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Abstract

Perception of vocalizations and other behaviorally relevant sounds requires integrating

acoustic information over hundreds of milliseconds. Sound-evoked activity in auditory cortex

typically has much shorter latency, but the acoustic context, i.e., sound history, can modu-

late sound evoked activity over longer periods. Contextual effects are attributed to modula-

tory phenomena, such as stimulus-specific adaption and contrast gain control. However, an

encoding model that links context to natural sound processing has yet to be established. We

tested whether a model in which spectrally tuned inputs undergo adaptation mimicking

short-term synaptic plasticity (STP) can account for contextual effects during natural sound

processing. Single-unit activity was recorded from primary auditory cortex of awake ferrets

during presentation of noise with natural temporal dynamics and fully natural sounds.

Encoding properties were characterized by a standard linear-nonlinear spectro-temporal

receptive field (LN) model and variants that incorporated STP-like adaptation. In the adapt-

ing models, STP was applied either globally across all input spectral channels or locally to

subsets of channels. For most neurons, models incorporating local STP predicted neural

activity as well or better than LN and global STP models. The strength of nonlinear adapta-

tion varied across neurons. Within neurons, adaptation was generally stronger for spectral

channels with excitatory than inhibitory gain. Neurons showing improved STP model perfor-

mance also tended to undergo stimulus-specific adaptation, suggesting a common mecha-

nism for these phenomena. When STP models were compared between passive and active

behavior conditions, response gain often changed, but average STP parameters were sta-

ble. Thus, spectrally and temporally heterogeneous adaptation, subserved by a mechanism

with STP-like dynamics, may support representation of the complex spectro-temporal pat-

terns that comprise natural sounds across wide-ranging sensory contexts.

Author summary

Successfully discriminating between behaviorally relevant sounds such as vocalizations

and environmental noise requires processing how acoustic information changes over

many tens to hundreds of milliseconds. The sound-evoked activity measured for most
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auditory cortical neurons is relatively short (< 50 ms), so it is not clear how the auditory

cortex encodes sound information over longer periods. In this study, we propose that

nonlinear adaptation, mimicking the effects of synaptic short-term plasticity (STP),

enables auditory neurons to encode longer and more complex spectro-temporal patterns.

A model in which sound history is stored in the latent state of plastic synapses is able to

describe responses of single cortical neurons to natural sounds better than a standard

encoding model that does not include nonlinear adaptation. Moreover, STP-like adapta-

tion can account for contextual effects on sound evoked activity that cannot be accounted

for by standard encoding models.

Introduction

Vocalizations and other natural sounds are characterized by complex spectro-temporal pat-

terns. Discriminating sounds like speech syllables requires integrating information about

changes in their frequency content over many tens to hundreds of milliseconds [1–3]. Models

of sensory encoding for auditory neurons, such as the widely used linear-nonlinear spectro-

temporal receptive field (LN model), seek to characterize sound coding generally. That is, they

are designed to predict time-varying responses to any arbitrary stimulus, including natural

sounds with complex spectro-temporal dynamics [4]. When used to study auditory cortex,

however, LN models typically measure tuning properties only with relatively short latencies

(20–80 ms), which prevents them from encoding information about stimuli with longer

latency [5–7]. It remains an open question how the auditory system integrates spectro-tempo-

ral information from natural stimuli over longer periods.

Classic LN models cannot account for integration over longer timescales, but studies of

spectro-temporal context have shown that auditory-evoked activity can be modulated by sti-

muli occurring hundreds to thousands of milliseconds [8–10] or even several minutes before-

hand [11,12]. These results have generally been interpreted in the context of pop-out effects

for oddball stimuli [13–16] or gain control to normalize neural activity in the steady state [17–

19]. Encoding models that incorporate recurrent gain control or nonlinear adaptation have

been shown to provide better characterization of auditory-evoked activity in the steady state,

indicating that these properties of neurons may contribute to context-dependent coding on

these longer timescales [15,20–24]. Some models have been shown to account for cortical

responses to natural stimuli more accurately than the LN model [22,24–26], and others have

been proposed that have yet to be tested with natural stimuli [21,23,27,28]. These findings sug-

gest that an adaptation mechanism plays a central role in context-dependent coding, but there

is no clear consensus on the essential components of a model that might replace the LN model

as a standard across the field.

Short-term synaptic plasticity (STP) is a widely-observed phenomenon in the nervous sys-

tem. Upon sustained stimulation, the efficacy of synapses is depressed or facilitated until stim-

ulation ceases and synaptic resources are allowed to return to baseline [29,30]. Activity evoked

by a sensory stimulus will engage synaptic plasticity across the auditory network, and the spe-

cific synapses that undergo plasticity will depend on the stimulus. Because the pattern of plas-

ticity is stimulus-dependent, it could provide a latent code for sensory context that modulates

responses to subsequent stimuli. Thus we hypothesized that nonlinear adaptation with STP-

like properties may play a general role in auditory cortical processing. The precise mechanism

producing nonlinear adaptation can take other forms than STP (e.g., feedforward inhibition,

postsynaptic inhibition [14,31]), but all these mechanisms support a simple and fundamentally
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similar algorithm for encoding spectro-temporal features. The focus of this study is whether

functional properties of auditory neurons are impacted significantly by such a mechanism at

the algorithmic level and, in particular, if this adaptation occurs independently across inputs

with different sound frequency. Regardless of precise mechanism, a population of neurons

with spectrally tuned adaptation may support a rich code for information over the many hun-

dreds of milliseconds required to discriminate spectro-temporally complex natural sounds

[32,33].

To test for spectrally tuned adaptation during auditory processing, we developed a vocaliza-

tion-modulated noise stimulus in which two simultaneous noise bands are modulated by enve-

lopes from independent natural vocalizations. The naturalistic dynamics of these stimuli

produce a wide range of sensory contexts for probing neural activity. We presented these stimuli

during single-unit recordings in primary auditory cortex (A1) of awake ferrets and compared

the performance neural encoding models to test for STP-like effects [4,34]. We fit variants of the

LN model in which inputs adapt either locally to one spectral band or globally across all channels.

For many neurons, locally tuned adaptation provided a more accurate prediction of neural activ-

ity, supporting the idea of channel-specific adaptation. The strength and tuning of adaptation

was heterogeneous across the A1 population, consistent with the idea that a diversity of spectrally

tuned adaptation supports a rich basis for encoding complex natural sounds. We observed the

same pattern of results for models fit to a library of fully natural sounds.

We also asked how changes in behavioral state, which can influence response gain and

selectivity, affected nonlinear adaptation properties in A1 [35–41]. We compared model STP

parameters between passive listening and during a behavior that required detecting a tone in a

natural noise stream. While the gain of the neural response could fluctuate substantially with

behavioral state, STP was largely stable across behavior conditions. This finding suggests that,

unlike response gain, nonlinear adaptation properties are not influenced by behavioral state

and may instead be critical for stable encoding of spectro-temporal sound features [32,42].

Together, these findings demonstrate that during natural hearing, a simple, STP-like mecha-

nism can explain many aspects of context-dependent sound coding. Moreover, these pro-

cesses, typically associated with steady-state adaptation to different contexts, such as SSA, can

play a more dynamic role, continuously shaping the representation of spectro-temporally

complex natural sounds.

Results

Encoding models reveal spectrally tuned adaptation in primary auditory

cortex

This study characterized how primary auditory cortex (A1) integrates information from

dynamic, naturalistic stimuli over frequency and time. Data were recorded from 200 single

units in A1 of 5 passively listening ferrets during presentation of two band vocalization-modu-

lated noise (Fig 1A–1B, [20,43]). The stimulus contained complex natural temporal statistics

but simple spectral properties. Thus it allowed an experimental focus on nonlinear temporal

processing in the presence of multiple spectral features. Noise bands were one-quarter octave

and modulated by different natural vocalization envelopes. Both bands were positioned so that

they fell in the spectral receptive field of recorded neurons, as measured by briefly presented

tones or noise bursts (Fig 1B).

The dynamic vocalization-modulated noise often evoked reliable time-varying responses

from A1 neurons, but the timecourse of this response varied substantially. Peri-stimulus time

histogram (PSTH) responses computed from average repetitions of identical noise stimuli

showed that responses could predominantly follow the envelope of one or both of stimulus
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bands (Fig 1C). Thus, while all neurons included in the study were excited by isolated, narrow-

band stimuli in each frequency band, responses to stimuli presented in both bands simulta-

neously were complex and varied across neurons.

We used a linear-nonlinear spectro-temporal receptive field model (LN model) to establish

a baseline characterization of auditory encoding properties (Fig 2A, [44–46]). This model

describes time-varying neural activity as the linear weighted sum of the preceding stimulus

spectrogram (Eq 1). Because the vocalization-modulated noise consisted of just two distinct

spectral channels, the model required a filter with only two input spectral channels, compared

to multiple spectral channels for analysis of broadband noise or natural sounds. To account

for well-established nonlinear threshold and saturation properties of spiking neurons, the lin-

ear filter stage was followed by a static, sigmoidal output nonlinearity (Eq 2, [34], Fig 2A).

To regularize model fits, we constrained the temporal dynamics of the filter applied to each

input channel to have the form of a damped oscillator (Eq 3, [34]). This parameterization

required fewer free parameters than a simple, nonparametric weighting vector and improved

performance over the model with a nonparametric linear filter (see Fig 4C). However, the shape

of a single parameterized temporal filter did not capture temporal responses dynamics fully for

all neurons. To support more flexible temporal encoding, we introduced a spectral reweighting

in which the two input channels were mapped to J channels prior to temporal filtering, with the

possibility that J> 2 (Eq 4). Each reweighted input was passed through a separately-fit temporal

filter. Several values of J were tested. For the majority of model comparisons, J = 5 was found to

Fig 1. A. Two example natural vocalization waveforms show characteristic interspersed epochs of high sound energy and

silence. Each sound has a distinct envelope tracing amplitude over time, which captures these complex temporal dynamics.

