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Abstract

Multi-task deep learning (DL) models can accurately predict diverse genomic marks from

sequence, but whether these models learn the causal relationships between genomic

marks is unknown. Here, we describe Deep Mendelian Randomization (DeepMR), a method

for estimating causal relationships between genomic marks learned by genomic DL models.

By combining Mendelian randomization with in silico mutagenesis, DeepMR obtains local

(locus specific) and global estimates of (an assumed) linear causal relationship between

marks. In a simulation designed to test recovery of pairwise causal relations between tran-

scription factors (TFs), DeepMR gives accurate and unbiased estimates of the ‘true’ global

causal effect, but its coverage decays in the presence of sequence-dependent confounding.

We then apply DeepMR to examine the global relationships learned by a state-of-the-art DL

model, BPNet, between TFs involved in reprogramming. DeepMR’s causal effect estimates

validate previously hypothesized relationships between TFs and suggest new relationships

for future investigation.

Author summary

Chromatin marks such as transcription factor (TF) binding, accessibility, and histone

modifications play a critical role in controlling cell behavior and identity. In recent years,

multi-task deep learning (DL) models have achieved remarkable success at predicting

these and other chromatin marks. However, it is unclear to what extent these models

learn meaningful mechanistic, even causal, relationships between these variables. Our

work aims to fill this gap by combining in silico mutagenesis, deep learning uncertainty

estimation and causal inference (specifically Mendelian randomization, MR), into a

framework we call DeepMR. We describe DeepMR, apply it to a simulation intended to

test its ability to recover causal relationships between features from a learned model, and
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then use it to examine the relationships learned by a state-of-the-art DL model, BPNet.

Our results suggest that DeepMR can estimate causal relationships under its stated

assumptions and provide further evidence for previously hypothesized relationships

between TFs identified by BPNet.

Introduction

Deep learning (DL) has achieved success predicting genomic marks such as transcription fac-

tor (TF) binding [1, 2], chromatin accessibility [2, 3], histone modifications [4], RNA binding

protein (RBP) binding [1, 5–7] and splicing [8, 9] from DNA (or RNA) sequence. These mod-

els, often convolutional neural networks [10], typically achieve high predictive accuracy and

recognize sequence features that match those found by orthogonal experiments such as SELEX

[11]. In particular, multi-task models such as DeepSEA [2] and BPNet [12] can accurately pre-

dict multiple genomic marks simultaneously. Following [13], we define a “mark” as a position

in the genome where the number of reads from an epigenomic assay is significantly above

background. Here we ask: do such multi-task models, through learning to predict multiple

marks jointly, gain an implicit understanding of mechanistic, causal relationships between

marks?

We attempt to answer this question by developing Deep Mendelian Randomization

(DeepMR). DeepMR combines in silico mutagenesis with Mendelian randomization (MR)

[14], an instrumental variable approach for causal inference, to estimate learned causal effects

in genomic DL models. DeepMR obtains local (sequence level) and global (genome level) esti-

mates of (an assumed) linear causal relationship between pairs of marks learned by a multi-

task genomic prediction model. DeepMR draws on four threads of work spanning machine

learning and statistical genetics.

DL for functional genomics

A major objective in functional genomics is mapping sequence-to-function relationships

between genotype and molecular phenotypes, typically leveraging large-scale observational

data from high-throughput assays such as ChIP-seq [15–18], DNase-seq [19], and ATAC-seq

[20]. Understanding this mapping enables 1) better understanding of epigenomic regulation,

2) variant interpretation, and 3) more accurate prediction of downstream traits. However,

achieving these goals requires decoding complex relationships between high-dimensional

genomic sequence inputs and interrelated outputs from large, noisy datasets. Encouraged by

DL models’ ability to overcome similar challenges in the fields of computer vision and natural

language processing, genomics researchers have trained DL models on functional genomics

datasets with substantial success.

Early work showed that DL could predict sequence-to-function relationships accurately

and demonstrated their promise for identifying trait-associated variants. DeepBind [1], one of

the earliest DL sequence-to-function classifiers, outperformed then state-of-the-art models at

predicting TF binding and RBP binding from sequence. DeepBind and other classification

models—e.g. DeepSEA [2] and Basset [3]—also identified trait-associated variants with higher

accuracy than previous methods. More recent work has leveraged DL models to improve our

understanding of epigenomic regulatory logic. In particular, [12] trained a regression model,

BPNet, to predict the binding of four TFs and used it to dissect the motif-based regulatory

grammar that governs their binding. Together, these papers illustrate the promise of DL mod-

els for not only predicting function from sequence but also improving our understanding of
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epigenomic regulation and ability to anticipate disease risk. In our work, we seek evidence that

genomic DL models learn meaningful high-level relationships between output marks.

