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Drug addiction is a major brain disease,
and a serious clinical and social prob-
lem. The number of adults who require
substance abuse treatment is anticipated
to escalate from 1.7 million in 2000 and
2001 to 4.4 million in 2020 (Gfroerer
et al., 2003). Addiction is a gradual pro-
cess, which begins with occasional use,
proceeds to regular use and finally pro-
gresses to uncontrollable abuse. The main
problem is the high rates of relapse
among abusers who have ceased drug use.
Cocaine, in particular, is one of the most
prevalent recreational drugs, with espe-
cially high relapse rates (Bossert et al.,
2005). To date, there are no approved
pharmacological treatments for stimulant
drugs of abuse such as cocaine.

A new class of neurosurgical interven-
tions is currently being developed and
used for the treatment of movement disor-
ders and disorders of mood and behavior
(Mathews, 2011). One of the prominent
treatments is deep brain stimulation
(DBS), in which implanted electrodes
deliver electrical stimulation to stereo-
tactically targeted brain regions. DBS in
selected brain regions has shown signif-
icant therapeutic benefits for otherwise
treatment-resistant movement disorders,
including Parkinson’s disease, essential
tremor and Dystonia (Kringelbach et al.,
2007). The main reasons of the suc-
cess of this method are its reversibility
(as opposed to lessoning techniques),
adaptability, controlled usage, and low
morbidity (Benabid and Torres, 2012).
Thus, DBS research has been extended
to various brain regions for treatment
of neuropsychiatric conditions such as
Alzheimer’s disease, Tourette’s syndrome,
obsessive-compulsive disorder and depres-
sion (Krack et al., 2010; Mathews, 2011).
Recent research in both animals and

humans has indicated that DBS may also
be an effective treatment for addiction.
DBS was tested for its effect on response
to alcohol, cocaine, heroin, morphine
and nicotine, showing promising results
in several regions of the reward system.
The nucleus accumbens, which receives
dopaminergic input from the ventral
tegmental area (VTA) and plays a key
role in cocaine addiction, was suggested
as a primary target for DBS (Luigjes et al.,
2012). However, we postulate that better
results may be obtained by targeting more
remote limbic regions which regulate the
mesolimbic dopaminergic system, such as
the lateral habenula (LHb).

The LHb is a dorsal diencephalic struc-
ture located lateral to the third ven-
tricle. This region receives inputs from
several parts of the limbic system, includ-
ing the bed nucleus of stria terminalis,
lateral preoptic area, lateral hypothala-
mus and nucleus accumbens, among oth-
ers (Lecourtier and Kelly, 2007). Another
major source of inputs to the LHb is the
internal globus pallidus (GPi) (Hikosaka
et al., 2008). LHb efferents project mainly
through the fasciculus retroflexus (FR)
to several midbrain nuclei including the
raphe nucleus, rostro-medial tegmentum
(RMTg), ventral-tegmental area (VTA),
substantia nigra and locus coeruleus.

Excitatory innervations from the GPi
send reward-related signals encoding for
aversion, thus regulating LHb activity
(Hong and Hikosaka, 2008; Shabel et al.,
2012). When the LHb is activated, it
controls dopaminergic midbrain neu-
rons both directly (Brinschwitz et al.,
2010) and indirectly, via a bi-synaptic
connection through the RMTg (Jhou
et al., 2009a,b; Omelchenko et al., 2009;
Balcita-Pedicino et al., 2011), leading
to almost complete inhibition of all

dopaminergic neurons (Ji and Shepard,
2007). This reduces dopaminergic cell
firing, consequently lowering motivation
and reward (Matsumoto and Hikosaka,
2007) (Figure 1A). Given the pivotal
role of the LHb in regulation of mid-
brain nuclei activity and therefore in
reward-related behaviors, it was suggested
that modulation of this region by DBS
might be an effective therapeutic tool
for psychiatric disorders, including major
depression (Sartorius and Henn, 2007;
Hauptman et al., 2008), and drug addic-
tion (Luigjes et al., 2012). This hypoth-
esis was strengthened by high-resolution
MRI studies in humans, demonstrating
reduced LHb volume in bipolar disor-
der and major depressive disorder (Savitz
et al., 2011). In addition, a new study
in rat models of depression revealed
that tetanic, high-frequency DBS of the
LHb suppressed synaptic activity of LHb
VTA-projecting neurons and improved
depressive-like behaviors (Li et al., 2011).
This effect was similar to, though more
potent than, results of pharmacologi-
cal inhibition (Winter et al., 2011) and
lesion of the LHb (Yang et al., 2008).
Moreover, application of DBS to the LHB
of two patients with treatment-resistant
depression demonstrated promising out-
comes (Sartorius et al., 2010; Kiening and
Sartorius, 2013). These results raise the
possibility that LHb DBS, and especially
high-frequency stimulation, causes a tran-
sient “functional lesion” that reduces LHb
inhibition of midbrain nuclei.