B. Spectrogram of vocalization-modulated noise presented to one A1 neuron. Stimuli were generated by applying

vocalization envelopes to narrowband noise, capturing the complex temporal dynamics of natural sounds. For the two-band

stimulus, a different envelope was applied to adjacent, non-overlapping spectral bands. Both noise streams were positioned

in the responsive area of a frequency tuning curve (right). Thus vocalization-modulated noise enabled probing natural,

nonlinear temporal processing while minimizing complexity of spectral features. C. Raster response the same neuron to

repeated presentations of the vocalization-modulated noise stimulus (top), and peri-stimulus time histogram (PSTH)

response averaged across repetitions (gray shading, bottom). The envelope of each noise stream is overlaid. Increased

amplitude in stream 2 (blue) leads to a strong onset response that weakens after about 50 ms (transients in the PSTH at 0.25

s and 0.8 s). Stream 1 (orange) suppresses the PSTH, with no evidence for adaptation.

https://doi.org/10.1371/journal.pcbi.1007430.g001
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produce the best performing models, on average, and most results below are for models with

this channel count (although J = 2 spectral channels achieved nearly asymptotic performance

for the LN model, see below).

The LN model, as well as the other models discussed below, was fit using gradient descent

[47,48]. Model fits were regularized by the parametric formulation of the linear filter (Eqs 3–4)

and by a shrinkage term applied to the mean squared error cost function [34]. Model perfor-

mance was assessed by the accuracy with which it predicted the time-varying response to a

novel validation stimulus that was not used for estimation [4]. Prediction accuracy was quanti-

fied by the correlation coefficient (Pearson’s R) measured between the predicted and actual

PSTH response, corrected to account for sampling limitations in the actual response [49]. A

value of R = 1 indicated a perfect prediction, and R = 0 indicated random prediction.

The LN model was able to capture some response dynamics of A1 neurons, but several

errors in prediction can be seen in example data (Figs 3–5). In particular, the LN model

failed to account for transient responses following stimulus onset (arrows in Fig 3). A previ-

ous study showed that, for stimuli consisting of a single modulated noise band, a model

Fig 2. Alternative encoding models to describe auditory neural responses to vocalization-modulated noise. A. The

linear-nonlinear spectro-temporal receptive field (LN model) describes the time-varying neural response as a linear

weighted sum of the preceding stimulus envelopes, followed by a static sigmoid nonlinearity to account for spike

threshold and saturation. B. In the global short-term plasticity (STP) model, nonlinear STP (depression or facilitation)

is applied to the output of the linear filter prior to the static nonlinearity. C. In the local rectification model, the input

channels are linearly reweighted and then nonlinearly thresholded (rectified) prior to the linear temporal filter and

static nonlinearity. D. In the local STP model, input channels are linearly reweighted, and then nonlinear STP

(depression or facilitation) is applied to each reweighted channel, prior to the linear temporal filter and static

nonlinearity. Gray boxes show example model parameters applied at each processing stage.

https://doi.org/10.1371/journal.pcbi.1007430.g002
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incorporating nonlinear short-term synaptic plasticity (STP) prior to the temporal filtering

stage provides a more accurate prediction of neural activity [20]. STP is widespread across

cortical systems, making it a plausible mechanism to support such adaptation [20,29].

Given that STP occurs at synaptic inputs, this observation suggests that A1 neurons can

undergo adaptation independently for inputs in different spectral channels. Spectrally

tuned adaptation could give rise to a rich code for complex spectro-temporal patterns [32].

However, based on previous results, it is not clear whether the nonlinear adaptation occurs

primarily after information is summed across spectral channels (global adaptation) or if it

occurs separately for the different spectral channels (local adaptation). To determine

whether adaptation occurs pre- or post-spectral integration, we estimated two variants of

the LN model, a global STP model, in which input spectral channels undergo the same

adaptation prior to linear filtering (Fig 2B), and a local STP model, in which each channel

adapts independently according to the history of its own input (Fig 2D).

Spectral reweighting was applied to the stimulus for STP models (Eq 4), as in the case of the

LN model, above. For the local STP model, nonlinear adaptation occurred after spectral

reweighting. The reweighting made it possible for the same band of the vocalization-modu-

lated noise to undergo adaptation at multiple timescales and, conversely, for different bands to

be combined into a single channel before adaptation. This flexible arrangement models corti-

cal neurons, where inputs from peripheral channels can be combined either pre- or post-syn-

aptically [50,51]. The model schematic shows a model in which the two inputs were

reweighted into two channels (Fig 2D), but we compared models with J = 1. . .5 channels (see

Fig 4 and Methods). As in the case of the LN model, the STP models included the same sigmoi-

dal output nonlinearity. The linear filter and static nonlinearity architectures were the same

Fig 3. Transformation applied to incoming vocalization-modulated noise for a local short-term plasticity (STP)

model estimated for one A1 neuron. Spectral reweighting emphasizes input stream 1 in channel 1 (red), stream 2 in

channel 2 (blue), and both streams in channel 3 (gray). All three reweighted channels undergo independent STP. For

this neuron, STP is stronger for channel 1 than for the other channels. The linear filter produces excitation for channel

1 and inhibition for channel 2. After the final static nonlinearity (NL), the predicted PSTH (bottom panel, purple)

shows a good match to the actual PSTH (gray shading), while the prediction of the LN model does not predict the

response dynamics as accurately (orange). Arrows indicate transient PSTH features captured better by the STP model.

https://doi.org/10.1371/journal.pcbi.1007430.g003
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across LN and STP models, and all models were fit using identical data sets. However, the free

parameters for each model were fit separately.

To test for the possibility that any benefit of the local STP model simply reflects the inser-

tion of a nonlinearity into the LN model between spectral reweighting and temporal filtering,

we considered an additional model, the local rectification model, in which each reweighted

channel was linearly rectified prior to temporal filtering (Eq 9 and Fig 2C).

These different encoding models can each be cast as a sequence of transformations,

where the output of one transformation is the input to the next. Their modularity enables

visualization of how the data is transformed at each step of the encoding process. Fig 3 illus-

trates the transformations that take place in an example local STP model for an A1 neuron

(J = 3 spectral reweighting channels shown for simplicity). The vocalization-modulated

noise envelope is first linearly reweighted into three channels. In this example, the first

reweighted channel closely follows the first input channel. Second, the three reweighted

channels undergo independent STP-like adaptation. The first channel experiences the

strongest adaptation (red). The adapted channels are then convolved with a linear filter,

which in this case is excitatory for channel 1, inhibitory for channel 2 (blue), and transient

excitation for channel 3 (gray). The convolved channels are summed and then passed

through a static nonlinearity to generate the final predicted time-varying spike rate. The

PSTH response predicted by the reweighted STP model can be compared directly to the

actual PSTH and predictions by other models (Fig 4).

For 187 out of the 200 A1 neurons studied, at least one model (LN, global STP, local rectifi-

cation, local STP, J = 5 spectral reweighting channels for all models) was able to predict time-

varying responses with greater than chance accuracy (p<0.05, Bonferroni-corrected permuta-

tion test). Prediction correlation for the global STP model was significantly greater than the

linear model for a subset of neurons (n = 22/187, p< 0.05, permutation test, Fig 4B). The aver-

age noise-corrected prediction correlation across the entire sample of neurons was greater for

Fig 4. A. Scatter plot compares noise-corrected prediction correlation between the linear-nonlinear (LN) model and local

short-term plasticity (STP) model for each A1 neuron. Black points indicate the 56/187 neurons for which the local STP model

performed significantly better than the LN model (p<0.05, jackknifed t-test). B. Mean performance (noise-corrected

correlation coefficient between predicted and actual PSTH) for each model across the set of A1 neurons. The global STP model

showed improved performance over the LN and local rectification (relu) model. The local STP model showed a further

improvement over the global STP model (�p< 0.01, ��p< 10−4, ���p< 10−6, Wilcoxon sign test, n = 187/200 neurons with

above-chance prediction correlation for any model). The best performing model, the local STP model, reweighted the two

input envelopes into five spectral channels, each of which underwent independent STP prior to linear temporal filtering and a

static nonlinearity. C. Pareto plot compares model complexity (number of free parameters) versus average prediction

correlation for model architectures with and without STP, with and without parameterization of the temporal filter (full vs.

DO) and for variable numbers of reweighted spectral channels (rank). Models with STP showed (purple, blue) consistently

better performance than models without STP (orange, red) for all levels of complexity.

https://doi.org/10.1371/journal.pcbi.1007430.g004
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the global STP model (mean 0.699 vs. 0.732, median 0.715 vs. 0.755, p = 2.1 x 10−7, sign test).

Mean performance tended to be slightly lower than median, probably because performance

was near the upper bound of r = 1.0, creating a slight negative bias in the mean. However, we

saw no qualitative difference between these metrics in any model comparison. The local rectifi-

cation model also showed an average improvement in performance over the LN model (mean

0.699 vs. 0.709, median 0.715 vs. 0.732, p = 0.042, sign test, Fig 4B). However, the local STP

model consistently performed better than all the other models (mean 0.795, median 0.818,

p<10−8 for all models, sign test, Fig 4B). Prediction accuracy was significantly greater than the

LN model for 58/187 neurons (p< 0.05, permutation test, Fig 4A). Taken together, these

results indicate that the spectrally tuned nonlinear adaptation described by the local STP

model provides a more accurate characterization of A1 encoding than LN models or models in

which the adaptation occurs uniformly across spectral channels.

While the local STP model consistently performed better than the other models, its perfor-

mance could be attributed to its additional complexity, i.e., the fact that it required more free

parameters than the other models, rather than something specific about spectrally tuned adap-

tation. To characterize the interaction of model complexity and performance, we compared

prediction accuracy for models with variable numbers of spectral reweighting channels,

J = 1. . .5 (Fig 4C). When compared in a Pareto plot, the local STP model shows a consistent

pattern of improved performance over LN models, independent of spectral channel count or

overall parameter count. This comparison also included models in which the temporal filter

was either parameterized by a damped oscillator (Eq 3) or nonparameterized (“full”). The

parameterized models performed consistently as well or better than their nonparameterized

counterparts, indicating that this reduction in dimensionality preserved important temporal

filter properties. Thus, the benefit of incorporating local STP is consistent, regardless of model

complexity.