Model interpretation

Local interpretation methods characterize how specific input (sequence) features influence

predictions or intermediate layer activations (e.g., saliency maps [21], guided back-propaga-

tion [22], DeepLIFT [23], and DeepSHAP [24]). Even DeepLIFT, which was designed with

genomic DL in mind, focuses on interpreting individual model predictions for a single output

rather than discovering relationships between outputs and is therefore complementary to our

work.

Closer to our work, [25]’s Global Importance Analysis (GIA) assesses the global effect size

of different patterns on model predictions. While resembling DeepMR in terms of its focus on

global effects, GIA allows users to test narrower hypotheses about specific features such as

motifs and uses synthetic instead of observed sequences. As such, GIA is also complementary

to DeepMR, potentially providing a method for uncovering specific patterns that explain

higher level relationships discovered by DeepMR.

Saturation in silico mutagenesis characterizes how a model’s predictions for a specific input

change as a result of all possible point mutations to the input. Saturation mutagenesis has been

used to assess the learned representations of genomic DL models such as DeepBind [1], cDeep-

Bind [6], DeepSEA [2], and Basset [3]. Here, we use saturation mutagenesis (with uncertainty

estimates generated using Deep Ensembles [26]) to generate a set of estimated variant effect
sizes which we then provide as input to MR.

Uncertainty estimates and coverage of DL predictions

Many methods for obtaining uncertainty estimates from DL models exist [27]. Our work is

not focused on testing different uncertainty estimation methods so we chose Deep Ensembles

[26], which, despite their simplicity, consistently perform well in empirical comparisons [26,

28]. Briefly, a Deep Ensemble is a collection of DL models trained from different random ini-

tializations, which leads to different learned weights, resulting in slightly different predictions

for each data point. Deep Ensembles provide uncertainty estimates in the form of variance

between the different submodels’ predictions for a given data point. Despite this, [29] found

that uncertainty estimates from Deep Ensembles were often miscalibrated but could be res-

cued using isotonic regression (a solution we adopt here).

Mendelian randomization

MR is an instrumental variable [30] technique for estimating (typically linear) causal effects in

the presence of potential unobserved confounders. Instrumental variable approaches enable

causal inference in the presence of unobserved confounding by taking advantage of instru-
ments, auxiliary variables associated with the purported cause but independent of any con-

founding. MR was originally developed for inferring causal effects from population-scale

observational data (i.e., genome-wide association studies, GWAS). MR takes advantage of

genetic variation inducing population-level phenotypic variation that is independent of post-

natal confounders to infer unbiased causal effects. In an early demonstration of MR, [14] used

MR to estimate the effect of C-Reactive Protein on insulin resistance. In contrast to prior stud-

ies, their results suggest that C-Reactive Protein levels may not have a meaningful effect on

insulin resistance. While previous studies sought to control for confounding directly, [14] use

a Single Nucleotide Polymorphism (SNP) in the CRP gene as the genetic variant (instrument)

for their MR analysis, which they have higher confidence lacks any association with post-natal
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confounders. This is one of several examples in which MR helped infer a more accurate esti-

mate of an underlying causal effect.

Here we explore MR’s application to estimating causal effects implied by model-generated

“data” with in silico mutations taking the place of true genetic variants. Putative causes and

effects are genomic marks such as TF binding or chromatin accessibility. Applied to variant

effects predicted by accurate machine learning models, MR allows us to infer the strength of

relationships between phenotypes despite these relationships being confounded by the influ-

ence of other, potentially unobserved marks. While MR is traditionally applied to observed

rather than estimated effects, our work attempts to show that effects estimated by DL models

can satisfy the assumptions (described below) required for valid MR estimates.

