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ABSTRACT

Prediction of structural changes resulting from
complex formation, both in ligands and receptors,
is an important and unsolved problem in structural
biology. In this work, we use all-atom normal modes
calculated with the Elastic Network Model as a basis
set to model structural flexibility during formation
of macromolecular complexes and refine the non-
bonded intermolecular energy between the two part-
ners (protein–ligand or protein–DNA) along 5–10 of
the lowest frequency normal mode directions. The
method handles motions unrelated to the docking
transparentlybyfirstapplyingthemodesthat improve
non-bonded energy most and optionally restraining
amplitudes; in addition, the method can correct
small errors in the ligand position when the first six
rigid-body modes are switched on. For a test set
of six protein receptors that show an open-to-close
transition when binding small ligands, our refinement
scheme reduces the protein coordinate cRMS by
0.3–3.2 Å. For two test cases of DNA structures inter-
acting with proteins, the program correctly refines
the docked B-DNA starting form into the expected
bent DNA, reducing the DNA cRMS from 8.4 to 4.8 Å
and from 8.7 to 5.4 Å, respectively. A public web server
implementation of the refinement method is available
at http://lorentz.immstr.pasteur.fr.

INTRODUCTION

Structural flexibility is an important feature of biological
macromolecules. The most obvious conception of flexibility
is probably the ensemble of protein structures derived from
NMR experiments in solution, but X-ray crystallography has
also often revealed large backbone rearrangements for the

same protein under different conditions, e.g. alternative
packing arrangements, or in the presence of a bound ligand
or inhibitor. A wide range of such experimentally observed
molecular ‘motions’ have been classified in the MolMovDB
database provided by the Gerstein lab (1,2).

Over the last decade, many efforts have focused on protein–
protein interactions and docking (3). Significant progress
has been made, but the community-wide CAPRI (Critical
Assessment of PRedicted Interactions) experiment (4)
has highlighted the limitations in handling conformational
changes in protein–protein interactions (5), and it is only quite
recently that receptor flexibility has been introduced explicitly
(6–9). Protein flexibility is particularly important for under-
standing molecular interactions because many proteins exhibit
significant structural changes when binding ligands, going
from an open to a closed form. Historically, this prompted
the development of the so-called induced fit theory (10). While
the global cRMS (coordinate root-mean-square) difference
between the open and closed structures can vary widely (11),
a good model of the rearrangement around the active site is
often crucial to correctly predict substrate binding (12).

Structural change due to protein interactions is intimately
related to the refinement problems that currently receive a lot
of attention in other applications. Homology modeling is a
classical example, where fold recognition backbone templates
are often displaced 3–6 Å relative to the target structure
(13–15). Refining these models is an extremely hard but
very important challenge. A lot of effort has been invested
in improving models, often based on molecular dynamics
(16–18) and using sampling-enhancing methods such as rep-
lica exchange (19). While many of these results are useful,
the general conclusions at the 5th CASP (Critical Assessment
of Structure Prediction) experiment (20) was still that they do
not yet reliably improve blind prediction results (21).

Refinement of intial models using experimental data such
as medium-resolution X-ray structure factors (22), electron
densities obtained from electron cryo-microscopy (23) or
small-angle X-ray scattering (SAXS) (24) intensities have been
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more successful, but the radius of convergence is small, even
when using dihedral angles instead of Cartesian coordinates in
combination with the R-free factor (25). Usually, this kind of
‘docking into an envelope’ problem is handled by rigid-body
refinement of domains, but it is difficult to correctly define
which domains to use. Also, some movements such as shear
motion are not described adequately by rigid-body moves.

The reason why refinement is difficult is a combination of
imperfect energy functions and the high-dimensional optim-
ization space. Even with a perfect potential function it would
be a tremendously hard task to find the global minimum for a
protein structure, and when there are errors in the parameters
any signal can easily drown in noise. A key challenge for
refinement algorithms is thus to drastically reduce the dimen-
sionality of the conformational space.

One way of introducing this type of restricted confor-
mational space is to use the collective motions described by
low-frequency normal modes as a basis. Normal mode analysis
has long been used to extract characteristic motions of protein
structures (26–28), since it provides a computationally unex-
pensive description of the motion close to an energy minimum.
New simplified models pioneered by Tirion (29) have made it
possible to rapidly determine normal modes for very large mac-
romolecular assemblies such as a virus capsid (30) and even
the ribosome (31) structure. With the availability of experi-
mental structures for several conformations of many proteins,
it has further become possible to correlate predicted transitions
between conformations with experimentally observed ones
(32,33). Individual mode frequencies are usually not accurate
since real motions will be damped by the solvent (34), and with
the Elastic Network Model the absolute frequency information
is lost. However, the shape of motions associated with low-
frequency modes is quite insensitive to the model, and these
are the most important motions: Since the mode energy is
proportional both to squared frequency and amplitude, thermal
energy equipartition predicts that low-frequency modes will
have the largest amplitudes. In most documented cases, a hand-
ful of the lowest frequency modes are sufficient to describe
transitions between observed conformations (33).

