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Abstract

The real‐time monitoring of metabolites (RTMet) is instrumental for the industrial

production of biobased fermentation products. This study shows the first application

of untargeted on‐line metabolomics for the monitoring of undiluted fermentation

broth samples taken automatically from a 5 L bioreactor every 5min via flow

injection mass spectrometry. The travel time from the bioreactor to the mass

spectrometer was 30 s. Using mass spectrometry allows, on the one hand, the direct

monitoring of targeted key process compounds of interest and, on the other hand,

provides information on hundreds of additional untargeted compounds without

requiring previous calibration data. In this study, this technology was applied in an

Escherichia coli succinate fermentation process and 886 different m/z signals were

monitored, including key process compounds (glucose, succinate, and pyruvate),

potential biomarkers of biomass formation such as (R)‐2,3‐dihydroxy‐isovalerate and

(R)‐2,3‐dihydroxy‐3‐methylpentanoate and compounds from the pentose phosphate

pathway and nucleotide metabolism, among others. The main advantage of the

RTMet technology is that it allows the monitoring of hundreds of signals without the

requirement of developing partial least squares regression models, making it a

perfect tool for bioprocess monitoring and for testing many different strains and

process conditions for bioprocess development.

K E YWORD S

bioprocess monitoring, fermentation monitoring, on‐line metabolomics, real‐time
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1 | INTRODUCTION

1.1 | Fermentation monitoring

Fermentation monitoring is a pivotal tool for bioprocess optimization and

control. Assessing the state of the process via high‐resolution time‐course

analysis allows detailed characterization during process development, as

well as rapid detection and correction of any possible deviations from

desired process specifications during product manufacturing, ensuring the

quality of the end product (Svendsen et al., 2015; Zu et al., 2017).

Different parameters are frequently monitored in fermentation

processes, such as the pH, temperature, and concentration of
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dissolved oxygen (DO) in the liquid phase, as well as the oxygen and

carbon dioxide in the gas phase. Although there are many other

parameters that can be measured—such as turbidity, rheology,

enzyme activity, or metabolite concentration among others (Harada

et al., 2014)—their monitoring is less common, especially at a

large scale.

In a bioreactor, the biomass and bioprocess metabolites—such as

substrates and products—are found in the liquid phase. The

monitoring of these compounds has received a lot of attention in

the last decades. Different technologies can be used to monitor the

biomass, including optical density (turbidity), dielectric spectroscopy,

microscopy, flow cytometry, fluorescence spectroscopy, calorimetry,

and vibrational spectroscopy (Bayer et al., 2020; Broger et al., 2011;

Grobbelaar, 2009; Kamiloglu et al., 2020; Müller et al., 2018;

Sonnleitner, 2012), whereas the monitoring of metabolites can be

achieved using high‐performance liquid chromatography (HPLC),

vibrational spectroscopy, nuclear magnetic resonance (NMR), enzy-

matic reactions, and mass spectrometry (MS) (Druhmann et al., 2011;

Shalabaeva et al., 2017; Svendsen et al., 2015; Vann et al., 2017;

Warth et al., 2010). As metabolites are at the final step of biological

regulation, monitoring them provides the best picture of cellular

phenotypes (Farrell et al., 2014; Fiehn, 2002). Metabolite and

transcriptional changes can occur very rapidly. For instance, Xu

et al. (2012) detected changes in glycolysis and tricarboxylic acid

(TCA) cycle metabolites within 1–5min of removing or changing the

carbon source in the growth medium, and Lara et al. (2006) calculated

the time required to synthesize one molecule of messenger RNA of

the mixed‐acid fermentation genes to be between 10 and 72 s. For

this reason, monitoring the metabolites in a bioprocess via high‐

resolution time‐course analysis enables the detection of these fast

metabolic changes much earlier than using conventional off‐line

analysis, which is usually sparse, in the order of magnitude of hours.

Bioreactor monitoring by HPLC has been implemented on‐line,

but it has some limitations such as time delays between samples of

typically around 10min and the requirement of a biomass

filtration system to avoid column blocking (Koch et al., 2016;

Koliander et al., 1990; Warth et al., 2010), limiting the analysis to

extracellular metabolites.