MR only produces valid causal effect estimates under specific assumptions (Fig 1 under

Estimate) [14]. Let Z be a variable we intend to use as an instrument (a genetic variant for

example), X a purported cause (exposure), and Y a purported effect (outcome), and suppose

that there may be unobserved confounding between X and Y, denoted by U. Then, MR gives

an unbiased estimate of the causal effect of X on Y if:

1. Z is independent of U (Unconfoundedness),

2. Z is not independent of X, and

3. Z only influences Y through X (Exclusion Restriction).

Early MR studies assumed that all MR assumptions were perfectly satisfied and therefore

that a single instrument was sufficient for inferring a causal effect. In this setting, exposure-to-

outcome causal effects can be inferred via either the Wald ratio [31] or two-stage least squares

regression [30, 32]. The Wald ratio is computed as the instrument-to-outcome regression coef-

ficient divided by the instrument-to-exposure coefficient. In two-stage least squares, we still

perform an instrument-to-exposure regression but then regress the outcome onto the pre-

dicted rather than observed exposure values. The resulting coefficient is the causal effect esti-

mate. With a single instrument, two-stage least squares produces identical results to the Wald

ratio but has the advantage of being compatible with multiple instruments.

Recently developed MR methods such as Robust Adjusted Profile Score [33], MR-Egger

[34], and the modal-based estimator [35] leverage multiple instruments to relax some of these

assumptions without compromising the validity of results.

DeepMR can work with any MR method that takes multiple instruments’ effect sizes and

standard errors as inputs and can produce effect size estimates and confidence intervals for

Fig 1. Graphical representation of DeepMR’s high-level steps. DeepMR combines in silico mutagenesis and

Mendelian randomization (see Algorithm overview). Predict corresponds to steps 1 through 4. Estimate corresponds

to step 5. Aggregate corresponds to step 6.

https://doi.org/10.1371/journal.pcbi.1009880.g001
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those estimates. In this work, we estimate causal effects using 1) a simple baseline where we

take the average of the Wald ratios for each instrument and 2) a robust variant of MR-Egger

with the goal of being robust to invalid instruments. MR-Egger seeks robustness to violations

of Exclusion Restriction, otherwise known as horizontal pleiotropy in statistical genetics [36].

MR-Egger is based on an analogy between MR with multiple instruments and meta-analysis.

It treats each instrument as a ‘study’ enabling violations of exclusion restriction (Assumption

3) to be viewed as a form of small study bias. As long as the strength of the instrument-expo-

sure relationship is independent of the direct effect of the instrument on the outcome, MR-Eg-

ger gives accurate estimates of causal effects in the presence of instruments that violate

exclusion restriction.

Methods

Algorithm overview

DeepMR estimates causal effects between variables predicted by a multi-task model. It takes a

trained, calibrated (regression or classification) model that outputs predictive means and stan-

dard errors and a set of one-hot encoded sequences as input. It outputs local, sequence-specific

causal effects and global, exposure/outcome-specific causal effects. It accomplishes this (see

Fig 1 for a visual depiction) via the following steps for each exposure/outcome pair:

1. Randomly sample sequences to predict exposure and outcome values for “reference

sequences”.

2. Perform saturation in-silico mutagenesis for each reference sequence to generate (sequence

length × alphabet size − 1) mutated sequences per reference sequence.

3. For each set of pairs of mutant and reference sequences, generate predictive means and

standard errors for exposure and outcome features.

4. Generate (sequence length × alphabet size − 1) effect sizes by subtracting each reference

sequence’s predictive mean from the corresponding mutated sequences’ predictive means.

Additionally, compute the standard errors of these differences.

5. Filter instruments by effect size based on a z-score threshold (Assumption 2) to only

include those that are strongly associated with the exposure.

6. Estimate a per-sequence region causal effect by running MR on the remaining effect sizes

and their standard errors.

7. Estimate global causal effects using a random effects meta-analysis across sequence regions

(loci).

Exposure and outcome effect size & standard error estimation. Step 4 requires variant

effect estimates for each mutation for both the exposure X and outcome Y. Let fX(Z, θ(i)) and

fY(Z, θ(i)) be the model for X and Y respectively with input sequence Z and parameters θ(i) rep-

resenting the ith component of the deep ensemble. Appealing to the interpretation of a deep

ensemble as an approximation to a posterior predictive distribution [37], the posterior expec-

tation for X is E X j Z½ � � 1

N

PN
i¼1

fXðZ; y
ðiÞ
Þ. Calculating this Monte Carlo (MC) estimate for

both the mutant sequence m and reference r we can obtain an unbiased estimate of the variant

effect b̂ZX ¼ EðX j Z ¼ mÞ � E X j Z ¼ r½ �. We proceed analogously for the outcome Y.