The value of these features has recently been verified by
successful application of normal modes to enforce large
collective movements in X-ray refinement (35), molecular
replacement experiments (36), and low-resolution electron
microscopy density fitting (37,38). A related promising
approach has been published by Qian et al., who utilized
multiple homology modeling templates to define principal
component variations along which an initial homology
model could be refined (39). Similar principal component
motions have also been used to extract essential motions
from molecular dynamics simulations to improve ligand
geometry prediction (8).

In this work, we show how simple Elastic Network normal
modes provide an efficient basis for refinement entirely with-
out additional experimental data, and design a robust optim-
ization scheme. One of the key challenges has been to create a
scheme that is not critically sensitive to the number of normal
modes used, and equally important to never damage a struc-
ture. The latter is particularly vital in case the initial ligand
placement is imperfect.

Zacharias et al. have previously used classical normal
modes or principal components derived from simulations for

docking small ligands into the minor groove of DNA (40) as
well as predicting the FKBP–FK506 complex (8). Their prim-
ary aim was however to better discriminate between altern-
ative ligand placements. Refined B-DNA structures were only
compared to the same B-DNA minimized in Cartesian
coordinates in presence of the ligand rather than with experi-
mental structures (40). For FKBP, the refined receptor struc-
ture had a cRMS of 1.45 Å compared to the initial 1.5 Å, which
was a simulation average (8)—the difference between bound
and unbound experimental FKBP structures is only 0.6 Å. Our
study instead focuses on the refinement of the experimental
free form of the receptor, in particular mid- or low-resolution
refinement of large motions that occur when the ligand binds.

MATERIALS AND METHODS

Refinement fundamentally consists of two parts: choosing
the degrees of freedom to sample, and designing energy func-
tions to discriminate between structures. For the refinement,
it does not matter exactly how sampling moves are derived—
the only important point is whether they form a useful basis for
the motions.

Low-frequency normal modes for sampling

The basic idea of normal modes is to provide a simplified
model of the potential energy landscape and motions of an
N-particle system close to a local minimum. In this state, all
first derivatives disappear by definition, so the simplest approx-
imation of the energy variation is xTHx, where H is the (3N)2

Hessian matrix obtained from the second derivatives of energy
with respect to coordinates x. For biomolecules, the Hessian is
normally expressed in mass weighted coordinates. With a
matrix M containing atomic masses on the diagonal, we obtain
H0 ¼ M�1/2 HM�1/2. By restricting the Taylor expansion of
the energy close to the minimum to xTHx, an analytical solu-
tion to the equations of motion can be found in terms of the
superposition of normal modes, whose directions are given by
the eigenvectors of H and the normal mode frequencies will be
proportional to the square root of the corresponding eigen-
values. This type of normal mode calculation has been applied
to biomolecules for over two decades (26–28), but there are
significant limitations. First, memory and CPU requirements
increase as N2 and N3, respectively, which limits the method
to fairly small systems. Some degrees of freedom can be
removed by using, e.g. torsional instead of Cartesian coordin-
ates (28), but it does not address the scaling problem. Another
complication is that structures need to be energy minimized
prior to the normal mode calculation. Not only is this com-
putationally expensive, but the minimization often distorts the
cRMS of a protein by several Ångstroms due to approximate
potential functions and lack of solvent (28,41).

Interestingly, the appearance of low-frequency modes
depends more on overall geometric properties such as the
number of surrounding neighbors rather than force field
details. Tirion was the first to note this and introduce the
so-called Elastic Network Model (ENM) where the energy
is described by a network of simple pair potentials (29),

U ¼
X

i‚ j;rij<Rc

Uij Ri � Rj

� �
‚ 1
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where Rc is a cut-off distance for the interactions. By defining
the pair potential as a harmonic function of interatomic dis-
tance with the equilibrium length equal to the distance in the
input structure

Uij rð Þ ¼ kijðjrj � jR0
ijjÞ

2
‚ 2

the initial structure will by definition be at the global energy
minimum, and no minimization necessary. The method was
simplified by Hinsen (42) who limited it to alpha carbons, and
also by Bahar et al. (43). In the original model, the force
coefficient kij was constant, and the only variable parameter
was the cut-off distance Rc (typically 10 Å). Interactions
that decay with distance are more realistic and much less
sensitive to the cut-off distance: For compatibility reasons,
we use exponential weighting (42) with a screening length
r0 (normally 3 Å for Ca networks).