Vibrational spectroscopy—especially near‐infrared, mid‐infrared, and

Raman spectroscopy—has been implemented in‐line and on‐line, yielding

very accurate monitoring models for several process compounds.

However, these vibrational spectroscopy technologies have certain

limitations, the main one being that the spectra that they generate are

very convoluted with many overlapping signals. This results in the need to

use chemometric mathematical models such as partial least squares (PLS)

regression to break down the different signals contributed by the

different compounds in the mixture (do Nascimento et al., 2017; Li et al.,

2018; Marison et al., 2012; Rodrigues et al., 2018; Stuart, 2005; Zu et al.,

2017). These models require significant time and resources to build and

are usually not transferable, that is, they are only applicable to the

configuration used to build them (bioreactor, medium composition, strain,

temperature, pH, etc.) (Marison et al., 2012; Pu et al., 2020; Roggo et al.,

2007), making these monitoring techniques of limited use for early stages

of bioprocess development, when the strain, process parameters, and

media composition are often changed in an iterative manner (Baradez

et al., 2018). Finally, due to the large signal overlap, these technologies

tend to report only a few compounds from the mixture, usually the most

abundant ones. There have been some examples in the literature using

NMR for on‐line fermentation monitoring (Kreyenschulte et al., 2015;

Legner et al., 2019). Similar to vibrational spectroscopy, a limitation of

NMR for bioprocess monitoring is the presence of overlapping peaks,

which limits the number of compounds that can be detected and

quantified, usually less than 10 (Brecker et al., 1999; Kreyenschulte et al.,

2015; Majors et al., 2008).

Due to the increasing demand for tools to monitor metabolites, a

range of commercial bioprocess analyzers has been developed in the

last couple of decades. Some of these are based on enzymatic

analysis—such as the Cedex Bio® Analyzer (Roche) and the BioProfile

FLEX2 (Nova biomedical) (Morris et al., 2021; Obaidi et al., 2021)—

while others use the so‐called “miniaturized” MS analyzers—such as

the MiD (Microsaic) and the Rebel (908 devices) (Hamilton et al.,

2014; Synoground et al., 2021), employing a low‐resolution quadru-

pole and ion trap mass analyzers, respectively (Blakeman & Miller,

2021; Hemida et al., 2021). However, these analyzers are still almost

exclusively being used at‐line or off‐line—thus limiting their monitor-

ing potential—and only targeting the predefined set of compounds

dictated by the vendor reagents.

The aim of this study is to explore the use of untargeted

metabolomics as a technology to monitor the metabolites present in

the liquid phase of a bioreactor in real time. Metabolomics is the

global analysis of small to medium size molecules (i.e., up to

1000–2000Da) present in the metabolism of biological systems.

Current analytical methods and MS instrumentation allow for a

generous compound coverage across different metabolic pathways,

thus facilitating the interpretation of biological experiments. The

advantages of MS are that it offers a much wider detection capacity

than NMR, vibrational spectroscopy, the common detectors used

with HPLC (refractive index [RI] and UV/Vis spectroscopy) and

commercial enzymatic analyzers, has very high sensitivity and allows

detection of metabolites in a much less convoluted manner than

NMR and vibrational spectroscopy, thus not requiring the

development of laborious chemometric models such as PLS regres-

sion. All these attributes make MS an attractive technology for

bioprocess monitoring.

Despite these advantages, to date, on‐line metabolomics still

remains unexploited for bioprocess monitoring. Link et al. (2015)

reported the use of metabolomics to monitor different organisms

directly from a cultivation flask. However, the cells grown in these

experiments were cultured in fermentation media that was up to

eight times diluted, which is an impractical imitation for bioprocess

monitoring. Plum and Rehorek (2005) reported an on‐line MS system

for analyzing nine azo dyes in a wastewater treatment process.

However, this system contained a biomass filtration unit and targeted

only nine compounds, thus limiting the vast detection capacity of MS.