A naive estimate of the standard errors (s.e.) would use var½b̂ZX� ¼ var½X j Z ¼ m� þ
var½X j Z ¼ r� with the variances estimated by MC. However, this would give inflated s.e. since
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it ignores statistical dependence resulting from θ. We therefore instead use

var½b̂ZX� ¼ var½ðX j Z ¼ mÞ � ðX j Z ¼ rÞ�

¼
1

N
var½X j Z ¼ m� þ var X j Z ¼ r½ � � 2cov X j Z ¼ m;X j Z ¼ r½ �

¼
1

N

XN

i¼1

½fXðm; y
ðiÞ
Þ � E½X j Z ¼ m��2þ

1

N

XN

i¼1

½fXðr; y
ðiÞ
Þ � E½X j Z ¼ r��2�

2
1

N

XN

i¼1

fX m; yðiÞ
� �

fX r; yðiÞ
� �� �

� E X j Z ¼ m½ �E X j Z ¼ r½ �

 !

:

We again proceed analogously for the outcome Y.

Per sequence region causal effect estimation. For the per-sequence region causal effect

estimation, we treat the subset of b̂ZX; b̂ZY pairs and their accompanying s.e. values that passed

the step 5 filter (i.e. the mutation is associated with X) as input to the chosen MR method.

From this, MR provides us with one causal effect estimate and associated s.e. per sequence

region.

To estimate a global causal effect, we apply a random effects meta-analysis to the per-

sequence region causal effects and their s.e. values. Briefly, a random effects meta-analysis

assumes that the true effect for each study (sequence region) is drawn from an underlying

global distribution of effect sizes, which is typically assumed to be Gaussian whose mean and

variance are to be estimated. Per-sequence region effect are observed with mean equal to the

the true effect and Gaussian noise with variance determined by the s.e. from MR. To perform

the random effects meta-analysis, we use the meta R package [38].

Simulation

Our simulation is inspired by [39] but tailored to test DeepMR’s ability to estimate the strength

of the causal relationship between exposure and outcome TFs when binding to simulated

L = 100bp DNA sequences. The exposure TF’s binding affinity, ce, is determined primarily by

the probability of the TF (represented as a position weight matrix, PWM) binding anywhere

on the sequence (see S1 Text), pe,

ce ¼ ape þ Zpc þ tz þ 1; ð1Þ

where pc is the binding probability of an optional confounder TF, and z� Bernoulli(0.5) is an

optional sequence independent confounder. By contrast, the outcome TF’s binding affinity co
is a multiplicative function of both the strength of its own motif match and the strength of the

exposure’s, i.e.

co ¼ agpope þ npc þ tz þ 1:

Here the effect size γ represents the influence of the exposure’s binding on the outcome’s bind-

ing in raw counts space. γ is not the true causal effect because the true CE is defined in

Anscombe-transformed rather than raw counts space. γ is sampled (once per simulation run)

from an equal proportion mixture of two normals with means 10 and 1 (and variance 0.5), in

order to test DeepMRś ability to differentiate between two clusters of CEs, one much lower

than the other. We sample α from N(100, 3) (once per simulation run) and fix η = 20, ν = 30

and τ = 25.
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The simulation model corresponds to a causal effect of the exposure TF on the outcome TF:

with no exposure TF binding there can be no outcome TF binding. When present, both types

of confounding influence exposure and outcome counts multiplicatively.

Finally to represent experimental noise, counts are Poisson distributed with mean equal to

the affinity values. We did not use a negative binomial since we expect the random sequence

generation process will naturally induce overdispersion. Finally, we Anscombe transform the

raw counts [39].

Length 100 sequences are sampled uniformly at random. For each TF, with 50% probability

we insert a subsequence sampled from its PWM at a random position. To assign a binding

probability we convolve the TF’s PWM over the sequence and apply the soft-or function (see

S1 Text).

We considered four different scenarios: 1) no unobserved confounding, 2) sequence-based

unobserved confounding, 3) non-sequence-based unobserved confounding, and 4) both types

of confounding in tandem. Sequence-dependent unobserved confounding adds an additional

TF (and corresponding) motif which influences the binding strength of both exposure and

outcome TFs.

We train ensembles of convolutional neural network (CNN) models on the data produced

in each scenario and use them, combined with held-out test sets, as inputs for DeepMR.

