
for MDD. MDD is a complex and multifactorial condition involving abnormal serotonin
levels in the brain, which is the main target for current treatments, but not solely [174].
Other dysregulations in MDD brains include perturbation of neurotrophins synthesis
and abnormal neurogenesis throughout the lifespan in the limbic system of affected in-
dividuals [175,176]. SCZ is a chronic and debilitating psychiatric disorder characterized
by hallucinations and paranoid delusions (positive symptoms), apathy and anhedonia
(negative symptoms) and disordered thought processes and working memory (cognitive
deficits) [177]. SCZ affects approximately 1% of the general population. The first psychotic
break happens in adolescence or early adulthood and it usually develops into a chronic
condition requiring lifelong treatment [178]. SCZ is believed to be a disorder of abnormal
neurodevelopment [179], but the cellular processes that lead to the onset and persistence of
symptoms are unknown. Genome-wide association studies have identified a number of
common variants that are associated with SCZ [180,181]. Some of the pathways reported as
dysregulated in these studies are involved in neural differentiation, synaptic transmission
and circuit development, giving weight to the hypothesis that SCZ is a developmental
disorder. BPD, also known as manic–depressive illness, is a mood disorder that also af-
fects approximately 1% of the population and is characterized by episodes of mania and
depression [182,183]. While the heritability of BPD is very high, the causative biological
factors are unknown and genetic studies have only recently led to some clues. BPD is typi-
cally diagnosed in adolescence or early adulthood, suggesting that, as for SCZ, abnormal
neurodevelopment may play a role in its etiology and progression [184]. Common to all
psychiatric disorders, scientific investigations have been hindered by a lack of relevant
cellular and animal models. Part of the reason for this is a fundamental lack of knowledge
of the genetic and molecular processes underpinning the appearance and persistence of
symptoms that categorize these disorders. Another reason is the existence of major differ-
ences between humans and the animal species classically used as models in the pathways
controlling the development of the neuronal circuits involved in higher brain functions,
that are impacted. Patient-derived stem cells provide promising new ways to overcome the
obstacles to studying live neurons in the lab, document disease-related signaling pathways
and reveal valuable new strategies for drug repositioning or discovery [185].

5.1. Strategies Based upon Modulation of Neurogenesis

Most psychiatric disorders are classified as neurodevelopmental disorders that affect,
more specifically, neuronal circuit formation and activity; in the absence of clear molec-
ular mechanisms to target, the first drug discovery studies involving PSCs focused on
phenotypic markers in a non-disease-specific context. Neurogenesis was one of the first
physiological processes targeted by such phenotypic screenings. Hippocampal neurogene-
sis has been demonstrated to be central in MDD pathology in animal models and current
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antidepressant molecules have an activity on neurogenesis, including the gold standard
fluoxetine [186,187]. Post mortem brains from BPD patients show enlarged ventricles,
suggesting a loss of cortical volume, more particularly of grey matter, and volume ab-
normalities in the hippocampus. These volume abnormalities are ameliorated by lithium
treatment [188–192]. A small but significant reduction in hippocampal volume was also re-
ported in SCZ patients compared with healthy controls, primarily in the dentate gyrus (DG)
and Cornu Ammonis 3 (CA3) hippocampal fields [193,194]. The process of neurogenesis
includes neural stem cell proliferation, differentiation as neurons, then neurite outgrowth
and synaptogenesis. These steps have been recapitulated in vitro using human PSCs in a
format amenable to HTS. High throughput, image-based high-content analysis has been
used successfully to monitor the rate of neural stem cell proliferation and their ability to
differentiate as post-mitotic neurons, then develop as neuronal circuits. In at least two
neuronal systems relevant to psychiatric disorders, glutamatergic neurons of the superficial
layers of the cortex and cortical GABAergic interneurons, HTS has identified compounds of
interest [56,92]. These studies screened collections of thousands of molecules consisting of
approved drugs, well-characterized tool compounds, natural products and human metabo-
lites. Among the hits identified, several tool compounds and approved drugs already in
use for psychiatric diseases were shown to modulate neurogenesis under different aspects,
including typical and atypical anti-psychotics and antidepressants. This suggests that the
efficiency of these molecules may involve the modulation of neurogenesis in parallel or in
synergy with their known role in dopaminergic and serotoninergic neurotransmission. In
addition, screening of this type of collection provides evidence that many pathways that
play role in neurogenesis, with regard to psychiatric disorder treatment, can be identified
in iPSC-derived neurons using unbiased phenotypic screens, opening a path to discovering
totally new chemical entities or repurposing and combining use of existing drugs.