In this study, untargeted metabolomics has been used for the

first time, to our knowledge, for bioprocess monitoring. This
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technology was tested with a bench‐top 5 L bioreactor using

undiluted and unfiltered fermentation medium for the untargeted

monitoring of 886 different intracellular and extracellular m/z

signals of an Escherichia coli (E. coli) succinate fermentation

process using a high‐resolution Orbitrap mass spectrometer.

Succinate is used as an intermediate in the manufacturing of high‐

value consumer products such as personal care items, pharma-

ceutical intermediates and food and drink additives, as well as in

the manufacturing of high production‐volume products such as

polybutylene succinate (PBS), polybutylene succinate adipate

(PBSA), resins, coatings, lubricants, and polyurethanes. Further-

more, succinate can also be derivatised into other platform

chemicals such as 1,4‐butanediol, tetrahydrofuran, and γ‐

butyrolactone (Matano et al., 2014; Nghiem et al., 2017; Saxena

et al., 2017; Thakker et al., 2012) (see Figure 1), all of which have

significant market applications, such as the production of elastic

fibers, plastics, and polyurethanes. Detected features include,

among others, the main process compounds, potential biomarkers

of biomass formation and metabolites from the pentose phos-

phate pathway (PPP) and nucleotide metabolism. This study is a

step in the development of new technology for both bioprocess

monitoring during product manufacturing, and also for earlier

research and development phases; for instance, for the evalua-

tion of different strains, process conditions and for the identifi-

cation of engineering targets, by‐products, and biomarkers,

among others.

2 | MATERIALS AND METHODS

2.1 | Bacterial strain

All experiments described in this article were carried out using a

proprietary industrial E. coli strain (Ingenza Ltd.), based on the E. coli

NZN111 strain with deletions of the pyruvate‐formate lyase (pflB)

and lactate dehydrogenase (ldhA) genes as described by Chatterjee

et al. (2001).

2.2 | Growth media

All 5 L scale fermentation experiments were carried out with a batch

phase for biomass formation using a defined minimal medium

containing 11.90 g/L glucose as the sole carbon source, 2.00mM

MgSO4, a mix of salts solution (2.00 g/L (NH4)2SO4, 14.60 g/L

K2HPO4, 3.60 g/L NaH2PO4·2H2O, 0.50 g/L (NH4)2H‐citrate), a mix

of trace elements (1.0 mg/L CaCl2·2H2O, 20.06mg/L FeCl3, 0.36mg/

L ZnSO4·7H2O, 0.32mg/L CuSO4·5H2O, 0.30mg/L MnSO4·H2O,

0.36mg/L CoCl2·6H2O, 44.60mg/L Na2EDTA·2H2O), antibiotics

(100mg/L kanamycin, 34mg/L chloramphenicol), and antifoam

(33.33 µl/L polypropylene glycol P‐2000). Shake flask overnight

cultures were prepared using the same medium but with 10.00 g/L

glucose and no antifoam.

2.3 | Fermentation process conditions

All fermentation experiments were carried out in a 5 L Applikon

stirred tank fermenter (ADI 1030 Bio Controller, 1035 Bio Console),

and the process consisted of an initial batch phase where the minimal

medium was primarily used for biomass formation, followed by a 24 h

anaerobic succinate production phase (Figure 2), similar to the

process described by Vemuri et al. (2002).

2.3.1 | Inoculum

Fermentation inocula were prepared by inoculating 50 µl of cell bank

into 100ml of growth medium in a 500ml baffled shake flask and

incubated at 37°C and 165 rpm for 17–17.5 h.

F IGURE 1 Industrial applications of
succinic acid. 1,4‐BDO, 1,4‐butanediol; GBL,
γ‐butyrolactone; PBS, polybutylene succinate;
PBSA, polybutylene succinate adipate; THF,
tetrahydrofuran.
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2.3.2 | Aerobic batch phase for biomass growth

The fermentation was started by inoculating 100ml of overnight

culture into 3 L of growth medium in the 5 L fermenter for a starting

OD600 of 0.21 ± 0.025. During biomass growth, the conditions were

maintained at 37°C temperature, 500–900 rpm agitation (controlled

to keep the DO > 30%), 4.00 L/min air (1.33 vvm), and pH 7.0 ± 0.1,

controlled with 2.00M H2SO4 and 28% (w/v) NH4OH.