True causal effect computation. To assess the quality of our method, we need to compare

its estimates to the ground truth. DeepMR estimates the effect of a unit change in the exposure

on the outcome by using single point mutations that meaningfully affect the exposure as

instruments. Our simulation can provide us with the true affinity for any given mutated

sequence, which we leverage to compute true sequence-region level causal effects. For a given

sequence which contains the exposure motif, the true causal effect is found by regressing the

effect of all point mutations to bases within the exposure motif on the outcome on the corre-

sponding effects on the exposure. This is similar to the two-stage least squares MR method

[32] where all mutations within the the exposure motif are assumed to be valid instruments.

Simulation & model parameters. In all simulation runs, we used PWMs representing

motifs for the GATA (exposure), TAL1 (outcome), and SOX2 (confounder) transcription fac-

tors, all drawn from ENCODE’s motif database [40] and sampled using the simdna library

(https://github.com/kundajelab/simdna).

To model this data, we trained 3-layer CNN with 15 filters per convolutional layer and a fil-

ter width of 7 for maximum 100 epochs with early-stopping. The three convolutional layers

were followed by 2 hidden layers of width 30. Models were trained using Adam with a learning

rate of 10−3 and otherwise standard parameters combined with an MSE loss to predict the

Anscombe-transformed counts for the exposure and outcome jointly.

Code for all experiments can be found at https://github.com/an1lam/deepmr.

Results

We first assess DeepMR on simulated data where we know the ground-truth relationship

between the modeled TFs. We then apply DeepMR to determining the causal relationships

between four TFs involved in pluripotency.

Simulation

DeepMR accurately estimates global CEs in all cases. We evaluated DeepMR’s local and

global CE estimates in the one unconfounded and three confounded scenarios (see Methods).

In each scenario, we performed causal effect estimation (including learning the sequence-to-

binding CNN ensemble) for 50 simulations using 10000 training sequences and 1000 test
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sequences for CE estimation. In each scenario, we compare results obtained using MR-Egger as

the MR method to those obtained using a simple MR baseline of taking the average and stan-

dard deviations of the Wald ratios to produce each local CE and interval estimate respectively.

Our CNN models achieved R2 validation accuracy averaging around 0.8 for (transformed)

exposure counts and 0.7 for (transformed) outcome counts. For the causal inference we

assessed two metrics: accuracy of global CEs and coverage of local CE 95% confidence inter-

vals. We judged accuracy of global CEs in terms of the correlation between the global causal

effect estimates and the average of the true global causal effects and the frequency at which the

CE estimate ±2τ capture said average across 50 simulations. DeepMR accurately estimates true

global CEs in all cases (Fig 2, Table 1 for R2 accuracy values). In the unconfounded and non-

sequence confounding cases, we see near-perfect agreement between estimated and true global

CEs. In the sequence-dependent confounding case, DeepMR more often underestimates true

CEs, although usually by less than one s.e., suggesting that the influence of the unlabeled SOX

motif score on the exposure and outcome label values biases DeepMR’s global CE estimates

towards 0.

Fig 2. In simulations, DeepMR estimates causal effects between TFs even in the presence of unobserved confounding. Top row: true vs. estimated

global causal effects (CEs) across 50 rounds for unconfounded, random confounded, and sequence-dependent confounded cases respectively. Blue bars

denote ±2σ where σ denotes the standard error of the mean and orange bars denote ±2τ where τ denotes the between-region standard deviation. Bottom

row: local CE coverage (how often the true CE is in the 95% confidence interval) across the three experiments (same order) with the red line denoting

average coverage.

https://doi.org/10.1371/journal.pcbi.1009880.g002

Table 1. DeepMR estimates causal effects (CE) accurately with high coverage. Accuracy is R2. Local corresponds to CEs for individual regions, global for the meta-analy-

sis mean. For global CE accuracy and coverage the first value comes from using MR-Egger and the second from the baseline MR procedure.