Due to the arbitrary force constant, mode frequencies are not
physically meaningful, but the low frequency normal mode
motions are in excellent agreement both with modes derived
from classical force fields (34,42) and experiments (44,45).
The method additionally handles missing atoms transparently.

In the present work, we keep all atoms when building the
elastic network model, but to avoid artifacts in the light hydro-
gen motions the screening length r0 was increased to 5 Å.
Theoretically, the resulting Hessian could be extremely large,
but with the 10 Å cutoff employed most elements vanish, and it
can be represented efficiently through sparse-matrix storage.
The lowest m eigenvectors of the sparse Hessian are deter-
mined with a computational cost proportional to O(mN) by
using the implicitly restarted Lanczos algorithm provided
in the ARPACK library (46). Calculating the lowest 50 modes
of a 3000-atom protein takes �40 s on a 2.8 GHz Pentium IV
workstation, and the code has been tested successfully with
hundreds of thousands of atoms. A web server implementing
this algorithm is freely available at http://lorentz.immstr.
pasteur.fr. As an alternative, Sanejouand and co-workers
(47,48) have developed an interesting general approach, the
so-called rotation-translation block (RTB) method, where
groups of atoms or even multiple residues are merged into
a single block that has just translational and rotational degrees
of freedom. This can be used for arbitrary reduction of the
conformational space, and the motions of the removed atomic
coordinates are easily reconstructed from the normal modes of
the rotation-translation blocks. The differences between the
two normal mode algorithms are fairly small for the low-
frequency modes, and normal modes derived from the RTB
approach provided essentially identical refinement results
when used for double-checking in this study.

Energy-based refinement and discrimination

The reason why energy minimization along modes derived
from a minimum works is partly that the elastic network
model is based on receptor geometry instead of the real
force field, but also that the energy optimization will be limited
to the intermolecular interaction between the receptor and
ligand. The entire normal mode calculation step can be con-
sidered a black box from which a set of search directions are
obtained that are used to conduct the actual refinement.

The optimization energy function consists of all inter-
molecular electrostatic and Lennard–Jones interactions, with

parameters taken from the CHARMM19 force field (49). Polar
hydrogen atoms were added to the structures prior to deter-
mining normal modes. To avoid diverging energies when
atoms get too close, both electrostatic and Lennard–Jones
interactions were modified with a Levitt soft-core scaling
factor (41)

U0 rð Þ ¼ U rð Þ 1

C12r�12 1 þ br2ð Þ/h þ 1
3

where C12 is the repulsive Lennard–Jones parameter.
Default values (41) are used for the two model parameters,
b ¼ 0.1 Å�2 and h ¼ 10 kcal/mol. The soft-core interaction
asymptotically approaches the standard form for long dis-
tances, but goes to a constant value (h) instead of diverging
when atoms overlap.

A number of geometric optimization functions such as
surface solvation (50,51) or maximizing the interaction area
were attempted but not used since they are hard to balance with
the repulsion term. Refinement using only Lennard–Jones
interaction works well, but since electrostatics improves a
couple of receptors it was kept for all cases. To avoid intro-
ducing arbitrary parameters, the dielectric coefficient was
fixed to the vacuum value.

The energy refinement is performed in normal mode space
by using mode amplitudes ck as degrees of freedom, and the
Cartesian coordinates reconstructed from m excited normal
mode eigenvectors ak as

x ¼ x0 þ
Xm

k¼1

ckak: 4

The lowest six modes are rigid body motions, and norm-
ally not included in the refinement. Energy minimization was
performed with a quasi-Newtonian algorithm (52). If vectors
are orthogonal in the Cartesian norm, the partial derivatives
with respect to ck can be calculated analytically.

Even with fewer degrees of freedom and soft-core poten-
tials, it is common to get stuck in local minima. If 1–2 modes
provide enough flexibility, it is possible to discretize the
problem by introducing a two-dimensional grid of mode
amplitudes and sample this subspace exhaustively. Since
some structures are dimers or have other flexible parts, it is
not trivial to a priori select which modes to employ. As a
compromise, a semi-exhaustive sampling was introduced by
iteratively scanning each mode for a minimum while the amp-
litudes of previously added modes were kept constant. The
main complication is again low-frequency modes that do not
contribute to the refinement: if a false minimum is found at
large amplitude, the remaining refinement is ruined when this
amplitude is frozen. This was addressed by pre-scanning of
each normal mode with all other set to zero, and sorting in
order of largest reduction in energy. For the actual refinement,
this means more promising modes are used first, and their
amplitude frozen before the next degree of freedom is added.