2.3.3 | Anaerobic succinate production phase

At the beginning of the production phase, glucose from a 500 g/L

solution and sodium bicarbonate from a 100 g/L solution were

added to the fermenter as a single bolus addition to a final

concentration of 20 and 5 g/L, respectively, in the vessel, as

described by Wu et al. (2007). The sodium bicarbonate provides

soluble CO2, which is required for the conversion of PEP to

oxaloacetate (Figure 3) (Thakker et al., 2012). Once the glucose

and sodium bicarbonate were added to the fermenter, the

sparged air was replaced by pure (99.8%) CO2 at 0.50 L/min

(0.17 vvm), agitation was set to 300 rpm, temperature at

37°C, and pH at 7.0 ± 0.1, controlled with 2.00 M H2SO4 and

28% (w/v) NH4OH.

2.4 | Biomass measurement

Biomass levels were reported as OD600 and wet cell weight (WCW).

The former was the measured optical density at 600 nm wavelength.

The latter was determined by spinning down 1ml of sample for 5 min

at 14,462g twice in a preweighed Eppendorf tube, removing the

supernatant and weighing the resulting pellet. The weight of the

pellet in g/L was calculated from gravimetric difference.

2.5 | On‐line metabolomics

On‐line metabolomics was conducted by connecting the fermenter to

an Exactive™ Orbitrap (Thermo Scientific) mass spectrometer with a

fluidics system similar to what had previously been described in the

literature (Link et al., 2015), but adapted to inject undiluted

fermentation broth samples straight into the mass spectrometer.

The modified fluidics system consisted of a peristaltic pump and two

valves (Figure 4), and sample injections were alternated with washing

steps, one‐to‐one. The peristaltic pump was a Masterflex™ L/S®

(Cole‐Parmer) high‐performance pump model 77252‐72 and was

operated at a high flow rate of 75–100ml/min. The first valve was a

six‐port, two‐position valve (Vici Valco®) and the second one was a

10‐port, two‐position valve (Dionex Corporation). Note, however,

that no chromatography was used.

2.5.1 | Sample injections

During sample injections, fermentation broth containing cells is constantly

extracted from the fermenter with the peristaltic pump, injected into the

six‐port valve, circulated through a 50µl loop and returned to the

fermenter. Upon valve switching, the broth sample from the 50µl loop of

the six‐port valve is carried by sterile water pumped at a 200µl/min flow

rate using an external piston pump into the 10‐port valve, where it is

collected in a 1µl loop. The sample is finally injected into the mass

spectrometer carried by a 70:30 ACN:IPA+0.1% formic acid mixture at a

400µl/min flow rate. The duration of the injection method was 1min,

and the total traveling time from the bioreactor to the mass spectrometer

was 30 s, with ca. 10 s to reach the six‐port valve and 20 more seconds to

reach the mass spectrometer.

2.5.2 | Washing steps

Each sample injection was followed by a 4 min washing step to

avoid system blockage and signal loss. The six‐port valve was

washed with 70:30 IPA:ACN + 0.1% formic acid for 1 min and

with sterile water for 3 min, both at a 400 µl/min flow rate. The

10‐port valve was washed with sterile water for 2 min and then

70:30 ACN:IPA + 0.1% formic acid for 2 min, both at a 600 µl/min

flow rate (see Supporting Information: Figure S1). The washing

solutions were sent to waste and did not enter either the

fermenter or the mass spectrometer.

2.5.3 | Mass spectrometer parameters

Gas‐phase ions were generated with an electrospray ionization (ESI)

source. The mass spectrometer was operated at 50,000 resolution,

mass range 50–1000m/z in polarity switching mode with a spray

voltage of ±3.5 kV. The capillary temperature was set to 350°C,

sheath gas 40 a.u., automatic gain control target 1 × 106 a.u., and the

F IGURE 2 Schematic diagram of the fermentation process. The
dashed black line splits both phases of the process.
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F IGURE 3 Main metabolic reactions involved in succinate production in Escherichia coli. Blue lines indicate the oxidative TCA cycle under
aerobic conditions. Orange lines indicate the reductive TCA cycle under anaerobic conditions. Red lines indicate deleted reactions in the
industrial strain used. Arrows crossing other reactions are marked with black dashes

lock masses in the positive and negative mode were 74.0964m/z and

112.9856m/z, respectively.

