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Intra-auditory integration 
between pitch and loudness 
in humans: Evidence of super-
optimal integration at moderate 
uncertainty in auditory signals
Kyung Koh1,6, Hyun Joon Kwon1,2, Tim Kiemel1,3,4, Ross H. Miller1, Yang Sun Park5, 
Min Joo Kim2, Young Ha Kwon2, Yoon Hyuk Kim2 & Jae Kun Shim1,2,3

When a person plays a musical instrument, sound is produced and the integrated frequency and 
intensity produced are perceived aurally. The central nervous system (CNS) receives defective afferent 
signals from auditory systems and delivers imperfect efferent signals to the motor system due to the 
noise in both systems. However, it is still little known about auditory-motor interactions for successful 
performance. Here, we investigated auditory-motor interactions as multi-sensory input and multi-
motor output system. Subjects performed a constant force production task using four fingers in three 
different auditory feedback conditions, where either the frequency (F), intensity (I), or both frequency 
and intensity (FI) of an auditory tone changed with sum of finger forces. Four levels of uncertainty (high, 
moderate-high, moderate-low, and low) were conditioned by manipulating the feedback gain of the 
produced force. We observed performance enhancement under the FI condition compared to either 
F or I alone at moderate-high uncertainty. Interestingly, the performance enhancement was greater 
than the prediction of the Bayesian model, suggesting super-optimality. We also observed deteriorated 
synergistic multi-finger interactions as the level of uncertainty increased, suggesting that the CNS 
responded to increased uncertainty by changing control strategy of multi-finger actions.

The central nervous system (CNS) receives imperfect afferent signals from the sensory system and delivers defec-
tive efferent signals to the motor system, leading to movement variability1,2. In the CNS, both afferent and effer-
ent signals of the sensory-motor system are corrupted by noise, leading to uncertainty in overall sensorimotor 
control. For example, when playing a constant note, a violinist tries to produce desired force on a bow needed to 
produce the constant sound; however, it is nearly impossible to continuously produce the same action or sound or 
repeat them over multiple trials3,4. The violinist also uses the auditory feedback generated from his or her motor 
actions in order to estimate how the note is being played, but the auditory system provides noisy information, 
often leading to imperfect state estimation and consequently an erroneous motor task by the CNS1.

In the motor domain, the CNS can coordinate multiple motor effectors involved in a particular motor task 
for a desired motor outcome resulting from individual effectors’ behaviors while compensating each effector’s 
errors5–7. For instance, if a person is asked to produce a constant pressing force of 10 N using four fingers on one 
hand, individual finger forces are co-varied so as to reduce the variability of the sum of the four finger forces4,8. 
This phenomenon, also known as motor synergy, has been observed in various types of hand and arm movements 
such as pressing, grasping, and reaching9–11 as well as in whole-body movements12,13. In the sensory domain, it has 
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been suggested that the CNS is capable of integrating different sources of sensory information to improve overall 
perception and improve motor outcomes4,14,15 or decisions16. This is known as optimal integration or Bayesian 
integration, and the phenomenon has been observed in the integration of multiple sources not only between dif-
ferent sensory systems (i.e. inter-sensory integration)17–19, but also between different physical properties within 
the same sensory system (i.e. intra-sensory integration)14,20–24.

In our previous work, we reported that the CNS could optimally integrate feedback on two physical properties 
of sound (i.e. frequency and intensity), consistent with the Bayesian model4. This intra-auditory integration seems 
to influence the multi-finger actions in a hierarchical manner. Previous studies have suggested that multi-finger 
actions are controlled in a hierarchical manner with two levels: individual finger (IF) actions at the lower level 
and virtual finger (VF) actions at the higher level4,10,25–27. VF here is an imagined finger producing the same net 
mechanical effect as all fingers together. In our previous work, we demonstrated that enhancement of VF control 
(i.e. motor performance of the VF) could be achieved by improving synergistic IF actions (i.e. motor synergy) 
through integration of frequency and intensity of sound following the Bayesian model4. However, it remains 
unknown whether the Bayesian model can predict intra-auditory integration for different levels of uncertainty 
in auditory feedback. In addition to this, it is also unknown how the uncertainty affects multi-finger actions in a 
hierarchical organization.