5.2. Precision Medicine

The nosography of psychiatric disorders is mainly based on the appearance of core
symptoms. The causes of symptom emergence and evolution are multiple and largely
unknown. Patients vary widely in their clinical presentation along a spectrum, with some
overlap between disorders and many comorbidities. In addition, common core symptoms
can be attributed to different causes or result from different molecular dysregulations in
the brain. Consequently, even with the same diagnosis, patients can vary in their patterns
of therapeutic response to disease-specific treatments. The absence of a specific molecular
signature implies delayed diagnosis, with different medications being tried on a patient
until an effective regimen is identified empirically, which can often lead to disengagement
and aggravation of the disease. Patient-derived neuronal circuits reconstituted in vitro
from PSCs can help in identifying pertinent molecular signatures to help understand the
sequence of events leading to the appearance of the symptoms and stratify the patients.
The first step in such a study is to identify valid and robust disease-associated phenotypes
so as to discriminate relevant patient subgroups, allowing the researcher to conduct a
deeper investigation into the molecular characterization of these subgroups. Selective sero-
tonin reuptake inhibitors (SSRIs), the leading antidepressant molecules, act by regulating
serotonergic neurotransmission. However, SSRI resistance is observed in approximately
30% of MDD patients. Patient stratification based on pharmacological responsiveness
combined with patient-derived neurons has been used to identify alternative and com-
plementary pharmacological strategies [195,196]. A comparison of neurons derived from
MDD-affected individuals, clinically classified as good responders or non-responders to
classical SSRIs, identified molecular pathways discriminating non-responders that could be
the basis for a more personalized approach. An analysis of serotoninergic neuron morphol-
ogy demonstrated that neurons from non-responders showed abnormal neuritic networks,
while serotonin synthesis and release were not modified. Using large-scale omic strategies,
the authors linked the abnormal networks to decreased expression of two cytoskeleton-
associated proteins, protocadherin A6 and A8 [195]. This indicated that molecules that
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restore protocadherin expression or, more indirectly, correct serotoninergic neuron mor-
phology could be a potent alternative strategy in SSRI-resistant MDD patients. In parallel, a
phenotypic analysis of the activity of forebrain glutamatergic neurons, one of the neuronal
populations regulated by serotonin levels, highlighted that SSRI non-responsive neurons
were hyperactive in the presence of serotonin, a phenomenon linked to the overexpression
of two serotonin receptors, 5HT2A and 5HT7. Hyperactivity can be normalized using
lurasidone, an FDA-approved selective 5HT2A receptor antagonist, indicating that this
complementary pharmacotherapy can be adapted for some MDD patients [196]. Similar
strategies were employed to model lithium resistance in BPD. Depending on the cohort
studied, 30–50% of BPD patients did not respond to lithium, considered the gold standard
of mood stabilizers [197,198]. Lithium resistance was modelled in hippocampal neurons
that were differentiated from individuals with BPD and controls selected from two cohorts
in order to examine neuronal action potential firing. This revealed a hyperexcitability
profile in action potentials in immature neurons in BPD patients. Importantly, this in vitro
hyperexcitable phenotype was reversed with lithium in neurons derived from patients
who had responded to lithium treatment clinically, but not in neurons from patients who
had failed to respond therapeutically to lithium. This suggests that hyperexcitability in im-
mature hippocampal neurons may be a pathophysiological feature in BPD and could serve
as a criterion to identify new therapeutic compounds [199]. Further analyses demonstrated
that lithium treatment failed to activate LEF-1, a downstream effector of Wnt/beta-catenin
signaling, in neurons from BPD patients who did not respond to it. Interestingly, valproic
acid, used as an alternative to lithium, activated LEF-1 and was efficient in normalizing
hyperexcitability in neurons of lithium-resistant patients [200]. This suggests that com-
pound screening based on the LEF-1 reporter system could be a valuable tool to identify
new treatments for BPD [201].