2.6 | Metabolomics data processing and analysis

Raw MS data were processed with the Xcalibur™ software (version

3.1.66.10) using the Genesis peak detection method. The peak integration

threshold was set to 0.5 signal‐to‐noise ratio (S/N), smoothing points to 1

and peak detection was set to the highest peak within a 15 s retention

window, with a minimum peak height threshold of 3 S/N. A small number

of signals that were not properly detected with the Genesis method were

instead processed with the ICIS method. In these cases, peak integration

was performed setting smoothing points to 1, baseline window to 40, area

noise factor to 5, peak noise factor to 10, minimum peak height threshold

of 3 S/N and peak width constrained to 5% of the peak height with a

tailing factor of 2.

After processing the raw data with the Xcalibur™ software,

metabolite features were extracted as a.csv file, which was used to

generate time‐course metabolic profiles using the ggplot2 package

(version 3.3.3; Wickham, 2016) in the statistical software environ-

ment R (version 3.6.1). Data smoothing was carried out using the

same version of the ggplot2 package with a locally estimated

scatterplot smoothing method with a span between 0.2 and 0.5,

depending on the metabolite.

2.7 | HPLC‐UV/Vis‐RI analysis

HPLC coupled to UV/Vis and RI detectors (HPLC‐UV/Vis‐RI) analysis was

carried out using a Rezex™ ROA Organic Acid H+ ion‐exclusion column

(Phenomenex®) (300mm×7.8mm) equipped with a Carbo‐H4 guard

column (SecurityGuard™) (3.0mm i.d.). An isocratic method was applied to

the column, running a 5mMH2SO4 mobile phase solution for 30min. The

total flow rate was 800µl/min, column temperature was maintained at

65°C, sample injection volume was 10µl, and samples were maintained at

4°C for the duration of the analysis. The HPLC‐UV/Vis‐RI data were

extracted as a.csv file and were further analyzed using the ggplot2

package (version 3.3.3; Wickham, 2016) in the statistical software

environment R (version 3.6.1).
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2.8 | Correlation analysis between off‐line and
real‐time metabolomics data

A Pearson test was used to analyze the correlation between offline data

(HPLC‐UV/Vis‐RI andWCW) and real‐time metabolomics data. This test

was performed using the ggpubr package (version 0.4.0; Kassambara,

2020) in the statistical software environment R (version 4.0.4).

2.9 | Data scaling

Data scaling was done by applying Equation (1), where “y” is any

given time‐course vector, such as the MS intensity of a metabolite

throughout the duration of the fermentation. After scaling, the scaled

data will range from 0 to 1,

y
y y

y y
=

− min( )

max( ) − min( )
.norm (1)

3 | RESULTS AND DISCUSSION

3.1 | Development of an on‐line MS system

An on‐line MS system was developed consisting of the following key

components: a peristaltic pump, a six‐port valve, and a 10‐port valve,

as graphically depicted in Figure 4.

3.1.1 | Peristaltic pump

Fermentation broth containing cells and medium is continuously

pumped out of the bioreactor through a peristaltic pump at a high

flow rate (75–100ml/min) to avoid the accumulation of biomass in

the system and to minimize the traveling time of the sample from the

fermenter into the mass spectrometer. It was observed that a high‐

pressure peristaltic pump was necessary to prevent the malfunction-

ing of the pump mid‐way through a fermentation experiment.

F IGURE 4 Experimental setup of the on‐line metabolomics system (top) and a detailed diagram of the dashed area showing the two valve
positions (bottom). During the “inject position”, fermentation broth sample is continuously circulated through the 50 µl of the left six‐port valve
(sample n + 1) and the fermentation broth sample from the 1 µl loop in the right 10‐port valve (sample n) is pushed to the mass spectrometer.
During the “load position,” the sample n + 1 is pushed from the 50 µl loop of the six‐port valve into the 1 µl loop of the 10‐port valve, ready for
injection at the next “Inject position.”
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The monitoring system handles whole‐broth samples containing cells.