Therefore, the current study investigated how the CNS deals with uncertainty manifested by the auditory 
feedback gains during constant multi-finger force production. Subjects were asked to produce a constant force 
using four fingers in three different auditory feedback conditions, where either the frequency (F), intensity (I), 
or frequency and intensity (FI) of an auditory tone changed depending on the deviation of the VF force from a 
target reference force. We hypothesized that 1) performance would be enhanced in the FI condition compared 
to the F condition or I condition alone for all uncertainty levels, following the Bayesian model, and 2) synergistic 
multi-finger action would deteriorate as the level of uncertainty increases, leading to reduced performance con-
sistent with the findings from our previous work4.

Methods
Participants.  Ten healthy right-handed male volunteers (mean age 24.5 years ± 1 year) participated in the 
study. The sample size was determined by power analysis for statistical analysis conducted in G-Power with an 
alpha of 0.05, power of 0.95, an effect size of 0.4 and 11 degrees of freedom28. Participants were free of neurologi-
cal disorders, psychiatric disorders, speech-language disorders, hearing impairments, and motor impairments. In 
order to avoid a potential confounding factor that musical training can cause in terms of auditory-motor integra-
tion, participants who had musical training within 5 years were excluded. Participants provided written informed 
consent. All procedures were approved by the University of Maryland College Park Institutional Review Board. 
Experiments were carried out in accordance with approved guidelines.

Experimental setup.  Four finger pressing forces were collected using load cells (ATI Nano 17, ATI 
Industrial Automation, Apex, NC, US) at a sampling frequency of 1,000 Hz with data acquisition hardware 
(6024E, National Instruments Corporation, Austin, TX, US) using a custom program written with LabVIEW 
(LabVIEW 8.2, National Instruments Corporation, Austin, TX, US). This program interfaced with a function 
generator (Agilient 33522 A, Keysight Technologies, Inc., Santa Rosa, CA, US) to register the IF forces and cal-
culate the VF force as the sum of IF forces. The program also generated auditory signals played through left and 
right ears of headphones worn by the subjects (AE2, Bose Corporation. Framingham, MA, US).

In order to minimize distortion of sound due to headphone frequency response characteristics29, the audi-
tory signal was calibrated to produce a constant intensity across all frequencies. Calibration was performed in a 
soundproof room by manipulating frequency from 20 to 20,000 Hz in 1 Hz increments and normalizing intensity 
at each increment4.

Task procedures.  Subjects sat on a chair, wore the headphones, and placed the tips of their right-hand fingers 
(index, middle, ring, and little) on the load cells (Fig. 1). The subjects were asked to use these fingers to produce 
a constant VF force of 20 N (~20% of a typical healthy participant’s maximum voluntary force4,30) over 20 s while 
they received auditory feedback tones of the reference force through the left ear and the VF force through the 
right ear. The tone for the reference force (i.e. the reference tone) had a frequency of 1000 Hz and intensity of 
70 dB4. The tone for the VF force (i.e. the tracking tone) played through the right ear varied in three different 
experimental conditions:

	 1)	 Frequency condition (F): the frequency of the tracking tone was modulated with deviation of the subject’s 
VF force from 20 N, while the intensity of the tracking tone was kept constant at 70 dB31.

	 2)	 Intensity condition (I): the intensity of the tracking tone was modulated with deviation of the subject’s VF 
force from 20 N, while the frequency of the tracking tone was kept constant at 1000 Hz32.

	 3)	 Frequency and Intensity condition (FI): both frequency and intensity of the tracking tone was modulated 
with the subject’s VF force.