Spectrally tuned adaptation is stronger for excitatory than inhibitory

inputs

We studied properties of the LN and STP models in order to understand what features of the

STP models lead to their improved performance. Response dynamics varied across A1 neu-

rons, sometimes emphasizing only sound onsets and in other cases tracking one or both enve-

lopes across the entire trial. For many neurons, both models were able to capture the coarse

response dynamics, but the STP model was able to predict the transient responses and the rela-

tive amplitude of responses more accurately (Fig 5B and 5C). In some cases the LN and STP

models performed equivalently, indicating that some neurons showed little or no nonlinear

adaptation (Fig 5G).

Although isolated stimuli in both input channels usually evoked excitatory responses (Fig

1C), the gain of one filter in both LN and STP models was often negative (Fig 5, middle and

right columns). These suppressive responses likely reflect the unmasking of inhibition by

broadband stimuli [52]. The fit procedure was not constrained to require a negative channel,

so the presence of negative channels is the result of optimizing model parameters for predic-

tion accuracy. We quantified the gain of each local STP model channel by summing temporal

filter coefficients across time lags. By definition, one channel always had the largest gain,

which we identified as the strongest input channel. A comparison of gain for largest versus

smallest gain showed that one channel was always positive (n = 187/187 units, Fig 6B). Strik-

ingly, almost every filter contained at least one channel with negative gain (n = 175/187). We

focus on models with J = 5 spectral reweighting channels here, but nearly the same results are

observed for models with J = 2. . .5. There was no difference in the prevalence of inhibitory
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channels in neurons that showed a significant improvement for the STP model, compared to

neurons that did not show an improvement (p> 0.05, unpaired t-test, n = 56/175 improved,

n = 119/175 not improved, see Fig 6A and below). Although the specific mechanisms produc-

ing positive and negative gain are not determined in this model, we refer to them as excitatory

and inhibitory gain, respectively.

We wondered whether adaptation captured by the STP model differed between excitatory

and inhibitory channels. For the 56 neurons with improved performance by the local STP

model (see Fig 4, above), we compared STP parameters (release probability and recovery time

constant, see Eq 6) and the overall adaptation index between highest- and lowest gain chan-

nels. The adaptation index was measured as one minus the ratio of the output to input of the

synapse for a standard test input (Fig 6A, [20]). Index values greater than zero indicated

depression, and values less than zero indicated facilitation. When we compared STP properties

Fig 5. A. Envelope of vocalization-modulated noise streams. B-G. Left column, example PSTH responses of several A1 neurons (gray shading).

The spectral position of noise bands was adjusted to fall within the receptive field of each neuron, but the envelopes were the same for each

recording. Responses were sometimes dominated by one stream (e.g., unit B tracks stream 2 and G tracks stream 1), but could also track both (e.g.,

unit F). Response dynamics also vary substantially, from sustained, following the stimulus envelope (G), to highly transient responses that

attenuate after sound onset (D). Numbers at upper left of PSTH plots indicate prediction correlation for the linear-nonlinear (LN) model (orange)

and local short-term plasticity (STP) model (blue). Predicted PSTHs are overlaid on the actual PSTH. Second column shows linear filters from the

LN model for each neuron, whose gain reciprocates the PSTH responses. Columns at right show spectral weights, STP properties and linear filters

for the largest (positive gain, red) and smallest (negative gain, blue) temporal filter in local STP models for the same neurons.

https://doi.org/10.1371/journal.pcbi.1007430.g005
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between channels, we observed that release probability and adaptation index were both stron-

ger, on average, for excitatory versus inhibitory channels (p = 0.0011 and p = 4.3 x 10−4, respec-

tively, sign test, Fig 6C and 6E). The mean adaptation index of excitatory channels (0.27) was

more than twice that of inhibitory channels (0.13). These results suggest that excitatory

responses in A1 tend to adapt following sustained input, while concurrent inhibition under-

goes little or no adaptation. Mean recovery time constant did not differ between excitatory

and inhibitory channels, possibly because the value of the time constant has little impact on

model behavior when adaptation is weak (Fig 6D).

We also tested whether the magnitude of STP-like adaptation predicted the relative perfor-

mance of the local STP model. A comparison of average adaptation index versus change in

prediction accuracy between the LN and local STP model for each neuron shows a small but

significant correlation (r = 0.17, p = 0.023, n = 187, Wald Test for non-zero slope, Fig 6F).

When we considered neurons for which local STP model performance was not greater than

Fig 6. A. In the local STP model, each reweighted spectral channel passed through a nonlinear filter, mimicking

synaptic STP, a nonlinear transformation, prior to the linear temporal filter stage. An index of adaptation strength for

each model synapse was computed as one minus the fraction change in the amplitude of a test signal after passing

through the adapting synapse. An index value> 0 indicated synaptic depression, and a value< 0 indicated facilitation.

B. Overall gain for each channel of the linear filter in the STP model was computed as the sum of the filter across time

lags. Scatter plot compares gain for the channel with largest magnitude, which was always positive (horizontal axis),

and for the channel with smallest magnitude, which was either positive or negative (vertical axis). The vast majority of

model fits contained at least one excitatory (positive) channel and one inhibitory (negative) channel (n = 175/187).

Units in which the local STP model generated a significant improvement in prediction power are colored black

(n = 56, p<0.05, jackknife t-test). C. Comparison of release probability parameter fit values for STP filters in excitatory

versus inhibitory channels (n = 56 STP models with significant improvement in prediction power). Gray lines connect

values for a single model. Average values were significantly greater for excitatory versus inhibitory synapses for release

probability (mean 0.45 vs. 0.15, p = 1.4 x 10−6, sign test). D. Comparison of STP recovery time constant, plotted as in

D, shows no difference between excitatory and inhibitory channels (mean 0.063 vs. 0.081 s, p> 0.5, sign test). E.

Comparison of adaptation index shows a significant difference between excitatory and inhibitory channels (mean 0.25

vs. 0.13, p = 2.8 x 10−4 sign test). F. Scatter plot compares average adaptation index for each local STP model against

the change in prediction correlation between the LN and local STP model. There is a positive correlation between STP

effects and changes in prediction accuracy (r = 0.17, p = 0.023, n = 187, Wald Test). Neurons with significant changes

in prediction accuracy are plotted as in B.

https://doi.org/10.1371/journal.pcbi.1007430.g006
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the LN model, no mean difference was observed between excitatory and inhibitory channels

(Fig 6C and 6E, dark bars). However, the local STP models did tend to show non-zero STP

strength, even if there was no significant improvement in performance. While many neurons

did not show a significant improvement in prediction accuracy for the local STP model, the

vast majority showed a trend toward improvement (168/187, Fig 4A). If more data were avail-

able, permitting more robust model estimates, the number of neurons showing significant STP

effects could be larger.

Spectrally tuned adaptation supports contextual effects of stimulus-specific

adaptation

Nonlinear adaptation has previously been proposed to play a role in contextual effects on audi-

tory cortical responses [8]. One common measure of contextual influences on auditory activity

is stimulus specific adaptation (SSA, [13,53]). When two discrete stimuli are presented in a

regular sequence, with a standard stimulus presented more frequently than an oddball stimu-

lus, responses to the standard tend to undergo adaptation, but responses to the oddball stimu-

lus can be less adapted or even facilitated relative to a silent context. Effects of SSA have been

attributed to feedforward adaptation and/or lateral inhibition [14–16,31].

To test for SSA effects, for a subset of neurons we presented standard/oddball sequences of

noise bursts, falling in the same spectral bands as the vocalization-modulated noise stimuli.

We measured SSA for these responses by an SSA index (SI) that compared responses to noise

bursts when they appeared as standards vs. oddballs [13]. Adaptation effects were weaker than

previously been reported for A1 in anesthetized animals, but SI was significantly greater than

zero in 43% of neurons (p<0.05, standard/oddball permutation test, n = 44/102). We tested

whether models including STP could predict responses to oddball stimuli and explain SSA

effects. LN, global STP, and local STP models were fit to data collected during the presentation

of the oddball sequences. Because the design of the oddball stimulus experiments did not

include repetitions of the same sequences, models were fit and tested using single trials. This

design precluded correcting the prediction correlation for variability in the neural response

[34,49], leading to comparatively lower correlation values than for the other stimulus sets.

Nonetheless, the introduction of nonlinear model elements improved prediction accuracy.

Between the LN model vs. local STP model, 46% of the cells responses were significantly better

predicted by the local STP model (p< 0.05, jackknifed t-test, n = 47/102, Fig 7A). Each model

showed a significant improvement in accuracy over the simpler one (LN vs global STP model,

p = 1.7 x 10−4; global STP model vs local STP model, p = 1.9 x 10−13, sign test, Fig 7C). This pat-

tern of improvement closely parallels the vocalization-modulated noise data (Fig 4).

Because the models could predict time-varying responses to the noise stimuli, we could

measure SI from responses predicted by the models. For neurons with significant SI (p< 0.05,

permutation test, n = 44/102) we measured the correlation between actual and predicted SI

values. The best performing model, the local STP model, was able to significantly predict the

SI (n = 44, r = 0.636, p = 3.4 x 10−6, Wald Test for non-zero slope, Fig 7B, blue). On the other

hand, the LN model was unable to predict SI (n = 44, r = 0.011, p = 0.95, Wald Test, Fig 7B,

orange). When comparing the SI prediction error across model architectures, the mean popu-

lation error consistently decreased with the addition of spectrally tuned adaptation (LN vs

global STP model, p = 0.024; global STP model vs local STP model, p = 0.005, sign test, Fig

7D). Thus, A1 neurons that showed evidence for nonlinear STP-like adaptation also exhibited

SSA, indicating that the two phenomena may share common mechanisms.

Spectral tuning of adaptation in auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007430 October 18, 2019 11 / 33

https://doi.org/10.1371/journal.pcbi.1007430


Nonlinear adaptation is robust to changes in behavioral state

Several previous studies have shown that the response properties of neurons in A1 can be

affected by changes in behavioral state. When animals engage in a task that require discrimina-

tion between sound categories, neurons can shift their gain and selectivity to enhance discrimi-

nability between the task-relevant categories [35,36,39]. Changes in overall gain are observed

most commonly. Effects on sensory selectivity have been more variable and difficult to

characterize.