The back pressure of the pumps increases during the sampling and

decreases during the washing step. Due to the increase in pressure, it

is better to have a pump that can withstand a higher pressure. A

Masterflex™ L/S® (Cole‐Parmer) high‐performance pump model

77252‐72 was chosen for this purpose.

3.1.2 | Six‐port valve

The fermentation broth is pushed by the peristaltic pump into a six‐

port valve, which has a 50 µl sampling loop. The broth is recirculated

back into the fermenter for the majority of the time in the “inject

position” (see Figure 4). When the valve position is changed to “load

position,” the 50 µl of the sampling loop is pushed with sterile water

at 200 µl/min using an external pump and travels to the 10‐port

valve, where it is collected in a 1 µl loop. A final valve switch to the

“inject position” injects the sample into the mass spectrometer

carried by a 70:30 ACN:IPA + 0.1% formic acid solvent mixture at a

400 µl/min flow rate using a second external pump. A VICI®

Cheminert® 6 port two‐position valve is used in the on‐line system.

A wide‐bore diameter valve (0.75mm) was chosen to minimize the

risk of blockages from the biomass.

3.1.3 | 10‐Port valve

During the “load position,” the 50 µl fermentation broth sample

collected in the sampling loop of the six‐port valve is introduced into

the 10‐port valve, pushed with sterile water using a piston pump

from an HPLC instrument (aqueous pump). This way, the fermenta-

tion sample is delivered to a 1 µl sampling loop on the 10‐port valve.

When the valve switches to the “inject position,” the 1 µl sample gets

injected into the mass spectrometer, pushed with a 70:30 ACN:IPA +

0.1% formic acid solvent mixture using a second piston pump from

the same HPLC instrument (organic pump).

3.1.4 | Further considerations of the system

Using two valves is a solution to mitigate the solvent incompatibility

at the two ends of the system. Namely, at one end, the bioreactor

contains a water‐based environment with living cells, and at the other

end, ESI MS works best with volatile organic solvents, which are more

effective than water at generating gas‐phase ions (Hoffmann &

Stroobant, 2007).

The total traveling time from the bioreactor to the mass

spectrometer was 30 s, with ca. 10 s to reach the six‐port valve and

20 more seconds to reach the mass spectrometer. This traveling time

is short compared to the biomass doubling time (65min, see

Supporting Information: Figure S2) and allows the capture of rapid

metabolic changes while minimizing the time the sample spends out

of the fermentation environment.

3.1.5 | Introduction of a washing step between
sample injections

A washing step between sample injections was introduced to prevent

blockages of the on‐line monitoring system. By tracking the total ion

chromatogram (TIC) across the first injections of two different fermenta-

tion experiments, it was observed that the washing step was instrumental

in preventing signal loss of the mass spectrometer. Specifically, it was

observed that when one wash was performed after every three samples,

the TIC signal consistently increased immediately after every washing

step (Supporting Information: Figure S3A). This indicated that the washing

step helps to prevent not only system blockages but also signal loss,

potentially due to the removal of particulates and build‐up molecules

accumulated in the system during sample injection. When the washing

step was used after every injection (Supporting Information: Figure S3B),

the changes in the TIC did not follow any periodic pattern. In both cases

(with a wash after three samples and a wash after each sample), there was

a decreasing trend in the TIC during the first 15 injections, but this is

probably not caused by signal loss, but by the consumption of glucose

from the media by the cells for biomass formation. With these

observations, it was deemed necessary to implement a washing step

after every single injection.