In order to present different levels of uncertainty in the auditory feedback of the VF force, we manipulated 
the auditory feedback gain for each of feedback conditions (F, I, and FI). For the baseline condition, the gain for 
frequency and intensity conditions were set as 7 Hz/N and 0.7 dB/N, respectively, according to previous studies 
on Just Noticeable Differences4,31,32. Four gains were used for frequency modulation (300, 86, 24, and 7 Hz/N) 
and four gains for the intensity (7.5, 3, 1.2, and 0.7 dB/N), which were categorized as low (L), moderate low (ML), 
moderate high (MH), and high (H) uncertainty conditions. For both frequency and intensity modulations, four 
gains ([300 Hz/N, 7.5 dB/N], [86 Hz/N, 3 dB/N], [24 Hz/N, 1.2 dB/N], and [7 Hz/N, 0.7 dB/N]) were used. Gains 
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were obtained by the same increments in log scale from baseline conditions to 300 Hz/N for frequency conditions 
and at 7.5 dB/N for intensity conditions, demonstrated to provide maximum performance. Participants com-
pleted 5 trials of 20 s per each condition with 30-s rest between consecutive trials. Prior to the experiment, each 
participant performed 5 familiarization trials.

From each 20-s trial, the 9-s window from 6 to 15 s, typically capturing the steadiest VF force, was extracted 
for analysis to avoid the initial force stabilization in the beginning and the premature cessation of force produc-
tion at the end of each trial8. The order of conditions was balanced across subjects.

Bayesian model.  Bayesian model has been a successful in interpreting mechanisms of multi-sensory inte-
gration both within a sensory system4,17–19 and between different sensory systems14,20–24. This model can be useful 
for investigating the performance enhancement during a particular task where each sensory information provides 
the same state of physical property because the model can predict performance enhancement. Using the 

Figure 1.  Experimental setup. The subjects sit and place their right-hand finger tips on the sensors while 
wearing headphones (a). The subject is asked to produce 20 N with four fingers while the reference and tracking 
forces produced are provided as auditory feedback tones. The reference tone (i.e. auditory feedback for reference 
force) in red (c) is a sinusoid signal with a constant frequency of 1000 Hz and intensity of 70 dB played in the 
left ear, while the tracking tone (i.e. auditory feedback for the tracking force) in blue (c) is a sinusoid signal 
determined by three feedback conditions; Frequency condition (F): the frequency of the tracking tone changed 
depending on the sum of finger forces, with a constant intensity of 70 dB, 2) Intensity condition (I): the intensity 
of the tracking tone changed depending on the sum of finger forces (b), with a constant frequency of 1000 Hz, 
and 3) Frequency & Intensity condition (FI): both the frequency and intensity of the tracking tone changed 
depending on the sum of finger forces.
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framework of the Bayesian model, the bimodal estimate, ŜFI, of a finger force from FI can be expressed as a 
weighted sum of variances from F and I, ŜF and ŜI, respectively;

= +ˆ ˆ ˆS S Sw wFI F IF I

If the estimates are considered Gaussian random variables with mean µ and variance σ2, the optimal estimate 
is more precise (lower variance) than the uni-modal estimates as follows:
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To test whether auditory modalities are optimally integrated according to the Bayesian model, we quantified 
motor performance in the form of the overall mean-squared error (OMSE), the averaged squared deviation of the 
VF force from the reference force:
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where y t( )i  is the VF force at trial i, and τ is the duration of y t( )i .
Then, we compared the experimentally obtained OMSE to the OMSE predicted by the Bayesian model, which 

is divided into variable error (σFI
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Hierarchical variability decomposition model.  In our previous work, we developed a hierarchical var-
iability decomposition (HVD) model to quantify the hierarchical organization of multi-finger actions in terms of 
the VF and IF forces (Fig. 2). The VF force for trial i, y t( )i , was modeled as the sum of three components8:

= + +y t X t E m( ) ( )i i i

where X t( )i  is the demeaned VF force for trial i, m is the mean VF force after averaging over all timesteps of all 5 
trials, and Ei is the difference between ith trial mean VF force and m. In this model, OMSE, the index of motor 
performance, was partitioned into three error components as different performance variables8:

	 1)	 The “online intra-trial variable error (VEON),” σX
2, calculated as the averaged variance of X t( )i

	 2)	 The “offline inter-trial variable error (VEOFF),” σE
2, calculated as the variance of Ei

	 3)	 The “systematic error (SE) or bias”, b2, calculated as − m(20 )2

Note that the sum of online and offline variable errors (VE) is the variance of VF force (σ σ σ+ =X E
2 2 2), and 

the systematic error is the squared bias of VF force ( − m(20 )2 = bFI
2 ).

The online and offline variable errors can be further defined as the sum of IF variances plus between-finger 
covariances:
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where xj is the demeaned IF force of the jth finger, and ej is the IF force difference of the jth finger between the 
means across time and across time steps in 5 trials, n is the number of task fingers (n = 4), and the overhead bars 
indicate means over trials. The sum of IF variances, VarON and VarOFF ( σ∑ x

2
i

and σ∑ e
2
i
), reflects the total amount 

of variability in the motor task, while the sum of IF covariances, CovON and CovOFF ( σ∑ x x,i j
 and σ∑ e e,i j

), quantifies 
synergistic actions between finger forces to attenuate or amplify the VF force error4,8.

The indices of synergy quantified above are mathematically equivalent to the index of motor synergy calcu-
lated between effectors in the previous studies as the normalized variance difference between task-relevant space 
and task-irrelevant space initially introduced as the uncontrolled manifold (UCM) analysis9,13,35.
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Statistical analysis.  All dependent variables were transformed to correct for a non-normal distribution 
using the log transformation for OMSE, VE, SE, VEON, VEOFF, VarON, and VarOFF and log-modulus transformation 
methods36 for CovON and CovOFF, which allowed us to transform positive and negative values as follows:

= × +T x sign x x( ) ( ) log( 1)

A two-way repeated measures ANOVA with factors Feedback (3 levels: F, I, and FI) and Uncertainty (4 
levels: L, ML, MH, and H) were used to test the differences between conditions. The level of statistical signifi-
cance was set at p = 0.05. A post-hoc test with Bonferroni correction was performed where necessary. We used 
Greenhouse-Geisser correction for violation of sphericity. Paired t-test with bootstrapping was performed to 
compare the experimentally obtained OMSE to the OMSE predicted by the Bayesian model.

Results
Comparison with the Bayesian model.  The Bayesian model well predicts OMSE for all different levels 
of uncertainty. OMSE for FI did not differ from OMSE estimated from the Bayesian model at any uncertainty 
conditions (L; p = 0.213, ML; p = 0.625, MH; p = 0.204, and H; p = 0.418) (Fig. 3a), along with no significant dif-
ferences in SE (L; p = 0.484, ML; p = 0.579, MH; p = 0.256, and H; p = 0.405) (Fig. 3c). However, VE for FI at MH 
uncertainty was significantly lower than the VE estimated by the Bayesian model (p = 0.037), while there was no 
significant difference at L (p = 0.212), ML (p = 0.921), or H uncertainty (p=0.424) (Fig. 3b). This result indicates 
that the CNS improves motor performance exceeding the Bayesian prediction (i.e. super-optimality) when the 
uncertainty level is moderate.