6. Concluding Remarks

PSC-derived neural cells offer a new and potent strategy to discover new pharmacolog-
ical therapies for neurological diseases. Improved and standardized in vitro differentiation
protocols, allowing a variety of otherwise inaccessible brain cell types to be studied, provide
a foundation for establishing cellular models highly relevant to human pathologies. Proof-
of-concept of the high transferability of PSC models in rare genetic disorders have been
established. These studies have successfully demonstrated that this type of humanized
cell-based model, anchored in a human disease-relevant cell type, could respond accu-
rately to an endogenous stimulus such as a disease-causing mutation and a measurable,
translatable endpoint that could also be monitored in patients. Successful repositioning
of marketed drugs has strengthened these results. These experimental paradigms have
been successfully applied to molecular target-based screening for the most prevalent dev-
astating neurodegenerative diseases using patient-derived iPSCs obtained not only from
familial cases but also, most importantly, from idiopathic cases. Next to the conventional
molecular target-based approaches, patient-derived neuronal circuits have shown poten-
tial as biological tools for developing personalized or precision medicine approaches by
opening the field of phenotypic screening in diseases previously considered inaccessible,
such as psychiatric disorders, even in absence of clear molecular mechanisms involved
in the emergence of the phenotype. PSC models are dynamic and allow researchers to
reconstitute the progressive evolution of a disease, i.e., to dissect the sequence of molecular
events leading from the initial trigger to the ultimate phenotypes (cell death in the case of
neurodegenerative diseases, abnormal neuronal network activity in the case of neurodevel-
opmental disorders and psychiatric diseases). Each step can serve as a read-out for HTS.
The typical screening cascade would be to perform the HTS on the earliest events, then
to validate that the selected hits efficiently block disease progression by evaluating their
efficacy on latter phenotypes.

In the future, the combination of PSCs with other powerful technologies will continue
to show potential for drug discovery. Organoids and, more generally, 3D cultures, have
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begun to facilitate the generation of more mature and functional cell types (Sharma et al.,
2020). Organoids generated with iPSCs recapitulate embryonic development to create self-
organized 3D structures that replicate the complexity of specific organs. This technology can
be beneficial for studying disorders in which developmental processes or multiple cell types
within an organ are affected and for evaluating the potential of small molecules [98,202].
The CRISPR/Cas9 gene editing system has enabled unbiased and large-scale genetic
perturbation screens to identify causative pathways by knocking out many genes in parallel
and selecting cells with the desired phenotype. The combination of CRISPR screens with
PSC technology would create a powerful tool to identify disease-causative or -modifying
genes and pathways to be targeted by candidate drugs or involved in the mechanism
of action of these drugs, at large scale and in an unbiased manner [203,204]. With the
production of PSC-derived progenies being highly scalable, these cells can be used for
comparative omic analysis, including bulk and single-cell RNA sequencing. This would
enable detailed comparisons of controls and disease-affected cells to identify new pathways,
to explain drug mechanism of action and to establish genetic profiles of good and bad
responders to a given treatment. Finally, artificial intelligence and machine learning
tools offer the promise of revolutionizing drug development [205]. With multiparametric
profiling, the measured phenotypic changes in neuronal circuits can effectively serve
as information packages summarizing cellular responses to pathological conditions or
compound treatments. Artificial intelligence tools can harness the strengths of phenotypic
assays leveraging the rich information reflected in phenotypic cellular changes to shed light
on novel compounds and to expand our biological understanding. The expectation is that
the implementation of these technologies over the past five years should begin to translate
into an increased probability of success for individual drug discovery programs that use
them. PSC models in drug discovery for neurological disorders is steadily transitioning
from novel to mainstream.
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