Accumulating evidence shows involve-
ment of the LHb in the addiction pro-
cess, and recent findings also strongly
imply that application of DBS in the
LHb may serve as a potential treat-
ment for drug addiction. Increased LHb
activation is associated with exposure
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FIGURE 1 | (A) Scheme representing the main LHb afferents and
efferents. Left: The LHb receives excitatory inputs from the GPi, which
encode for aversion. The LHb subsequently fires to inhibit the VTA,
which is the main dopaminergic source that activates the reward
system. Thus, the GPi-LHb pathway creates negative reward signals. In
contrast, when a positive reward is predicted or presented, the VTA
activates the reward system and also inhibits its regulator, the LHb,
thus encoding for positive reward signal. Right: Repeated intake of
cocaine dose-dependently degenerate the main LHb-to-VTA fibers, which
comprise the FR. This ceases LHb regulation of the VTA, which
consequently renders LHb DBS ineffective at high doses (below).
(B) Left: Effects of LHb DBS on cocaine-seeking behaviors. Rats were
allowed to self-administer cocaine (FR-1 schedule; 0.5, 1 or 1.5 mg/kg;
n = 15, 6, and 9, respectively). After reaching stable maintenance levels
(day M), rats from each group were divided and either treated with
DBS or sham (day M + DBS). 0.5 mg/kg and 1 mg/kg cocaine-exposed
groups treated with DBS showed decreased active lever presses
compared to the DBS-treated 1.5 mg/kg group (∗p < 0.001 for both).
DBS treatment was given again during the first extinction session, and
extinction responding was measured for 6 days (E1 + DBS through
E6). A significantly accelerated rate of extinction was found for the 0.5
and 1 mg/kg DBS-treated groups compared to respective controls
(∧, # p < 0.001). No changes were found between DBS-treated and
sham operated rats trained to self-administer 1.5 mg/kg cocaine. Right:
Effect of LHb DBS on reinstatement. After E6, rats were reinstated to
cocaine by a priming cocaine injection (10 mg/kg, i.p.) and light-cue.
Rats which received DBS treatment on E1 and which self-administered
either 0.5 or 1 mg/kg cocaine showed significantly reduced active lever
presses compared to controls (∗∗p < 0.005 and ∗p < 0.05, respectively).
However, no differences were found between DBS-treated and
sham-operated rats trained for 1.5 mg/kg cocaine. Values are expressed

as mean ± SEM, in both graphs. (C) Effect of DBS of the LHb on
levels of NR1, GluR1 and PSD95 in the VTA. Protein levels of the NR1
subunit of the NMDA receptor, GluR1 subunit of the AMPA receptor
and scaffolding protein PSD95 were increased following cocaine
self-administration (FR-1 schedule, 0.5 mg/kg). DBS of the LHb in
cocaine-trained rats restored NR1, GluR1 and PSD95 levels to normal.
This effect was specific to the glutamatergic system, since levels of
the GABAA receptor β subunits (β2 and β3) remained unchanged. DBS
alone did not alter levels of these proteins in the VTA (values are
expressed as mean ± SEM). ∗p < 0.001 for cocaine-treated rats (coc)
vs. control, sham-operated, DBS-treated and cocaine + DBS-treated rats
(coc+DBS). (D) Cocaine-induced FR neurodegeneration. Left: Labeled
LHb neurons in cocaine-treated vs. naïve rats. One day after reaching
stable maintenance levels in the self-administration paradigm (FR-1
schedule; 0.5, 1 or 1.5 mg/kg; n = 3–5 per group), the amount of
fluorogold-labeled LHb neurons was significantly reduced in 1.5 mg/kg
cocaine-treated rats as compared to 0.5 mg/kg cocaine-treated
(∗p < 0.002) and naïve rats (∗∗p < 0.001), indicating considerable
neurodegeneration of the LHb-midbrain circuit at high dose cocaine.
Values are expressed as mean ± SEM. Right: Correlation between total
cocaine intake and labeled LHb neurons. A substantial, reverse
correlation was found between the amount of labeled LHb neurons and
total cocaine intake (mg/kg) (r = −0.894; p < 0.0003). (E) Statistical
parametric maps of FA values for cocaine- vs. saline-treated rats. Rats
were trained to self-administer cocaine (1.5 mg/kg, n = 6) or saline
(n = 5) for 11 days. MRI followed by DTI analysis showed a significant
increase in FA values in all regions of interest in rats which
self-administered 1.5 mg/kg cocaine, compared to controls. No difference
in FA values was found in the ventral posterior thalamus and the
substantia nigra (served as control ROI; Lax et al., 2013). With
permission from Friedman et al. (2010); Lax et al. (2013).
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to several drugs of abuse, including
experimenter-delivered cocaine, cocaine-
associated cues (Brown et al., 1992, 2010;
Franklin and Druhan, 2000) and heroin-
associated cues (Zhang et al., 2005) (but
see: Martin et al., 1997). This elevation
in LHb activity may represent a form
of homeostatic regulation on the reward
system: excitatory LHb activity counter-
acts the robust increase in dopaminer-
gic tone following cocaine exposure by
inhibiting midbrain dopaminergic neu-
rons, which consequently diminishes the
drug’s rewarding effect (Jhou et al., 2013;
Zuo et al., 2013).