Effects of feedback on multi-finger actions in the hierarchical organization.  Multi-finger actions 
were analyzed at the VF and IF levels using the HVD model. It was found that overall performance quantified as 
OMSE was enhanced through intra-auditory integration. The enhancement was mainly through reduction of the 
variability in VF force. These results were supported by significant Feedback effects on OMSE (F1.193,18 = 7.832; 
p = 0.015), VE (F1.197,18 = 6.809; p = 0.021), and SE (F2,18 = 3.596; p = 0.049). The pair-wise comparisons showed 
that both OMSE and VE from FI were significantly lower than those for both F and I conditions (OMSE: FI vs F; 
p = 0.001; FI vs I; p = 0.006, and VE: FI vs F; p = 0.001; FI vs I; p = 0.006), while SE from FI significantly differed 
from only that of the F condition (FI vs F; p = 0.003, and FI vs I; p = 0.607) (Fig. 4b and c). There were significant 
Feedback × Uncertainty interaction effects in OMSE (F6,54 = 2.412; p = 0.039) and VE (F6,54 = 2.375; p = 0.041), 

Figure 2.  Hierarchical organization of multi-finger force analysis and its corresponding force signals of one 
representative subject. The overall mean squared error (OMSE), shown at the motor task (MT) level, is an 
averaged squared deviations of VF force from 20 N. At the virtual finger (VF) level, OMSE is the linear sum of 
the variable error ( σVE: 2) and systematic error (SE: − =f m b( )T

2 2). The VE (σ2) is further decomposed into 
the intra-trial moment-to-moment (online) variable error (VEON: σX

2) and the time-averaged trial-to-trial 
(offline) variable error (VEOFF: σE

2). Both the VEON and the VEOFF at the VF level are the linear sums of individual 
finger (IF) force variances (VarON: σ∑ x

2
i
 and VarOFF: σ∑ e

2
i
) and between-finger force covariances (CovON: σ σ∑ x xi j

 
and CovOFF: σ σ∑ e ei j

) at the individual finger (IF) level. Force signals from a representative subject are presented 
on the right side of the figure. At MT level, the VF forces are shown again time and trials. At VF level, three 
components of the VF force, online signal against time, offline signal against trials, and time- and trial-averaged 
force are shown. At the IF level, these online and offline signals are further decomposed into online and offline 
individual finger force signals, respectively.
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while no significant Feedback × Uncertainty interaction effect was found in SE (F6,54 = 1.554; p = 0.179). The 
pair-wise comparisons showed that both OMSE and VE from FI at MH uncertainty were smaller than those of F 
or I alone (OMSE: FI vs. F; p = 0.002; FI vs. I; p = 0.006, and VE: FI vs. F; p = 0.003; FI vs. I; p = 0.008).

At the VF level, the performance enhancement for both online and offline controls through intra-auditory 
integration was observed. This indicates that the CNS combines frequency and intensity of an auditory signal in 
order to provide more consistent actions within a single trial as well as over multiple trials. This result was sup-
ported by a significant Feedback effect (VEON: F2,18 = 6.172; p = 0.009, and VEOFF: F2,18 = 4.353; p = 0.029). The 
pair-wise comparisons showed that both VEON and VEOFF from FI significantly were lower than those of either F 
or I alone (VEON: FI vs. F; p = 0.002, and FI vs. I; p = 0.04, and VEOFF: FI vs. F; p = 0.009, and FI vs. I; p = 0.013) 
(Fig. 4d and e). There was no significant Feedback × Uncertainty interaction effect on either VEON (F6,54 = 0.866; 
p = 0.526) or VEOFF (F6,54 = 1.886; p = 0.100).

At the IF level, intra-auditory integration positively affected synergistic actions only in offline control, but not in 
online control. This indicates that the CNS combines frequency and intensity of an auditory signal in order to pro-
vide more consistent actions over multiple trials, not within a single trial. These results were supported by a signifi-
cant Feedback effect on CovON (F2,18 = 5.158; p = 0.017), but no significant effect on VarON (F2,18 = 1.553; p = 0.239), 
VarOFF (F2,18 = 1.070; p = 0.364), or CovOFF (F2,18 = 3.333; p = 0.059). There was a significant Feedback × Uncertainty 
interaction effect on CovOFF (F6,54 = 2.601; p = 0.027) but no significant interaction effect on VarON (F6,54 = 0.797; 
p = 0.576), VarOFF (F6,54 = 0.739; p = 0.621), or CovON (F6,54 = 0.902; p = 0.501). The pair-wise comparisons showed 
significant reduction of CovOFF from FI compared to that of either F or I alone (FI vs. F; p = 0.048, and FI vs. I; 
p = 0.035) in the MH condition.