Fig 7. A. Scatter plot compares prediction accuracy for the LN model and local STP model, estimated using oddball

stimuli for each neuron. Black markers indicate significant difference in the performance between models (p<0.05,

jackknifed t-test). B. Scatter plot compares SSA index (SI) calculated from actual responses against SI from responses

predicted by LN model (orange) and local STP model (blue) for neurons with significant actual SI (p< 0.05, standard/

oddball permutation test). The LN model is unable to account for any stimulus specific adaptation, while the SI

predicted by the local STP model is correlated with the actual values (LN: r = 0.011, p = 0.95; local STP: r = 0.636,

p = 3.4 x 10−6, Wald Test for non-zero slope). C. Summary of the mean prediction correlation for all cells across all

tested models (LN model vs. global STP model, p = 1.7 x 10−4, global STP model vs. local STP model, p = 1.9 x 10−13,

LN model vs local STP model, p = 1.1 x 10−15, sign test). D. Mean SI prediction error for each model architecture. The

prediction error for each cell is the mean standard error (MSE) between actual and predicted SI (LN model vs. global

STP model, p = 0.024; global STP model vs. local STP model, p = 0.005, LN model vs. local STP model, p = 1.5 x 10−4,

sign test). E. Example actual (black), LN model-predicted (yellow) and local STP model-predicted (blue) PSTH

response to standard (continuous line) and deviant (dashed line) noise bursts. Shaded areas standard error on the

mean (bootstrap p = 0.05). Vertical lines mark sound onset and offset. For the LN model, both standard and oddball

predictions are close to the actual standard response, but the local STP model predicts the enhanced oddball response.

Example cell is highlighted in red in panels A and B. �p<0 .05, ��p< 0.01, ���p< 0.001.

https://doi.org/10.1371/journal.pcbi.1007430.g007
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We tested if changes in behavioral state influence the nonlinear STP-like adaptation we

observed in A1. We trained ferrets to perform a tone detection task, in which they reported the

occurrence of a pure tone target embedded in a vocalization-modulated noise sequence (Fig

8A). We recorded neural activity during passive listening to the task stimuli and during active

performance of the tone detection task. We then estimated STP models in which the model

parameters were either fixed between behavior conditions (passive listening versus active

behavior) or allowed to vary between conditions. Because identical stimuli were used in both

conditions, differences in the model fit could be attributed to changes in behavioral state. As in

the case of SSA data, noise stimuli were not repeated within a behavioral block. Thus predic-

tion accuracy was assessed with single trial data, and absolute prediction measures were lower

than for the passive data reported above (Fig 4).

When the parameters of the static nonlinearity were allowed to vary between passive and

active states, allowing changes in gain between the passive and activate conditions, the models

showed a significant improvement in predictive power when compared to the behavior-inde-

pendent model (mean single trial prediction correlation 0.13 vs. 0.15, p = 7.1 x 10−13, sign test,

Fig 8B–8D). However, allowing other model parameters to vary with behavioral state provided

no additional improvement in model performance (p> 0.05, sign test, Fig 8D). Thus, the

changes in behavioral state influence the overall gain of the neural response without affecting

the linear filter or nonlinear adaptation captured by the STP model.

We also considered whether the presence of STP-like adaptation in a neuron predicted its

tendency to show behavior-dependent changes in activity. When we compared the incremen-

tal change in prediction accuracy resulting from addition of nonlinear STP or behavior-depen-

dent gain to the encoding model, the relationship was highly variable (Fig 8C). Some neurons

showed improvement only for STP or behavior-dependence, and just a small number showed

improvements for both. Overall, these effects occurred independently across the population

(p> 0.1, permutation test). Thus the improved performance of the STP model does not pre-

dict the occurrence of behavior-dependent changes in activity.

The comparison of prediction accuracy between behavior-dependent models suggests that

the response gain can change between passive and active conditions but STP parameters do

not. When we compared parameters between models fit separately under the different behav-

ioral conditions, we found this to be largely the case. The average gain of the auditory response

increased when animals engaged in behavior (mean amplitude of static nonlinearity: 24 vs. 27

spk/sec, p = 2 x 10−5, n = 50 neurons with significant improvement in behavior-dependent vs.

behavior-independent model, sign test, Fig 8E). The average STP index showed a small

decrease during task engagement (mean STP index 0.31 vs. 0.30, p = 0.0016, n = 90 neurons

with significant improvement in local STP vs. LN model, sign test, Fig 8F, right panels). While

this change in STP index was significant, allowing it to fluctuate did not significantly impact

prediction accuracy (Fig 8D). A larger dataset may uncover significant influences of behavior-

dependent nonlinear adaptation. However, the current analysis suggests that changes in STP

play a smaller role in mediating behavioral effects in A1 than changes in overall response gain

(Fig 8E).

Natural stimuli reveal nonlinear adaptation of spectrally overlapping

channels in A1

The vocalization-modulated noise data reveal that spectrally distinct inputs can undergo inde-

pendent adaptation in A1, supporting contextual coding phenomena such as SSA. In order to

understand these nonlinear adaptation effects in a more ethological context, we also recorded

the activity of 499 A1 neurons from 5 awake, passive ferrets during presentation of fully

Spectral tuning of adaptation in auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007430 October 18, 2019 13 / 33

https://doi.org/10.1371/journal.pcbi.1007430


natural sounds. The natural stimuli were drawn from a large library of natural sounds (tex-

tures, ferret vocalizations, human speech and recordings of the ambient laboratory environ-

ment), chosen to sample a diverse range of spectro-temporal modulation space.

Neural encoding properties were modeled by a reduced-rank model (Fig 9A, [34,54]). For the

LN model, the sound spectrogram passed through a bank of J = 4 spectral filters, each of which

computed a linear weighted sum of the spectrogram at each time bin. The spectral filter output

then passed through a linear temporal filter (constrained to be a damped oscillator, Eq 3) and

Fig 8. A. Schematic of alternative behavior-dependent local STP models that account for changes in sound encoding between

passive and active tone detection conditions. The behavior-independent model was fit independent of behavior state. For the

behavior-dependent NL model, the static nonlinearity was fit separately for passive and active conditions but all other

parameters were constant. Subsequent models introduced the active/passive split prior to earlier stages. B. Scatter plot compares

prediction accuracy between the behavior-independent LN model and full behavior-dependent STP model for each cell in the

set (pooled across on BF and away from BF target blocks). 122/207 neurons show a significant increase in prediction accuracy

for the behavior-dependent model (p<0.05, jackknifed t-test). C. Relative change in prediction accuracy for each neuron from

incorporating STP (LN vs. local STP model, x axis) versus incorporating behavior dependence (behavior independent vs.–

dependent, y axis). The small number of units that show improvement for both models (black), is in the range expected by

chance if STP and behavior effects are distributed independently across the A1 population (p>0.2, permutation test). D.

Comparison of mean prediction accuracy for each model reveals a significant increase in performance for STP model over the

LN model, as in the passive-only dataset in Fig 4 (mean 0.13 vs. 0.15, p< 10−10). In addition, for the STP model, the behavior-

dependent NL model shows improved performance over the behavior-independent model (mean 0.150 vs. 0.159, p = 2.2 x 10−7,

sign test). However, no further improvement is observed if the linear filter or STP parameters are made behavior-dependent

(p>0.05, sign test). E. Comparison of passive vs. active model gain (amplitude of the static nonlinearity) between active and

passive conditions shows an increase in the mean response during behavior (mean NL amplitude 24 vs. 27 spikes/sec, p = 2.0 x

10−5, sign test). Gray lines show passive vs. active amplitude for each neuron. F. Comparison STP index for behavior-dependent

model shows a small decrease in STP in the activity condition (mean 0.31 vs. 0.30, p = 0.002). This small behavior-dependent

change does not impact mean prediction accuracy, as plotted in D.

https://doi.org/10.1371/journal.pcbi.1007430.g008
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static nonlinearity, identical to elements in the vocalization-modulated noise models. To test for

nonlinear adaptation, local STP was introduced to the model following the spectral filtering stage

(Fig 9A).

Fig 9. Performance of a local STP model on for A1 encoding of natural sounds. A. The encoding model for natural sounds resembled

reweighted STP model for vocalization-modulated noise, except that the spectral filters at the first stage were two independently fit

Gaussian functions that required two free parameters each (mean, standard deviation) and provided a simple tuning function for each

spectral channel. B. Scatter plot compares prediction accuracy between the LN model and local STP model for the natural sound data.

Across the entire set, 143/499 neurons showed a significant improvement in prediction accuracy for the local STP model (p< 0.05,

jackknife t-test). Mean prediction accuracy for the local STP model was significantly greater than the LN model (0.517 vs. 0.563, p< 10−10,

sign test). C. Example spectral weights and temporal filters for one LN model (top) and spectral weights, STP, and temporal filters for the

local STP model for the same neuron. Maximum gain is normalized to 1, but the relative gain between channels is preserved. As is typical

in the vocalization-modulated noise data, the highest gain filter (red) shows relatively strong STP, and the lowest gain (blue) shows weaker

STP. D. Predicted PSTH responses for each model for one natural sound stimulus, overlaid on the actual PSTH (gray). The LN model

prediction (orange) undershoots the initial transient response and over-predicts the sequence of transient responses later in the stimulus

(arrows), while the STP model predicts these features more accurately (blue). E. Comparison of gain for the most positive (max normalized

gain) and most negative (min normalized gain) linear filter channels for STP models reveals that the majority fits contain one excitatory

and one inhibitory channel. F. Comparison of STP strength between excitatory and inhibitory channels shows consistently stronger

depression for the excitatory channels (mean 0.30 vs. 0.22, p = 4.1 x 10−3, sign test, n = 143 units with significant improvement for the STP

model). G. Scatter plot compares overlap of E and I spectral channels for each STP model (x axis) and relative difference in STP index

between the E and I channels. There is no correlation between tuning overlap and STP index difference, suggesting that A1 neurons

represent incoming sound with a diverse combination of spectral tuning and nonlinear adaptation.

https://doi.org/10.1371/journal.pcbi.1007430.g009
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The STP model predicted time-varying natural sound responses more accurately, on aver-

age, than the LN model (Fig 9B). The STP model performed significantly better for 143/499 of

the A1 neurons studied, and the average prediction accuracy was significantly higher for the

STP model (mean noise-corrected prediction correlation 0.517 vs. 0.563, median: 0.540 vs.