In a recent study in rats, we combined
LHb stimulation frequencies. We found
that a combination consisting of sequen-
tial high and low frequencies attenuated
cocaine self-administration, extinction
response, and drug- and cue-induced
reinstatement (Figure 1B). Moreover,
combined frequency DBS of the LHb
normalized cocaine-induced increases in
NMDA and AMPA receptor subunits and
in scaffold protein PSD-95 (Figure 1C)
(Friedman et al., 2010). It is notable that
combined DBS of the LHB seems to be
context-dependent, effectively reduced
cocaine and sucrose self-administration
(Friedman et al., 2010, 2011).

How does the combination of low
and high stimulation patterns effectively
reduce cocaine-seeking behavior? It was
shown that high frequency excitatory
inputs from the GPi activate the LHb fol-
lowing aversive or frustrating experience
(Shabel et al., 2012). Conversely, low fre-
quency inputs from other brain circuits,
including the VTA dopaminergic system,
inhibit LHb activity following positive
reward expectation (Fiorillo et al., 2003).
Thus, we propose that the combination of
low- and high- stimulation patterns may
mimic these different LHb inputs, resem-
bling a state in which a known reward (in
this case, cocaine) is repeatedly expected
due to introduction of low frequency DBS,
and each expectation event is immediately
eliminated due to prompt presentation of
high frequency DBS. Thus, application of
combined stimulation hastens extinction
learning.

Prolonged excitation of LHb neu-
rons due to continuous administration
of various drugs, including cocaine,
d-amphetamine, methamphetamine

(Lipton et al., 1991; Ellison et al., 1996;
Meshul et al., 1998), cathinone, MDMA
and nicotine (Carlson et al., 2000), even-
tually induces LHb neurotoxicity followed
by substantial neurodegeneration of
the habenula efferent fiber, i.e., the FR
(Figure 1A). Moreover, continuous, inten-
sive cocaine administration is associated
with a long-lasting decrease in GABAergic
synaptic density in rat LHb (Meshul et al.,
1998). This may lead to increased exci-
tatory activity of LHb neurons, which
encode negative reward. Recent find-
ings show that the efficacy of combined
DBS of the LHb is reduced following
intense, high-dose cocaine (1.5 mg/kg)
self-administration in rats, as opposed
to the treatment’s beneficial effect on
lower doses (0.5 and 1 mg/kg) at main-
tenance, extinction and reinstatement
stages (Lax et al., 2013). The decreased
efficacy of LHb DBS at high-dose cocaine
is probably due to considerable FR degen-
eration (Figure 1D) (Lax et al., 2013),
which decreases LHb inhibition of mid-
brain neurons. Nevertheless, LHb DBS
as a treatment for severe cocaine abuse
has considerable therapeutic potential, as
shown by recent findings. Non-invasive
MRI imaging followed by tensor dif-
fusion imaging (DTI) analysis, which
reveals abnormalities in white matter
fiber structure, was used to detect alter-
ations in the habenula-midbrain circuitry.
Analysis demonstrated elevated frac-
tional anisotropy and axial diffusivity in
several parts of the habenula-midbrain
circuit, including the LHb, FR, VTA,
and habenular commissure of rats that
self-administered high-dose cocaine (Lax
et al., 2013) (Figure 1E). Thus, usage of
DTI prior to DBS application may be
valuable as a preoperative, personalized
evaluation tool. DTI biomarkers can assist
in determining the prospects for heavy
addicts to benefit from LHb DBS treat-
ment, consequently increasing positive
outcome.

In summary, the LHb is emerging as a
prominent target site for DBS treatment
of cocaine addiction. However, abnor-
mal brain connectivity following excessive
cocaine exposure may result in inferior
treatment outcomes. As in many other
therapies, treatment of addiction also
exhibits a wide variability in longitudinal
efficacy. Therefore, early identification of

factors which reduce treatment efficacy
can assist in establishing inclusion and
exclusion criteria, and facilitate opti-
mal patient management. This supports
the use of brain imaging for monitor-
ing cocaine-induced alterations in brain
anatomy and fiber connectivity, prior to
DBS treatment. Specifically, DTI biomark-
ers for detection of cocaine-induced alter-
ations in FR anatomy may be useful for
identification and selection of potential
responders to LHb DBS. Therefore, LHb
electrical stimulation, with DTI as a non-
invasive, pre-surgical diagnostic tool, may
serve as an individualized treatment for
drug addiction disorders, mainly for cases
in which more conventional treatments
such as psychotherapy and pharmacolog-
ical treatments have failed.
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