Effects of uncertainty on multi-finger actions in the hierarchical organization.  As we expected, 
motor performance quantified as OMSE decreased as the uncertainty level increased, which was supported by the 
significant Uncertainty effect (F3,27 = 64.074; p < 0.001). The pair-wise comparisons showed significant statistical 
differences between feedback conditions (L vs, MH: p < 0.001, ML vs, MH: p = 0.002, MH vs, H: p = 0.013) (Fig. 4a). 
Both VE and SE increased as uncertainty increased, which was supported by the significant Uncertainty effect (VE: 
F3,27 = 73.023; p < 0.001, SE: F3,27 = 23.110; p < 0.001). The pair-wise comparisons showed significant statistical dif-
ferences between feedback conditions (VE: L vs. ML: p = 0.016; ML vs. MH: p = 0.002; ML vs. H: p < 0.001, and 
SE: L vs. MH: p = 0.002; ML vs. MH: p = 0.010; ML vs. H: p = 0.002) (Fig. 4b and c). In the HVD model, VE was 
further partitioned into online variable error (VEON) and offline variable error (VEOFF) in the VF actions. Both VEON 
and VEOFF decreased as uncertainty increased, which was supported by the significant Uncertainty effect (VEON: 
F1.866,27 = 23.418; p < 0.001, and VEOFF: F3,27 = 85.255; p < 0.001). The pair-wise comparisons showed significant 
statistical differences between feedback conditions (VEON: L vs. MH: p = 0.004; ML vs. MH: p = 0.005; ML vs. H: 
p = 0.005, and VEOFF: L vs. ML: p < 0.001; ML vs. MH: p = 0.001; ML vs. H: p < 0.001) (Fig. 3e).

At the IF level, interestingly, both VarON and VarOFF remained unchanged, while both CovON and CovOFF increased 
from negative values as uncertainty increased. This result indicates that the CNS utilizes multiple fingers in the same 
workspace, but changes control strategies in response to different uncertainty conditions. The results were supported 
by the significant Uncertainty main effects (VarON: F3,27 = 1.441; p = 0.253, VarOFF: F3,27 = 2.646; p = 0.069, CovON: 
F3,27 = 17.931; p < 0.001, and CovOFF: F1.815,27 = 20.608; p < 0.001) (Fig. 3f–i) The pair-wise comparisons showed 

Figure 3.  OMSE, VE, and SE from FI (line with circle) are compared with the Bayesian model (line with gray 
shading) across all feedback uncertainties. The VE from FI at MH uncertainty was significantly lower than the 
Bayesian prediction. The asterisk indicates a significant difference (*≤0.05) among feedback conditions for a 
given intensity level. Error bars and gray shading represent SEM across subjects.
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significant statistical differences in both CovON and CovOFF between feedback conditions (CovON: L vs. H: p < 0.001; 
ML vs. H: p < 0.001, and CovOFF: L vs. MH: p = 0.045; ML vs. MH: p = 0.001; ML vs. H: p = 0.002).

Discussion
The aim of this study was to investigate the role of auditory feedback uncertainty manifested by auditory feedback 
gains during a constant multi-finger force production task in three different sound feedback conditions (F, I, and 
FI). Using the HVD model, multi-finger actions were hierarchically analyzed at the VF and IF levels. First, we 
expected that intra-auditory integration would occur as evidenced by decreased variable error (VE), according 
to the Bayesian model. However, at MH uncertainty, there was greater reduction in VE in the FI condition com-
pared to the Bayesian prediction. Second, we expected that synergistic actions would decrease as uncertainty 
increased. Indeed, we found that the indexes of synergistic actions (i.e. CovON and CovOFF) decreased as uncer-
tainty increased, but there were no changes in total variability (i.e. VarON and VarOFF).