0.583, p< 10−20, sign test). Thus, introducing local nonlinear adaptation to a spectro-temporal

model for encoding of natural sounds provides a similar benefit as for encoding of vocaliza-

tion-modulated noise.

An example comparing LN and local STP model fits for one neuron shows a similar pattern

of spectrally tuned adaptation as observed for the vocalization-modulated noise data (Fig 9C).

In this example, the spectral channel with strongest positive gain (red) shows relatively strong

STP, while the channel with strongest negative gain (blue) shows very little evidence for STP.

The net effects of this tuned STP can be observed in the predicted PSTH response to a natural

sound (Fig 9D). The LN model fails to predict the strong transient response at the sound onset

and over-predicts the sequence of transients 1–2 sec after sound onset. The local STP model

captures these dynamics more accurately.

As in the case of the vocalization-modulated noise data, we compared STP effects between

excitatory and inhibitory channels. Temporal filters were ordered by their average gain, and

the highest- and lowest gain filters were selected for comparison of STP properties (Fig 9E).

This comparison revealed that mean STP index was significantly larger for excitatory channels

(mean 0.30) than for inhibitory channels (mean 0.22, p = 4.1 x 10−3, sign test, Fig 9F). As in the

case of vocalization-modulated noise (Fig 6), the weaker STP for inhibitory channels suggests

that these inputs tend to undergo little or no adaptation, while excitatory inputs undergo

stronger adaptation. These effects did not depend on spectral tuning of the filters, as the differ-

ences in STP for excitatory versus inhibitory channels were consistent across filter center fre-

quencies. There was also substantial heterogeneity in the strength of STP and the degree of

overlap between spectral filters in a model fit (Fig 9G). Thus, while many A1 neurons showed

evidence for STP-like adaptation, especially in excitatory channels, the amount of adaptation

and spectral overlap varied widely between neurons.

Discussion

We found that the adaptation of neurons in primary auditory cortex (A1) to natural and natu-

ralistic sounds is spectrally selective. These adaptation effects can be modeled by a neuron with

multiple input synapses that independently undergo short-term plasticity (STP). Spectro-tem-

poral receptive field models that incorporate nonlinear, spectrally tuned adaptation predict

neural responses more accurately than the classic linear-nonlinear (LN) model for both natu-

ralistic vocalization-modulated noise and for fully natural stimuli. They also predict responses

more accurately than models that undergo a global (non-spectrally tuned) adaptation. These

adaptation effects are stable across changes in behavioral state, even as neurons undergo task-

related changes in the gain of sound-evoked responses [35,37]. While the observed adaptation

could be produced by a mechanism other than STP, these results demonstrate a general princi-

ple, that spectrally tuned adaptation plays an important role in encoding of complex sound fea-

tures in auditory cortex. Across a variety of stimulus conditions (Figs 4, 7 and 9) and models

of varying complexity (Figs 4 and 10), a simple STP-like mechanism provides a consistent

improvement in the performance of encoding models.

Spectrally tuned adaptation may support perception of complex sound features, such as

phonemes in speech and vocalizations [1], and may be of particular importance for hearing in

noisy environments [55–57]. Evoked activity in A1 rarely has latency longer than 50 ms, but

adaptation lasting several tens to hundreds of milliseconds can modulate these short-latency
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responses. Neurons that undergo adaptation will change their effective spectro-temporal tun-

ing while non-adapting neurons will not. By comparing responses of adapting and non-adapt-

ing neurons, a decoder can infer information about stimuli at longer latencies [20]. Thus

adaptation can operate as an encoding buffer, integrating stimulus information over a longer

time window than the latency of the evoked response.

Neural coding of auditory context

Studies of contextual effects on auditory neural coding have shown that the spectro-temporal

selectivity can change with statistical properties of sound stimuli, including temporal regularity

[13,53], contrast [17,21], intensity [19,58,59], and noisy backgrounds [55,56]. These contextual

effects are typically measured in the steady state: neural activity is characterized during discrete

epochs in which the statistical properties defining context are held constant. The current

results suggest that the same mechanisms that affect activity in the steady state also operate

dynamically during the encoding of complex natural stimuli. Spectrally tuned adaptation sup-

ports a rich spectro-temporal code in which a continuously changing sensory context, reflect-

ing the previous 100–1000 ms, modulates short-latency (0–100 ms) responses to continuous

natural sounds [60].

The timecourse of STP-like adaptation occurs over tens to hundreds of milliseconds, con-

sistent with the timecourse of adaptation in encoding models that incorporate contrast gain

control [21]. These effects may also share dynamics with models in which local sensory context

of synthetic tone stimuli modulates sound-evoked activity [11,23]. Previous studies of gain

control and contextual modulation have suggested, variously, that either feed-forward adapta-

tion of inputs (in cortex or midbrain), spike-frequency adaptation locally, or recurrent cortical

circuits could shape the encoding of spectro-temporal sound features [21–23,60,61]. In all

cases, relatively slow changes in stimulus contrast or power around the neurons receptive field

Fig 10. A. Impact of model output nonlinearity on prediction accuracy. Groups of bars compares mean prediction

accuracy of LN (orange) and local STP models (blue) with different output nonlinearities using the vocalization-

modulated noise data. In both the LN and STP architectures, the double exponential sigmoid shows better

performance than a model with no output nonlinearity (linear), linear rectification (relu), and a logistic sigmoid

(���p<10−5; NS: p>0.05 sign test). B. Comparison of initialization method and parameterization on LN (orange) and

local STP model (blue) performance. Full models used non-parameterized temporal filter functions, and DO indicates

model in which the temporal filter is constrained to be a damped oscillator. Single fits started from a single initial

condition, and random fits stated a 10 different initial conditions, selecting the best-performing model on the

estimation data. Initialization and parameterization had little impact on LN model performance, but both random

initialization and DO parameterization improved performance for the local STP model (��p<10−4; ���p<10−5; NS:

p>0.05 sign test).

https://doi.org/10.1371/journal.pcbi.1007430.g010
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can influence sensory selectivity. Thus mechanisms other than STP may be able to support

adaptation with similar dynamics. Further study is required to determine if these different

models are functionally equivalent or how feedforward and feedback elements of the auditory

network contribute to this dynamic coding.

An adaptation-based contextual code produced by mechanisms such as STP may extend

broadly across the brain [32,62]. As a general computation, this nonlinear adaptation may

serve to remove temporal correlations from upstream inputs. Theoretical studies of the visual

cortex have argued that variation in synaptic depression across neurons can explain differences

temporal frequency tuning across neurons [33,42]. Synaptic depression has also been impli-

cated in producing gain control in hippocampus [62]. Thus an auditory code that uses spec-

trally tuned adaptation provides an example of a computational process that may occur

generally across neural systems.

Dynamic reweighting of excitatory and inhibitory input

While the STP model used in this study supported both depression and facilitation, the vast

majority of measured adaptation effects were consistent with depression. Moreover, the

strength of depression was generally much stronger for spectral inputs that produced an

increase rather than decrease in neural firing rate. While the underlying mechanisms produc-

ing increases versus decreases in spike rate cannot be fully determined from extracellular

recordings, we interpret these components of the model algorithmically as excitatory versus

inhibitory responses, respectively. The predominance of adaptation in excitatory channels is

consistent with a coding system in which responses to the onset of sound are broadly tuned,

but as excitation adapts, the sustained inhibition sculpts responses so that sustained activity is

tuned to a narrower set of sound features [63]. It has been established that the precise timing

and relative strength of inhibition versus excitation can substantially impact tuning in A1 [64];

thus, dynamic changes in their relative strength during natural sound processing could sub-

stantially change encoding properties compared to what is measured in more traditional stim-

ulus paradigms.

The relative tuning, strength, and adaptation properties of excitatory versus inhibitory

inputs are not stereotyped, but instead they vary substantially across A1 neurons. In most neu-

rons, the STP model revealed at least partially overlapping excitatory and inhibitory inputs

(Fig 9), consistent with previous work [64,65]. However, across individual neurons, the best

frequency and bandwidth of excitatory channels can be greater or smaller than those of the

inhibitory channels. Thus, instead of reflecting a fixed pattern of selectivity, neurons display a

diversity of tuning properties that supports a rich code of distinct spectro-temporal patterns.

This diversity of synaptic properties may explain the differences in selectivity across A1,

including spectro-temporal tuning [66], monotonic versus non-monotonic level tuning

[67,68] and temporal versus rate coding of temporal modulations [69,70].

The present study was performed on serial recordings of isolated single units, ignoring pos-

sible interactions between neurons that could influence sound coding [71]. Simultaneous

recordings of neural populations will illuminate the role of adaptation on network connectivity

and population dynamics that likely contribute to context-dependent encoding [72,73].

Minimal complexity for auditory encoding models

A broad goal motivating this study is to identify the essential computational elements that sup-

port nonlinear sound encoding in auditory cortex, in particular, under natural stimulus condi-

tions. While several complex, nonlinear models have been shown to predict auditory neural

activity better than the LN model [21–28], no single model has been adopted widely as a new
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standard. One reason a replacement has not been identified may simply be that the auditory

system is complex and that current data are not exhaustive enough to determine a single

model that generalizes across stimulus conditions, species, and behavioral states. Indeed, only

a few encoding models have been tested with natural stimuli [25], and these tests have often

been performed in anesthetized animals [22,24,26]. In addition to data limitations, proposed

models are built around different nonlinear elements, but it is likely that they exist in overlap-

ping functional domains. That is, two different models may both perform better than the LN

model because they capture the same adaptation process or nonlinear scaling of response gain.

A comprehensive comparison of models using the same natural sound data set will help deter-

mine the best performing models and their degree of equivalence. To support such an effort,

data from this study is publicly available, and the open source toolbox used for model fitting

has a modular design, allowing testing of other model architectures in the same computational

framework [48].