To avoid too large excitations, the concept of applying
artificial restraints (53) on the amplitudes was borrowed
from quantum chemistry charge fitting. Our model is similar
to those commonly used for NMR distance restraints, in that
mode amplitudes are allowed to vary freely in the range ck 2
[�100, 100], and a harmonic restraint U ¼ 0:5k00 jckj � 100ð Þ2

applied outside this region. For the present work, a value of
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k00 ¼ 0:01 kcal=mol was used. The restraints contribute to
more robust refinement on average, but also deteriorate the
very best unrestrained results slightly.

TEST STRUCTURES

Protein–small ligand systems

There are plenty of structures known to be involved in docking
where one or both free and complexed conformations have
been determined, and a number of protein interaction bench-
marks have been published (54–57). To test the efficiency of
our refinement, additional conditions were applied that resul-
ted in a smaller set of benchmark structures. First, since the
methods are coarse the structural change should be significant,
and both the open and closed receptor structures available.
Individual amino acid mutations and missing atoms do not
pose any problems, but there cannot be insertions or deletions
between the alternative receptor structures. With these con-
straints, six suitable protein–ligand pairs were identified in the
PDB: maltodextrin binding protein, chicken citrate synthase,
glutamine binding protein, HIV-1 protease, phosphoglycerate
kinase and lactoferrin. All systems are summarized in Table 1
(58,59). It is noteworthy that chicken citrate synthase is a rather
large dimer structure. Both monomers need to be included in
the refinement, and since their relative motions are the largest
in the system it is an interesting challenge to normal mode-
based refinement. The specific docking interactions in the
Citrate synthase have recently been studied in detail (60,61).

All-atom Elastic Network normal mode eigenvectors were
determined from the unbound conformations, since the whole
point of non-benchmark refinement will be to predict the com-
plex structure without having any experimental information
about it.

Each open receptor conformation was superimposed on the
closed experimental (keeping the ligand coordinates) using the
PROFIT package by A.C.R. Martin (http://www.bioinf.org.uk),
which implements the McLachlan algorithm (62). Therefore,
the ligand positioning is almost perfect in these tests, although
we did study cases where the ligand was intentionnally
misplaced (see below).

To investigate the extent to which low-frequency normal
modes can describe the transition between the pairs of con-
formations, overlap coefficients (63) were calculated as scalar
products of the coordinate displacement vector with each
normal mode eigenvector,

ck ¼
xclosed � xopen

jxclosed � xopenj
· ak: 5

Due to mutations between the two structures and/or missing
atoms, the displacement vectors could only be calculated for
Ca coordinates. The scalar product must then be taken with
Ca-only elastic network normal modes, since the Ca subset of
all-atom modes would not be orthogonal (the modes used in
refinement are always all-atom, though).

As Figure 1 shows, the transitions for the maltodextrin- and
glutamine-binding proteins as well as citrate synthase are
described almost entirely with 1–2 modes. The other three
structures are also heavily biased against low modes, with
the possible exception of HIV-1 Protease for which modes
with index up to 15–20 might play a role. The ability of
low-frequency normal mode eigenvectors to predict docking
flexibility is thus in very good agreement with the findings of
Tama (32) and Krebs (33) for general transitions.

The lowest cRMS for a given set of modes is obtained when
each amplitude is set to the overlap coefficient ck. The striking
efficiency is evident from Figure 2; the cRMS of maltodextrin-
binding protein could theoretically be reduced from almost
4 Å to just >1 Å using only two degrees of freedom, and all
receptors except the HIV-1 protease exhibit quite dramatic
improvements. The cRMS improvement can also be estimated
directly from the overlap coefficients as

cRMS ¼ cRMS0 1 �
Xm

k¼1

c2
k

" #1=2

‚ 6

where cRMS0 is the value for the starting conformation and
m the number of normal modes (64).