The role of auditory uncertainty in intra-auditory integration.  The Bayesian model has been used 
to investigate how the brain integrates multiple sources of sensory information14,17–24. These previous studies 
have suggested that the CNS combines multiple sensory modalities to enhance the state estimate and mini-
mize variability in performance of goal-directed motor tasks to generate “optimal” outcomes. According to the 
Bayesian model, it might not be possible to produce better outcomes that what is predicted from the model (i.e. 
“super-optimality). Super-optimal inter-sensory integration has been observed in previous studies on humans 
and animals37,38. Our study also found that the performance improvement through intra-sensory integration was 
similar to or better than the statistically optimal performance predicted by the Bayesian model. The enhancement 
of motor performance in our study exceeded the Bayesian prediction when uncertainty was moderately high 
(Fig. 3b). Although this finding warrants further investigation, one can logically speculate that uncertainty plays 
a critical role in intra-sensory integration.

The inverse effectiveness rule has also been used to interpret the effects of uncertainty on integration 
of multiple sensory sources39–42. This rule supports the idea that multi-modal feedback is effectively inte-
grated when the uni-modal responses are relatively weak39. Greater neuronal responses have been found in 
multi-modal (visual + auditory) stimulus compared with uni-modal stimulus of a smaller intensity, suggesting 

Figure 4.  Components of the hiearchical decomposition variability model under F (line with square), I (line 
with triangle), and FI conditions (line with circle) are shown as a function of uncertainty level. A significant 
Feedback main effect: OMSE, VE, VEON, and VEOFF for FI significantly decreased compared to those for either 
F or I alone. A significant Feedback × Uncertainty interaction effect: OMSE, VE, and CovOFF from FI are 
significantly lower at MH uncertainty compared to either F or I alone. A significant Uncertainty main effect: 
OMSE, VE, SE, VEON, and VEOFF (a–e) significantly increased as uncertainty level increased. At the IF level, 
CovON and CovOFF (g,i) are significantly increased, while VarON and VarOFF (f,h) remained unchanged. The 
asterisk indicates significant difference (*≤0.05) among feedback conditions. The cross indicates significant 
difference (+≤0.05, ++≤0.01) among uncertainty levels. Error bars represent SEM across subjects.
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that multi-modal integration is inversely related to the intensity of its uni-modal stimulus40–42. However, the 
super-optimality observed in our study deviates from the inverse effectiveness rules because intra-auditory inte-
gration was most effective at the intermediate level of uncertainty in our study.

Two physical quantities (frequency and intensity) are the most salient features of sound that contribute to its 
perception as pitch and loudness. According to the auditory perception theories43,44, these two quantities can be 
independently perceived by the CNS. We perceive and identify the different frequency of sound through the neu-
ral response of hair cells in different locations of basilar membrane45. On the other hand, the loudness of sound is 
perceived by changing of firing rate in the auditory nerve (i.e. firing-rate theory)45. For example, when the sound 
is weak (low intensity), only a small region of the basilar membrane moves sufficiently to evoke spikes. For strong 
sound intensity, on the other hand, the membrane is displaced by a larger amount, causing evoking spikes even in 
neighboring nerve fibers. In our experimental design, we manipulated a rate of change in frequency and intensity 
by the finger force to provide different level of uncertainty in the task. Our main finding of super-optimality at the 
intermediate level of uncertainty implies neural responses in the auditory nerve that is better than a prediction 
by the Bayesian integration.