The current study took steps for testing an encoding model that have not typically been fol-

lowed in previous studies. First, the local STP model was tested using multiple different types

of stimuli (vocalization-modulated noise, oddball sequences, natural sounds), and it was

shown to perform better than the LN and global STP models across stimulus conditions. Sec-

ond, it compared models of varying complexity. For both low- and high-parameter count

models, the addition of a relatively simple STP component provides an improvement in per-

formance. Previous studies have suggested that nonlinear adaptation can improve encoding

model performance [22,24]. These alternative models are sometimes much higher dimensional

than standard LN formulations, and it is not clear how complex a model is required to account

for adaptation properties. The current study supports the adaptation hypothesis, but it also

shows that the adaptation can be implemented with just a small number of additional free

parameters, as long as adaptation occurs independently for input spectral channels.

Stimulus specific adaptation

Stimulus specific adaptation is one of the best-studied contextual effects in auditory cortex

[13,15,16,53]. The STP model developed in the current study is able to account for SSA dur-

ing steady state sound presentation. At the same time, the STP model reveals that the same

adaptation mechanisms support a broader dynamic code, in which the degree of adaptation

is continuously updated to reflect the history of the changing stimulus. This adaptation rep-

resents a generalization of SSA, as it does not depend strictly on the regularity the sensory

input [74]. In this way, STP parameters provide a complementary metric to SSA, able to

explain nonlinear adaptation for a broader set of stimuli and readily scalable to analysis at a

population level.

While nonlinear adaptation and SSA effects are correlated, the strength of this relationship

varies across individual neurons. This variability supports the possibility that mechanisms

other than STP contribute to SSA. The idea that synaptic depression alone can support SSA

has been also disputed because oddball stimuli can sometimes evoked responses that are

enhanced relative to those stimuli presented in isolation [31]. However, for a neuron with

inhibitory inputs that undergo adaptation, a recurrent disinhibition mechanism could produce

enhanced oddball responses [14]. The data in the current study suggest that inhibitory inputs

generally show weaker adaptation than their excitatory partners, which is consistent with

other modeling studies [63]. However, even inhibitory inputs do tend to undergo some

depression, leaving open the possibility that they could explain the enhanced oddball responses

during SSA. Inhibitory interneurons in auditory cortex have been shown to contribute to SSA

[14], but their role in natural sound coding has yet to be characterized.
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Robustness of adaptation effects across changes in behavioral state

Studies in behaving animals have shown that gain and selectivity of A1 neurons can be influ-

enced by changes in behavioral state, such as arousal, task engagement, and selective attention

[36–39]. We observed changes in response gain during task engagement, consistent with this

previous work, and incorporating behavior state-dependent gain into the LN model improved

prediction accuracy. However, average adaptation properties did not change across behavioral

conditions. Moreover, allowing nonlinear adaptation to vary between behavior conditions did

not improve model performance. Thus, STP-like adaptation properties appear to be largely

stable across top-down changes in behavioral state. It remains to be seen if they change over

longer time scales, but the relative stability of tuning suggests that nonlinear adaptation con-

tributes to a veridical code of sound features in A1 that is selectively gated into high-order,

behavior-dependent features in downstream auditory fields [75].

The approach of incorporating behavioral state variables into sensory encoding models

may be useful for integrating bottom-up and top-down coding more broadly [76]. As sound

features take on different behavioral meanings, such as when selective attention is engaged,

coding in the auditory system must also shift to represent the behaviorally relevant sound

features [77,78]. A complete understanding of state-dependent changes in sound encoding

thus requires models of how neurons change their coding properties in different behavioral

states.

Conclusion

How the brain represents complex natural stimuli remains an open question in research across

sensory systems. The current study provides evidence that nonlinear adaptation, modeling

short-term synaptic plasticity and lasting tens to hundreds of milliseconds, supports a rich

code for spectro-temporal sound features in auditory cortex. A simple extension of the classic

LN model that allows spectral inputs to undergo independent adaptation provides a consistent

improvement in encoding model performance for A1 neurons across a wide range of synthetic

and natural stimuli. In addition to providing a more accurate, generalizable encoding model,

these findings also provide a framework for linking encoding model analysis to studies of how

context influences sound coding.

Methods

Ethics statement

All procedures were approved by the Oregon Health and Science University Institutional Ani-

mal Care and Use Committee (protocol #IP00001561) and conform to standards of the Associ-

ation for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Animal preparation

Eleven young adult male and female ferrets were obtained from an animal supplier (Marshall

Farms, New York). A sterile surgery was performed under isoflurane anesthesia to mount a

post for subsequent head fixation and to expose a small portion of the skull for access to audi-

tory cortex. The head post was surrounded by dental acrylic or Charisma composite, which

bonded to the skull and to a set of stainless steel screws embedded in the skull. Following sur-

gery, animals were treated with prophylactic antibiotics and analgesics under the supervision

of University veterinary staff. The wound was cleaned and bandaged during a recovery period.

Starting after recovery from implant surgery (about two weeks), each ferret was gradually accli-

mated to head fixation using a custom stereotaxic apparatus in a plexiglass tube. Habituation
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sessions initially lasted for 5 minutes and increased by increments of 5–10 minutes until the

ferret lay comfortably for at least one hour.

Acoustic stimulation

Five awake, passively listening, head-fixed animals were presented with vocalization-modu-

lated noise [20,37,43] (Fig 1). The stimuli consisted of two streams of narrowband noise (0.25–

0.5 octave, 65 dB peak SPL, 3 s duration). Each stream was centered at a different frequency

and modulated by a different envelope taken from one of 30 human speech recordings [79] or

ferret vocalizations from a library of kit distress calls and adult play and aggression calls [20].

Envelopes were calculated by rectifying the raw sound waveform, smoothing and downsam-

pling to 300 Hz. Each envelope fluctuated between 0 and 65 dB SPL, and its temporal modula-

tion power spectrum emphasized low frequency modulations, with 30 dB attenuation at 10

Hz, typical of mammalian vocalizations [80]. Thus, the spectral properties of the noise streams

were simple and sparse, while the temporal properties matched those of ethological natural

sounds.

For three animals, vocalization-modulated noise was presented during passive listening and

during active performance of a tone detection task (see below). During passive experiments,

both noise streams were positioned in non-overlapping frequency bands in a neuron’s recep-

tive field (0.25–1 octave center frequency separation) and were presented from a single spatial

location, 30 deg contralateral from the recorded hemisphere. During behavioral experiments,

the streams were centered at different frequencies (0.9–4.3 octave separation) and presented

from different spatial locations (±30 degrees azimuth), such that one stream fell outside of the

spectral tuning curve. Spectral properties of the individual vocalization-modulated noise

streams were otherwise identical to those used in the passive experiments above.

In a subset of experiments (two animals), an oddball stimulus was presented to passively lis-

tening animals to characterize stimulus-specific adaptation [13]. Stimuli consisted of a

sequence of regularly repeating noise bursts (100 ms duration, 30 Hz), with the same center

frequency and bandwidth as the vocalization-modulated noise presented during the same

experiment. On each 20-second trial, 90% of the noise bursts fell in one band (standard) and a

random 10% were in the other band (oddball). The spectral bands of the standard and oddball

streams were reversed randomly between trials.

Finally, in a different set of experiments, six passively listening animals were presented a

library of 93, 3-sec natural sounds. The natural sounds included human speech, ferret and

other species’ vocalizations, natural environmental sounds, and sounds from the animals’ labo-

ratory environment.

In all experiments, the majority of stimuli (28 vocalization-modulated noise samples and 90

natural sounds) were presented a few times (2–5 repetitions). The remaining samples from

each sound library (2 vocalization-modulated noise samples and 3 natural sounds) were pre-

sented 10–30 times, allowing for robust measurement of a peri-stimulus time histogram

(PSTH) response (Fig 2). These high-repeat stimuli were used for measuring model prediction

accuracy (see below).

Experiments took place in a sound-attenuating chamber (Gretch-Ken) with a custom dou-

ble-wall insert. Stimulus presentation and behavior were controlled by custom software

(Matlab). Digital acoustic signals were transformed to analog (National Instruments), ampli-

fied (Crown D-75A), and delivered through free-field speakers (Manger W05, 50–35,000 Hz

flat gain) positioned ±30 degrees azimuth and 80 cm distant from the animal. Sound level was

calibrated against a standard reference (Brüel & Kjær 4191). Stimuli were presented with 10ms

cos2 onset and offset ramps.
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The vocalization-modulated noise and natural sound data used in this study are available

for download at https://doi.org/10.5281/zenodo.3445557. A python library for loading data

and fitting encoding models is available at https://github.com/LBHB/NEMS/.

Neurophysiological recording

After animals were prepared for experiments, we opened a small craniotomy over primary

auditory cortex (A1). Extracellular neurophysiological activity was recorded using 1–4 inde-

pendently positioned tungsten microelectrodes (FHC). Amplified (AM Systems) and digitized

(National Instruments) signals were stored using MANTA open-source data acquisition soft-

ware [81]. Recording sites were confirmed as being in A1 based on dorsal-ventral, high-to-low

frequency tonotopy and relatively reliable and simple response properties [7,82]. Some units

may have been recorded from AAF, particularly in the high frequency region where tonotopic

maps converge. Single units were sorted offline by bandpass filtering the raw trace (300–6000

Hz) and then applying PCA-based clustering algorithm to spike-threshold events [46]. Neu-

rons were considered isolated single units if standard deviation of spike amplitude was at least

two times the noise floor, corresponding to> 95% isolation of spikes.

A pure-tone or broadband noise probe stimulus was played periodically to search for

sound-activated neurons during electrode positioning. Upon unit isolation, a series of brief

(100-ms duration, 100-ms interstimulus interval, 65 dB SPL) quarter-octave noise bursts was

used to determine the range of frequencies that evoked a response and the best frequency (BF)

that drove the strongest response. If a neuron did not respond to the noise bursts, the electrode

was moved to a new recording depth. Thus our yield of 187/200 neurons responsive to vocali-

zation-modulated noise overestimates the rate of responsiveness across the entire A1 popula-

tion. Center frequencies of the vocalization-modulated noise stimuli were then selected based

on this tuning curve, so that one or both of the noise bands fell in the frequency tuning curve

measured with single noise bursts.