Global CE Accuracy Global CE Coverage Local CE CI Coverage

Unconfounded 0.97/0.98 1.00/1.00 0.87

Random 0.98/0.97 1.00/0.96 0.81

Sequence 0.97/0.98 0.98/0.86 0.87

Both 0.78/0.96 0.98/0.92 0.81

https://doi.org/10.1371/journal.pcbi.1009880.t001

PLOS COMPUTATIONAL BIOLOGY Investigating the causal knowledge of genomic deep learning models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009880 October 20, 2022 8 / 14

https://doi.org/10.1371/journal.pcbi.1009880.g002
https://doi.org/10.1371/journal.pcbi.1009880.t001
https://doi.org/10.1371/journal.pcbi.1009880


DeepMR’s coverage decays in the presence of sequence-dependent confounding. We

judged coverage of global CEs by measuring the fraction of ±2τ intervals that capture the true

global CE. We judged coverage of local CEs by examining the distribution of 95% confidence

interval coverage across 50 simulations in the four scenarios. DeepMR performs better in the

unconfounded and random confounding scenarios. While average coverage (see Table 1) is

relatively constant across scenarios, in Fig 2 we observe a longer tail of low coverage values in

the random (see Table A and Table B in S2 Text for the impact of confounder strength on

these metrics) and sequence-dependent confounding scenarios. Furthermore, global CE cov-

erage in the sequence-dependent and scenario is much lower. Together, these results suggest

that DeepMR can somewhat underestimate variance in confounded scenarios and produces

more calibrated local CE estimates in cases where there is minimal or no sequence-dependent

confounding.

DeepMR produces accurate estimates using both MR-Egger and the baseline. Overall,

DeepMR’s estimates are accurate using both MR-Egger and the baseline estimation method.

In fact, the baseline method generates more accurate estimates in the presence of both con-

founding types, likely because MR-Egger underestimates the CEs in this setting. However,

there is seemingly a trade-off where MR-Egger provides better coverage in the presence of

sequence-dependent confounding, whereas the baseline’s coverage is substantially reduced in

this setting.

Estimating causal effects between four TFs involved in reprogramming

Given the promising results on simulated data, we applied DeepMR to detecting CEs between

four TFs involved in induced pluripotent stem cell (iPSC) reprogramming: Oct4, Sox2, Nanog,

and Klf4. We used the ChIP-nexus data and model (BPNet) previously described in [12] but

trained a 5-component ensemble. We closely followed the data processing and model training

process used in the original paper, described in full at the BPNet repository (https://github.

com/kundajelab/bpnet). We calibrated the resulting Deep Ensemble with isotonic regression

using validation data. We computed local CE estimates for all TF pairs on 2000 randomly sam-

pled sequences in the validation set. These estimates were used to compute global estimates for

each TF pair via meta-analysis.

DeepMR validates previously hypothesized and suggests new relationships between

TFs. Based on an orthogonal approach (TF cooperativity analysis), [12] postulate a positive

directional effect of a composite Oct4-Sox2 binding motif on the binding of Nanog and Klf4.

As a test of DeepMR’s ability to discover such relationships while making fewer assumptions

about their functional form, we sought to replicate this finding. While the BPNet approach

does not produce quantitative overall estimates of directional effects, it enabled them to make

two hypotheses about directionality (see [12]’s Extended Data Fig 6). These were 1) Sox2 and

Oct4 act on Nanog and 2) that Oct4 and Sox2 act on each other via a composite motif. To rep-

licate these findings, we computed the global CEs for all 12 pairs of TFs. We largely recapitulate

[12] (Fig 3), finding that Sox2 and Oct4 both have a strong positive estimated CEs on each oth-

er’s binding and on the binding of Nanog. In the latter case, the 2τ range does include 0, sug-

gesting high variability across loci. In general, we observe high variability across sequence

regions, reflected by the generally large ±2τ ranges. This also matches [12]’s observation that

effects vary across sequence space and in particular with different motif spacings (see S1 Fig

for a heatmap showing the effect of motif spacing on global CE estimates).

DeepMR suggests additional hypotheses that could be validated by in future experimental

work. As one example, DeepMR predicts that Sox2 acts on Klf4 more strongly than the

reverse.
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Discussion

DeepMR estimates the magnitude of causal relationships between outputs of multi-task geno-

mic DL models in order to hypothesize specific models of gene regulation. DeepMR can

recover CEs in the presence of unobserved confounding in simulation and validates purported

and identifies new putative relationships between four important TFs involved in reprogram-

ming. While DeepMR shows promise, it does have several known limitations.