3.2 | On‐line untargeted metabolomics analysis
of a succinate fermentation process

Nine fermentation runs were performed testing different parameters of

the on‐line monitoring system—the solvent system, the washing method,

sampling frequency, and wash frequency (see Supporting Information:

Table S1). The best conditions were selected based on being able to

run the fermentation process without blockage or overpressure of

the system. The monitoring system operated under the best

conditions tested could monitor a total of 359 and 527 different

features in negative and positive mode, respectively (886 in total)

of the E. coli succinate fermentation process. From these, 124

signals were annotated as different metabolites based on accurate

mass within 5 ppm m/z error, and 67 of these were matched to

annotations performed by off‐line liquid chromatography‐MS (LC‐

MS) analysis (Figure 5) (see Supporting Information: Material for

more details about the LC‐MS method). Figure 6 shows some

indicative profiles described by different metabolites. The data

show some metabolites such as (R)‐2,3‐dihydroxy‐isovalerate and

(S)‐2‐aceto‐2‐hydroxybutanoate to follow an exponential increase

in intensity during the biomass formation phase, indicating that

these could be used as biomass biomarkers for on‐line monitoring.

Another observation is that sugar phosphates involved in the PPP,

such as glucose‐6P and sedoheptulose‐7P, and some compounds

involved in nucleotide metabolism, such as thymine and xanthine,

show a significant increase in intensity at the beginning of the

succinate production phase. These patterns can help identify

relevant pathways for the bioprocess and can help direct metabolic

engineering strategies for process optimization.
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F IGURE 5 Signals monitored with on‐line metabolomics matching the time evolution profile and accurate mass of the results obtained by
liquid chromatography‐mass spectrometry analysis with 5 ppm error. For easier visualization, the signals were scaled and then clustered
according to their patterns. The vertical black dashed line indicates the transition from the aerobic growth phase to the anaerobic succinate
production phase. Noisy signals are caused by low ion intensity values, close to the detection threshold (1000 a.u.).

F IGURE 6 Example of annotated metabolites observed with on‐line metabolomics monitoring of a succinate production fermentation
process in Escherichia coli. Time is indicated with respect to the beginning of the succinate production phase.
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The on‐line data also offers a very high time‐resolution

compared to the full fermentation duration, allowing identifica-

tion of key points of the bioprocess with a 5‐minute error margin,

such as glucose depletion (2.95 h before succinate production)

and the beginning of succinate production.

3.3 | On‐line metabolomics compared to off‐line
HPLC‐UV/Vis‐RI analysis

HPLC is the most widely used reference method for fermentation

off‐line analysis and it is commonly used for validation of monitoring

methods (Cabaneros Lopez et al., 2019; Legner et al., 2019;

Rodrigues et al., 2018). Off‐line samples from the fermentation

experiment from Figure 6 were analyzed by HPLC coupled to UV/Vis

and refractive index detectors (HPLC‐UV/Vis‐RI) and compared to

the on‐line metabolomics signals for the key process metabolites

present in both data sets—glucose, succinate, and pyruvate (Figure 7).

Comparing the off‐line HPLC‐UV/Vis‐RI results with the on‐line

metabolomics data demonstrates the main advantages of real‐time

metabolomics. On the one hand, the off‐line data consists of 16 time

points, taken on an hourly basis and with time gaps of more than

8 h corresponding to overnight periods, whereas with on‐line

metabolomics, samples were automatically collected every 5min,

resulting in 355 time points (a 22‐fold increase in resolution as

compared to off‐line analysis). Furthermore, HPLC‐UV/Vis‐RI is run

as a targeted analysis, leading to the analysis of only a handful of

compounds, whereas, as demonstrated in Figures 5 and 6, metabo-

lomics can be used to monitor a much wider range of metabolites.

Figure 8 shows that the Pearson correlation estimates between

the two data sets were 0.86, 1.00, and 0.96 for glucose, succinate,

and pyruvate, respectively, showing a good positive correlation

between the data collected with both methods. This study demon-

strates how compounds of interest for the bioprocess can be

identified in an untargeted manner with the wide detection capacity

of metabolomics, while also providing the opportunity for the

discovery of unexpected key metabolites.