Tone detection task

Three ferrets were trained to perform a tone in noise detection task [37]. The task used a go/

no-go paradigm, in which animals were required to refrain from licking a water spout during

presentation of vocalization-modulated noise until they heard the target tone (0.5 s duration,

0.1 s ramp) centered in one noise band at a random time (1, 1.5, 2, . . . or 5 s) after noise onset.

To prevent timing strategies, the target time was distributed randomly with a flat hazard func-

tion [83]. Target times varied across presentations of the same noise distractors so that animals

could not use features in the noise to predict target onset.

In a block of behavioral trials, the target tone matched the center frequency and spatial posi-

tion of one noise stream. Behavioral performance was quantified by hit rate (correct responses

to targets vs. misses), false alarm rate (incorrect responses prior to the target), and a discrimi-

nation index (DI) that measured the area under the receiver operating characteristic (ROC)

curve for hits and false alarms [37,84]. A DI of 1.0 reflected perfect discriminability and 0.5

reflected chance performance. A detailed analysis of behavior is reported elsewhere [37]. In the

current study, only data from blocks with DI significantly greater than chance and correct tri-

als were included in the analysis of neural encoding.

During recordings, one noise stream was centered over a recorded neuron’s best frequency

and the other was separated by 1–2 octaves. The target tone fell in only one stream on a single

block of trials. Identical task stimuli were also presented during a passive condition, inter-

leaved with behavioral blocks, during which period licking had no effect. Previous work com-

pared activity between conditions when attention was directed into versus away from the

Spectral tuning of adaptation in auditory cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007430 October 18, 2019 22 / 33

https://doi.org/10.5281/zenodo.3445557
https://github.com/LBHB/NEMS/
https://doi.org/10.1371/journal.pcbi.1007430


neuron’s receptive field [37]. Because of the relatively small number of neurons showing both

task-related and STP effects in the current study (see Fig 8), data were collapsed across the dif-

ferent target conditions. Instead, neural activity was compared for the vocalization-modulated

noise stimuli between active and passive listening conditions.

Spectro-temporal receptive field models

Linear-nonlinear spectro-temporal receptive field (LN model). Vocalization-modulated

noise was designed so that the random fluctuations in the two spectral channels could be used

to measure spectro-temporal encoding properties. The LN model is a widely viewed as a cur-

rent standard model for early stages of auditory processing [45,85–87]. The LN model is an

implementation of the generalized linear model (GLM), which is used widely across the audi-

tory and other sensory systems [88,89]. In the first, linear stage of this model, a finite impulse

response (FIR) filter, h(x,u), is applied to the stimulus spectrogram, s(x,t), to produce a linear

prediction of time-varying spike rate, rL(t),

rLðtÞ ¼
XJ

x¼1

XU

u¼0

hðx; uÞsðx; t � uÞ ð1Þ

For the current study, the time lag of temporal integration, u, ranged from 0 to 150 ms. In the

auditory system, this first, linear component of the LN model is commonly referred to as the

spectro-temporal receptive field (STRF). In typical STRF analysis, the stimulus is broadband

and variable across multiple spectral channels, x. Here, the stimulus spectrogram was com-

posed of just two time-varying channels, and a simplified version of the linear filter was con-

structed in which x spanned just these two channels (i.e., J = 2), but we used larger values

following spectral reweighting, below. A log compression was applied to the spectrogram to

account for cochlear nonlinearities (offset 1 to force the compressed output to have nonnega-

tive values, [34]). Otherwise, this model functions as a traditional STRF.

In the second stage of the LN model, the output of the linear filter, rL(t) is transformed by a

static, sigmoidal nonlinearity, which accounts for spike threshold and saturation. The current

study used a double exponential sigmoid,

rðtÞ ¼ bþ A exp½� expðkðrLðtÞ � bÞÞ� ð2Þ

where r0 is the baseline (spontaneous) spike rate, A is the maximum evoked rate, κ is the slope,

and b is the baseline. The specific formulation of the output nonlinearity does not substantially

impact relative performance of models in which other aspects of model architecture are

manipulated (see Output nonlinearity controls, below).

Temporal filter parameterization and spectral reweighting. As models become more

complex (i.e., require fitting more free parameters), they become more susceptible estimation

noise. While our fitting algorithm was designed to prevent overfitting to noise (see below), we

found that constraining the temporal form of the linear filter in Eq 1 improved performance

over a model in which the filter was simple as set of weights for each time lag. Each spectral

channel of the linear filter was constrained to be a damped oscillator, hDO(x,u),

hDOðx; uÞ ¼ G expð� tju � u0j
þ
Þsinðf ju � u0j

þ
Þ; ð3Þ

requiring four free parameters: gain, G; latency, u0; duration, τ; and modulation frequency, f.
Because the damped oscillator constrains temporal tuning, we then considered the possibil-

ity that more than J = 2 spectral channels might be optimal for explaining neural responses to

the two band vocalization-modulated noise stimulus. To allow for more than two spectral

channels, we defined a reweighted stimulus, sR(j,t), computed as the input stimulus scaled by
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coefficients, w(i,j),

sRðj; tÞ ¼
X2

i¼1

wði; jÞsði; tÞ ð4Þ

where j = 1. . .J maps the stimulus to a J-dimensional space. This reweighted stimulus provides

input to the a damped oscillator, now also with J channels,

rLðtÞ ¼
XJ

x¼1

XU

u¼0

hDOðx; uÞsRðx; t � uÞ ð5Þ

For the current study (except for controls, see below), the output of Eq 5 is then transformed

by the output nonlinearity (Eq 2) to produce a predicted time-varying spike rate.

While we describe the LN model as a sequence of linear transformations—spectral filtering

followed by temporal filtering—these two stages can be combined into a single linear spectro-

temporal filter. We describe them as separate stages to frame the local STP model, below,

where nonlinear adaptation is inserted between the two linear filtering stages.

Local short-term plasticity (STP) model. As several studies have demonstrated, the LN

model captures import aspects of spectro-temporal coding but fails to account completely for

time-varying sound evoked activity in auditory cortex [21,23,28,86]. In particular, the LN

model fails to account for the temporal dynamics of sound-evoked activity [20,46]. Short-term

synaptic plasticity (STP), the depression or facilitation of synaptic efficacy following repeated

activation, has been proposed as one mechanism for nonlinear dynamics in neural networks

[10,29]. A previous study showed that an LN model for A1 that incorporated STP was able to

better explain the dynamics of responses to a single noise band with natural temporal modula-

tions [20]. However, because that study utilized vocalization-modulated noise comprised of

only a single noise band, it was not clear whether the nonlinear adaptation was global, affecting

responses to all stimuli equally, or local, affecting only a subset of inputs independently.

Because the current study used multiple noise channels, it could compare a global STP model,

in which adaptation affected all input channels, to a local STP model, in which adaptation was

spectrally tuned and could affect just a subset of inputs.

The effects of nonlinear adaptation were captured with a simple, two-parameter model of

STP [29],

dði; tÞ ¼ dði; t � 1Þ þ sRði; t � 1Þ½1 � dði; t � 1Þ�vi �
dði; t � 1Þ

ti
ð6Þ

where d(i,t) describes the change in gain for stimulus channel i at time t. The change in avail-

able synaptic resources (release probability), νi, captures the strength of plasticity, and the

recovery time constant, τi, determines how quickly the plasticity returns to baseline. Values of

d< 1 correspond to depression (driven by νi> 0) and d> 1 correspond to facilitation (νi<
0). In the local STP model, each input channel of the stimulus is scaled by d(i,t) computed for

that channel,

sSTPði; tÞ ¼ dði; tÞsRði; tÞ ð7Þ

This nonlinearly filtered stimulus is then provided as input to the LN filter (Eqs 5 and 2) to

predict the time-varying response. Note that if the strength of STP is 0 (i.e., vi = 0), then the

STP model reduces to the LN model.

We also note that the local STP model uses the reweighted stimulus as its input. The

reweighting allows the model to account for adaptation at multiple timescales on inputs from
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the same spectral band. Although the input is comprised of just two channels, the subsequent

nonlinear filtering means that allowing the reweighted stimulus channel count, J, or rank, to

be greater than two can increase model predictive power. In the current study, we evaluated

models with rank J = 1–5. Predictive power was highest for J = 5. Higher values of J could, in

theory, produce even better performance, but we did not observe further improvements for

the current dataset.

Global STP model. We considered two control models to test for the specific benefit of

spectrally tuned adaptation on model performance. One possible alternative is that a single,

global adaptation is able to account for nonlinear temporal dynamics. To model global adapta-

tion, the global STP model applied STP to the output of the linear filter (Eq 5) before applying

the static nonlinearity (Eq 2). Thus, a single adaptation term was applied to all incoming sti-

muli, rather than allowing for the channel-specific adaptation in the local STP model. There is

no simple biophysical interpretation of the global STP mechanism, but it can be thought of as

a postsynaptic effect, capturing nonlinear dynamics similar to STP, but after integration across

spectral channels. We compared performance of this model to a variant in which stimulus

gain is averaged across spectral channels before scaling the input stimulus,

�dðtÞ ¼ hdði; tÞii ð8Þ

We found no difference between this common input STP model and the global STP model.

Because the global model required fewer free parameters, we focused on this model for the

comparisons in this study.

Local rectification model. Although spectral reweighting can improve the performance

of the LN model by increasing the rank of the linear filter, it can still only account for linear

transformations of the input stimulus. The STP model could, in theory, benefit simply from

the fact that reweighted spectral inputs undergo any nonlinear transformation prior to the

temporal filter. To control for the possibility that the STP nonlinearity is not specifically bene-

ficial to model performance, we developed a local rectification model, in which the reweighted

spectral inputs were linearly rectified with threshold s0 prior to temporal filtering,

sþðj; tÞ ¼ jsRðj; tÞ � s0ðjÞj
þ

ð9Þ

The rectified reweighted stimulus then provided the input to the LN model specified in Eqs 7

and 2.