Resource requirements

Since DeepMR relies on in silico mutagenesis across each submodel in the Deep Ensemble,

generating the data for estimating global CEs is computationally intensive, taking approxi-

mately one day to run for the BPNet hold-out set in our experiments. One could incorporate

speed-ups such as those of [41] or leverage attribution tools such as saliency maps, DeepLIFT

[23] or DeepSHAP [24] that can efficiently approximate in silico mutagenesis.

Model calibration

MR Egger requires properly calibrated effect size and standard error estimates for each instru-

ment. Our ensemble-based approach to uncertainty estimation tends to produce somewhat

Fig 3. Global CE estimates. Global CEs for all pairs of TFs predicted by BPNet with ±2τ (orange) and ±2σ (blue)

ranges around the mean estimate.

https://doi.org/10.1371/journal.pcbi.1009880.g003
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over-confident estimates as measured by the metrics proposed by [29]. We apply and recom-

mend isotonic regression [42] to remedy this.

Violation of MR assumptions

For MR to return unbiased causal effect estimates, the underlying data-generating process and

our model’s proxy for it must both adhere to the three MR assumptions and there must be an

at least approximately linear relationship between exposure and outcome. In the statistical

genetics setting, these assumptions can be justified in part by claims about the relationship

between genotype, which is determined pre-natally, and potential confounders and pheno-

types, which tend to manifest post-natally, assuming population structure is accounted for. We

cannot fall back on these justifications for sequence-to-function relationships. Instead, we

must re-examine each of these assumptions to determine whether they can be expected to

hold. Assumption 2 is easily satisfied because by filtering instruments based on their relation-

ship to the exposure (see Algorithm overview), whereas the unconfoundedness (Assumption

1), exclusion restriction (Assumption 3), and linearity assumptions have the potential to be

violated.

Under classical MR assumptions, estimates will only be unbiased if all instruments are inde-

pendent of unobserved confounders. Potential unobserved confounders fall into two catego-

ries: sequence-dependent and sequence-independent. Classical MR (i.e. inverse-variance

weighting) should control for sequence-independent confounding. Potential sequence-depen-

dent confounders include other TFs, chromatin features or an uncorrected assay bias such as

GC-bias. Such confounders additionally violate the exclusion restriction assumption by pro-

viding a causal pathway from instrument (mutation) to outcome not mediated by the exposure

TF. However, our use of MR Egger provides some additional robustness to such violations so

long as the InSIDE assumption holds. Indeed, our simulation experiments (Simulation)

showed remarkable robustness to the effects of both types of confounding.

MR correctly estimates causal effects when all relationships —instrument to exposure and

exposure to outcome—are linear, which may not be the case. For example, given strong TF

binding cooperativity, knocking out one TF’s binding will knock out the other’s entirely, vio-

lating linearity. Fortunately, we only require the weaker condition of local linearity. Each of

our effect sizes is derived from a single mutation, so DeepMR behaves correctly so long as the

relationships stay linear within a local neighborhood. Going beyond the assumption of local

linearity is something we hope to address in future work.

In summary, DeepMR relies on specific assumptions about model quality and the true

causal relationships. The former can be expected to increase as genomic datasets grow. The lat-

ter suggests relaxing some of these assumptions via more advanced MR methods or developing

tools to detect when assumptions are violated.

In the future, we will aim to combine DeepMR with a causal network inference method

such as our recent bimmer model [43] to explicitly account for the influence of other assayed

TFs on each pair. DeepMR would also benefit from accompanying tools for diagnosing when

model-generated data deviates from or violates MR assumptions.

Supporting information

S1 Text. Computing binding probabilities.

(PDF)

S2 Text. Effect of confounder strength on simulation metrics.

(PDF)
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S1 Fig. Effect of motif spacing on BPNet global CEs. Heatmap of Global CEs broken down

by TF pairs and motif spacing buckets. Each row represents the global effects of one TF on

another, computed using a subset of sequences in which both TF’s motifs appeared within the

relevant distance range of each other. The figure shows the effect of motif spacing on global

CE estimates for the four BPNet TFs. To compute effects for each TF and spacing bin, we used

motif instance annotations from [12] to select sequence regions with motif instance pairs. For

each sequence region, we computed distances between the two motif instances. Finally, we

binned the sequence regions by motif instance distance and ran DeepMR on the sequence

regions within each bin for each pair of TFs to obtain global CEs. The horizontal color banding

in the heatmap illustrates that, while motif spacing has some effect on global CEs, the inter-

spacing differences tend to be much smaller than the inter-TF differences.

(TIF)
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