Online vs. offline controls.  Online and offline motor behaviors infer distinct control mechanisms of the 
CNS control mechanisms in redundant motor systems4,8,46 since the former is controlled continuously, and 
the latter is controlled discretely. We noted enhancement of the repeatability (i.e. offline control) of VF actions 
through intra-sensory integration, but no enhancement of consistency (i.e. online control). In our previous 
study4, we showed that intra-auditory integration had a greater influence on offline control than online control, 
consistent with other previous studies14,47. These previous studies investigated the integration between different 
senses (e.g. visual and auditory, visual and tactile) and showed subjects enhanced repeatability when using both 
senses during repetitive tasks such as estimating the position or size of a target. The results of the current study 
support the theory that the benefits of multi-sensory integration extend to intra-sensory integration as well as to 
state estimation and repetitive motor performance.

The role of auditory uncertainty in hierarchically organized multi-finger actions.  Previous stud-
ies have shown that multi-finger actions are controlled in a hierarchical manner with at least two levels: individual 
finger actions at the lower level and virtual finger actions at the higher level10,25–27. In the current study, we investi-
gated the hierarchical organization of multi-finger actions using the HVD model that quantifies several aspects of 
motor performance at the VF level such as estimability (i.e. inverse of SE), consistency (i.e. inverse of VEON), and 
repeatability (i.e. inverse of VEOFF)4. In a constant force production task, the estimability reflects the CNS’s ability 
to estimate the target force and consistency reflects the CNS’s ability to perform the task on a moment-to-moment 
basis (i.e. online control), while repeatability reflects the ability to repeat the same task goal on trial-to-trial basis 
(i.e. offline control). At the IF level, the consistency and repeatability at the VF level can be explained by the sum 
of variability in IF forces and the co-variability (i.e. motor synergy) among the IF forces. Variability (i.e. VarON and 
VarOFF) and co-variability (i.e. CovON and CovOFF) reflect the CNS’s “work space” and “control strategy” to perform 
the task, respectively. Note that positive covariance indicates that the IF forces are co-varied to amplify the VF 
force and increase the performance error, while negative covariance attenuates the VF force and decreases perfor-
mance error8. Thus, increasing and decreasing covariance reflects deterioration and enhancement of multi-finger 
synergy, respectively, in constant force production tasks by the VF.

As expected, we found that, at the VF level, estimability, consistency, and repeatability decreased (i.e. error 
variables increased) as auditory uncertainty increased. The result is consistent with the finding of previous studies 
that have shown that the uncertainty in visual feedback leads to performance errors during a constant finger force 
control task46,48. However, interestingly, at the IF level, the current study found that the total variance in IF forces 
remained unchanged for all different levels of uncertainty, while covariance between the IF forces increased from 
negative values as auditory uncertainty increased. According to the principle of non-individualized control49, 
multiple motor effectors (e.g. muscles, joints, or fingers) are not controlled individually, but are rather united as a 
task-specific organization. Indeed, in support of the principle, our results indicates that the CNS does not reduce 
the variability of individual finger forces, but rather changes synergistic patterns between finger forces to coordi-
nate the IF actions in order to enhance performance of the VF actions (i.e. task-specific organization, commonly 
addressed as “synergies” in contemporary literature)5,6.

Limitations.  There are some limitations in the current study. First, the feedback gain for the baseline condi-
tion was set according to “just noticeable differences” (JND) previously reported assuming a change in force of 
1 N4,31,32. The use of feedback gains through individual auditory sensitivity might have provided more accurate 
subject-specific conditions for the study. Second, although the frequency and intensity of sound might be their 
most evident physical features, these two quantities might not be independent of each other; previous studies on 
the anatomy of the auditory system suggest that one can influence the other by showing that the psychophysical 
transformation from frequency-intensity space to pitch-loudness space was not a homeomorphism50,51. The accu-
rate quantifications of both the subject-specific gains and the homeomorphism demand new methods achieved 
through careful experimental design and modeling.
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