The set of encoding models described above represents a hierarchy of model architectures

with increasing complexity, in that each successive model requires additional free parameters.

Each model can be cast as a sequence of transformations applied to the stimulus, and the out-

put of the final transformation is the predicted time-varying response (Fig 3).

Fit procedure. Spike rate data and stimulus spectrograms were binned at 10 ms before

analysis (no smoothing). The entire parameter set was fit separately for each model architec-

ture. Data preprocessing, model fitting, and model validation were performed using the

NEMS library in Python [48]. Identical estimation data from each neuron and the same gradi-

ent descent algorithm were used for each model (L-BFGS-B, [47]). The optimization mini-

mized mean squared error (MSE) with shrinkage, a form of early stopping in which the

standard MSE value is scaled by its standard error [34]. The use of parameterized temporal fil-

ters provided an effective regularization, as it constrained the shape of the temporal filter to be

smooth and sinusoidal. Models were initialized at 10 random initial conditions (except for

local minimum controls, see below), and the final model was selected as the one that produced

the lowest MSE with shrinkage for the estimation data. Scripts demonstrating model fits using

the NEMS library are available with the data at https://doi.org/10.5281/zenodo.3445557.
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The ability of the encoding model to describe a neuron’s function was assessed by measur-

ing the accuracy with which it predicted time varying activity in a held-out validation dataset

that was not used for model estimation. The prediction correlation was computed as the corre-

lation coefficient (Pearson’s R) between the predicted and actual PSTH response. Raw correla-

tion scores were corrected to account for sampling limitations that produce noise in the actual

response [49]. A prediction correlation of R = 1 indicated perfect prediction accuracy, and a

value of R = 0 indicated chance performance. All models were fit and tested using the same

estimation and validation data sets. Significant differences in prediction accuracy across the

neural population were determined by a Wilcoxon sign test.

In a previous study involving just a single stream of vocalization-modulated noise, we tested

our fitting procedure on simulated data produced by either an LN model or STP model. The

estimated models captured the presence or absence of the STP nonlinearity accurately [20]. In

addition, the simulations revealed that LN models could capture some aspects of the nonlinear

adapting data, but estimated temporal filter properties did not match the actual temporal filter

properties.

For data from the behavior experiments, which was all fit using single trials, 10-fold cross

validation was used, on top of the procedure described above. Ten interleaved, non-overlap-

ping validation subsets were drawn from the entire passive plus active data. The above fit algo-

rithm was then applied to corresponding 90% estimation set, and the resulting model was used

to predict the validation subset. Prediction accuracy was assessed for the conjunction of the 10

validation sets. Model parameters were largely consistent across estimation sets and average fit

values are reported in the Results.

Output nonlinearity control. In a previous study, we compared performance of a variety

of different static nonlinearities for LN models and found that the double exponential sigmoid

(Eq 2) performed slightly, but consistently, better than other formulations of the output non-

linearity for A1 encoding models fit using natural vocalization stimuli [34]. We performed a

similar comparison using the speech-modulated vocalization data, comparing LN and local

STP models with four different output functions (Fig 10A): linear pass-through,

rðtÞ ¼ rLðtÞ; ð10Þ

linear rectification,

rðtÞ ¼ jrLðtÞ � bjþ þ r0; ð11Þ

with threshold b and spontaneous rate r0; logistic sigmoid [21,90],

rðtÞ ¼ r0 þ
A

1þ exp½� ðrLðtÞ � bÞ=k�
; ð12Þ

and the double exponential sigmoid (Eq 2). As in the previous study, the double exponential

sigmoid performed best for the LN model. The STP model incorporating a given output func-

tion always performed better than the corresponding LN model with the same output func-

tion, and the double exponential performed best overall. Thus for the rest of the study, we

focused on models using the double exponential nonlinearity.

Temporal parameterization control. The use of a damped oscillator to constrain model

temporal dynamics could, in theory, be suboptimal for describing neural response dynamics.

We compared performance of the damped oscillator models to LN and local STP models with

nonparametric temporal filters, that is, where the temporal filter was simply a vector of weights

convolved with the stimulus at each time point (Fig 10B). For the LN model, the parameteriza-

tion had no significant impact on average model performance (p> 0.05, sign test). For the
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local STP model, performance was higher for the parameterized model (p< 10–5, sign test),

indicating that the parameterization was an effective form of regularization.

Local minimum control. While it has been shown that linear filters are well-behaved (i.e.,
convex) and thus not subject to problems of local minima during fitting, it is more difficult to

determine if local minima are adversely affecting performance of nonlinear or parametric

models, such as the STP and damped oscillator, respectively, used in the current study. To

determine if these models were negatively impacted by local minima during fitting, we com-

pared performance of models fit from a single initial condition to the best model (determined

using only estimation data) starting from 10 random initial conditions. Performance was com-

pared for 4 different architectures: LN and local STP models, each with parametric (damped

oscillator) or nonparametric temporal filters (Fig 10B). Each model was tested with the valida-

tion data. For the LN models, we saw no significant effect of using multiple initial conditions.

For the local STP model, we saw a small but significant improvement when multiple initial

conditions were used. Thus for the majority of results presented here, models were fit using 10

random initial conditions.

Stimulus specific adaptation analysis

Sound-evoked activity recorded during presentation of the oddball noise burst sequences was

modeled using the LN model, global STP model, and local STP model, as described above. To

assess stimulus specific adaptation (SSA), an SSA index (SI) was used to measure the relative

enhancement of responses to oddball versus standard noise bursts [13,53].

SI ¼
�rodd � �r std
�rodd þ �r std

ð13Þ

Here �rodd and �r std are the average response across bursts of both center frequencies, in the

oddball and standard conditions, respectively. Neuronal response was calculated as the integral

over time of the PSTH during the sound presentation. Significance SI was calculated with a

shuffle test in which the identity of tones (oddball or standard) was randomly swapped. To

determine how well each model could account for SSA, SI was calculated for model predic-

tions, also using Eq 13. We then assessed the accuracy of SI predicted by models in two ways:

First we computed the correlation coefficient between actual and predicted SI for all the

recorded cells that showed significant SI. Second, as the population mean of the squared differ-

ence between the actual and predicted SI calculated individually for each cell.

Behavior-dependent encoding models

To measure effects of behavioral state on spectro-temporal coding, we estimated behavior-

dependent models, by allowing some or all of the fit parameters to vary between passive and

active behavioral conditions [37]. Having established the efficacy of the reweighted STP model

for passive-listening data, analysis focused on this architecture for the behavioral data. First, a

behavior-independent model provided a baseline, for which all model parameters were fixed

across behavior conditions. Second, a behavior-dependent static nonlinearity allowed parame-

ters of the static nonlinearity (Eq 2) to vary between behavior states but kept all other parame-

ters fixed between conditions. Third, both the linear filter parameters and static nonlinearity

(Eqs 5 and 2) were allowed to vary between behavior conditions, with reweighting and STP

parameters fixed across conditions. Finally, all model parameters were allowed to vary between

behavior conditions. Thus, this progression of models explored the benefit of allowing

increased influence of changes in behavioral state on spectro-temporal coding.
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Behavior-dependent models were fit using a sequential gradient descent algorithm in the

NEMS library. All models were initially fit using a behavior-independent model. The specified

behavior-dependent parameters were then allowed to vary between behavioral states in a sub-

sequent application of gradient descent. Model performance was compared as for the passive-

listening data described above. For each neuron, prediction accuracy was assessed using a vali-

dation set drawn from both active and passive conditions, which was excluded from fitting,

and was always the same across all models. Significant behavioral effects were indicated by

improved prediction correlation for behavior-dependent models over the behavior-indepen-

dent model. Changes in tuning were measured by comparing model fit parameters between

behavior conditions.

Nonlinear encoding models for natural sounds

Encoding of natural sounds was modeled using a similar approach as for the vocalization-

modulated noise. Here we focused on two models, a baseline LN model and a local STP model

(Fig 9). Because natural sounds contain spectral features that vary across a large number of

spectral channels, a different spectral filtering process was required prior to the STP stage. This

was achieved using a reduced-rank model, where the full spectro-temporal filter in the linear

stage was computed from the product of a small number of spectral and temporal filters

[34,54]. The input spectrogram was computed from a bank of log-spaced gammatone filters, s
(i,t), with N = 18 spectral channels [91]. Spectral tuning was modeled with a bank of J weight

vectors, w(i,j), each of which computed a linear weighted sum of the log-compressed input

spectrogram,

sNðj; tÞ ¼
XN

i¼1

wði; jÞsði; tÞ ð14Þ

The reweighted stimuli, sN(i,j), were provided as inputs to the LN and STP models (see

above). Each spectral filter was initialized to have constant weights across channels. Model fit-

ting and testing were performed using the same procedures as for the vocalization-modulated

noise data (see above).

Statistical methods

To test whether the prediction of a model for a single neuron was significantly better than

chance (i.e., the model could account for any auditory response), we performed a permutation

test. The predicted response was shuffled across time 1000 times, and the prediction correla-

tion was calculated for each shuffle. The distribution of shuffled correlations defined a noise

floor, and a p value was defined as the fraction of shuffled correlations greater than the correla-

tion for the actual prediction. The Bonferroni method was used to correct for multiple com-

parisons when assessing significance across any of multiple models.

To compare performance of two models for a single neuron, we used a jackknifed t-test.

The Pearson’s correlation coefficient between the actual response and response predicted by

each model was calculated for 20 jackknife resamples. We then calculated the mean and stan-

dard error on the mean from the jackknifed measures [92]. The prediction of two models was

considered significantly different at p<0.05 if the difference of the means was greater than the

sum of the standard errors.

To test whether the calculated SSA Index (SI) was significantly different than chance, we

performed a permutation test in which the identity of tones (standards, oddball) was shuffled,

and the SI was calculated 1000 times. The real SI value was then compared to the noise floor
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distributions. Finally, for comparing model performance across collections of neurons, we per-

formed a Wilcoxon signed rank test (sign test) between the median prediction correlation

across neurons for each model.
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