3.4 | Biomarkers for growing biomass

Metabolites annotated as (R)‐2,3‐dihydroxy‐3‐methylpentanoate and

(R)‐2,3‐dihydroxy‐isovalerate follow an exponential increase coincid-

ing with the exponential growth of biomass during the batch phase

(Figure 9). For this reason, these two metabolites were identified as

potential biomarkers for biomass. To evaluate this, the on‐line signal

of these two metabolites was compared with the off‐line WCW

biomass measurements by Pearson correlation (Figure 10). A better

correlation was found using the natural logarithm of the biomass

WCW. When the whole fermentation was evaluated, the correlation

between the two signals was poor (Pearson correlation estimates

0.55 and 0.63; Figure 10a). However, a good correlation was found

during the aerobic batch phase (Pearson correlation estimates 0.94

and 0.96; Figure 10b), suggesting that (R)‐2,3‐dihydroxy‐3‐

methylpentanoate and (R)‐2,3‐dihydroxy‐isovalerate, especially the

latter, could potentially be used as biomarkers for growing biomass.

Both these metabolites belong to the branched‐chain amino acid

biosynthetic pathways for the formation of valine, leucine and

F IGURE 7 Glucose, pyruvate, and succinate are monitored by on‐line metabolomics (a) and off‐line high‐performance liquid chromatography
(HPLC) (b). The mass spectrometry measurements are represented as dots and the corresponding smoothed signal is represented with lines and
calculated with locally estimated scatterplot smoothing. Ions 203.0527, 87.0088, and 117.0193m/z were, respectively, used for glucose,
pyruvate, and succinate. The HPLC data are represented as dots and the interpolated data are represented with lines. Time is indicated with
respect to the beginning of the succinate production phase.
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isoleucine—essential building blocks for biomass formation—which

could explain the good correlation of these metabolites with biomass

growth.

4 | CONCLUSIONS

Fermentation monitoring is a crucial step to understand and control

the evolution of a bioprocess to ensure that the desired process

specifications are met during product manufacturing. For this reason,

the monitoring of metabolites in the liquid phase of bioreactors has

received increasing attention in the biotech industry in the last couple

of decades. MS presents several advantages compared to other

technologies that have been more extensively reviewed in the

literature, such as on‐line HPLC and vibrational spectroscopy.

Namely, MS can detect many more compounds, has a higher

sensitivity, and does not require the use of PLS regression models,

which tend to have little transferability when process conditions are

changed (e.g., temperature, medium, strain, etc.).

Commercial enzymatic analyzers and “miniaturized” low‐

resolution mass spectrometers are also becoming a trend for

bioprocess analysis, allowing the rapid measurement of a predefined

set of compounds. However, these are still almost exclusively used

at‐line or off‐line, requiring manual handling and offering limited time

F IGURE 8 Pearson correlation between off‐line HPLC‐UV/Vis‐RI (refractive index) and on‐line metabolomics data for glucose, pyruvate, and
succinate, where R is the Pearson correlation coefficient and p shows the p value of the test. The metabolomics data were scaled from 0 to 1 to
fit in the same axis.

F IGURE 9 On‐line metabolomics signals
corresponding (R)‐2,3‐dihydroxy‐3‐
methylpentanoate and (R)‐2,3‐dihydroxy‐
isovalerate and of‐line WCW biomass, all
three scaled from 0 to 1 to fit in the same axis.
Time is indicated with respect to the beginning
of the succinate production phase.

2766 | CORTADA‐GARCIA ET AL.



resolution. Furthermore, these systems are limited to the analysis of

the compounds in the commercial assay kits, and the use of low‐

resolution MS significantly limits the quality of metabolite annotation.

In this study, an on‐line untargeted metabolomics platform

(RTMet) was developed to be able to analyze fermentation whole‐

broth samples directly from the bioreactor with flow injection MS (no

chromatography) every 5min and no manual intervention. The use of

a high‐resolution Orbitrap mass spectrometer allowed for the

detection of 67 compounds without the need to build time‐

consuming PLS regression models. These features make this

technology especially useful for the detection of important pathways,

by‐products, and biomarkers during the process development stage,

allowing the evaluation of different strains, cell lines, and process

conditions (temperature, medium, pH, etc.). This is the first step in

demonstrating the use of untargeted on‐line metabolomics for

bioprocess optimization. Future work will include the use of this

technology with other bioprocesses and organisms, as well as the

development of quantitative monitoring models to be able to

correlate ion intensity to metabolite concentration.
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