DNA–Protein systems

To test the applicability of the final refinement protocol
on larger structures and nucleic acids, the DNA–protein
complexes 1BER (Catabolite gene protein, CAP), 1LWS
(Intein homing endonuclease), and 1A1H (A variant of Zif
268 zinc finger) were selected. For the CAP protein, we also
compared the results with the free crystal structure 1G6N
(no free structures are available for the other cases). Straight
B-DNA structures were created using the program NAHELIX
with the same sequence as the bound motifs in the PDB struc-
tures and superimposed on the bound structure using PROFIT.

All protein structures were assumed to be rigid and the normal
mode calculation only applied to the DNA ligands. The initial
cRMS value between the straight B-DNA and the structure
in the PDB file was 8.42 Å for 1BER, 8.72 Å for 1LWS and
2.26 Å for 1A1H when all DNA heavy atoms are included in
the calculation.

Table 1. Summary of protein–ligand structure pairs

Receptor Open Closed Ligand cRMS (Å)

Maltodextrin binding protein 1OMP 1ANF Glucose 3.77
Chicken citrate synthase 5CSC 6CSC Citrate, trifluoroacetonyl-coenzymeA 2.84
Glutamine binding protein 1GGG 1WDN Glutamine 5.33
HIV-1 protease 1HHP 1AJX Cyclic sulfamide 1.91
Phosphoglycerate kinase 1V6S 1VPE Mg, phosphoglyceric acid, 50-adenyly-imido-triphosphate 3.45
Lactoferrin 1CB6 1LCF Copper carbonate, copper oxalate 6.44

All cRMS values are calculated from Ca atoms only.
Non-protein parameters were obtained through the hic-up (58) and prodrg (59) web servers.
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RESULTS

Test 1: Minimization in Cartesian coordinates

To assess the difficulty, the free receptor structures were
docked with the ligands and subjected to classical molecular
mechanics energy minimization using the GROMACS package
(65). Parameters were taken from the OPLS-AA/L force field
(66), and a limited-memory quasi-Newtonian minimizer used
(52). Interactions were cut off at 10 Å and smoothly switched

off between 8 and 10 Å. The systems were minimized to
double precision machine accuracy, which in all cases com-
pleted in <10 000 steps. The results are summarized in Table 2,
with coordinate displacements relative to the initial state of
1.5–2.1 Å. Only the maltodextrin binding protein shows any
significant improvement, and 3 of the 6 receptors are deteri-
orated. On average, Cartesian minimization results in 0.1 Å
worse cRMS. There is consequently very little, if any, pre-
dictive power from this type of free refinement. Unfortunately,
this agrees quite well with CASP observations that uncon-
strained energy minimization does not improve homology
models (21).

Test 2: Minimization in normal mode space

Minimization along normal modes has proven very successful
when the refinement is guided by experimental data (35,36),
but purely theoretical energy functions is a harder challenge.
The detailed interactions result in a more rugged energy land-
scape that is harder to optimize, and for large mode amplitudes
the approximations used give rise to false minima with
extremely low energies. Figure 3 displays the energy land-
scape of the intermolecular interaction between ligand and
receptor, and cRMS variation along the two lowest non-
trivial modes for the maltodextrin and glutamine binding pro-
teins. Even with soft-core interactions (28), the extremely
reduced two-dimensional landscape is non-trivial to search,
while the cRMS variation is approximately harmonic, as
expected.

For both these cases, minimization works fine when only the
first two modes are used, but the structures are easily ruined
when additional modes are employed. The maltodextrin bind-
ing receptor ends up at 5.7 Å (see Figure 4), while the glutam-
ine binding protein diverges to >200 Å. For HIV-1 Protease,
the cRMS drops to 1.6 Å when one or two modes are used, but
increases again for 3–5 modes. Lactoferrin does not exhibit
any significant improvement before it starts to diverge with
four modes. On the other hand, both citrate synthase and
phosphoglycerate kinase improve up to at least five modes.

The results of this first test are thus somewhat mixed: the
best normal mode minimization results are excellent, but
because of stability issues, the blind refinement predictive
power is limited.

Test 3: unconstrained scanning along modes

Semi-exhaustive scanning was attempted mainly to avoid
the divergence problems encountered in normal mode space

Figure 2. Theoretical limit of refinement efficiency. This is derived by
projecting Ca displacement vectors between open and closed conformations
on normal mode eigenvectors. The first bar for each target represents the initial
cRMS value and the remaining bars are projection results using 1–5 normal
mode eigenvectors.

Table 2. Test Protocol 1—naive unconstrained Cartesian energy minimization

of docked receptor structures using the OPLS-AA force field in GROMACS

Receptor cRMS move (Å) D cRMS target (Å)

Maltodextrin binding protein 2.12 �1.23
Chicken citrate synthase 1.89 �0.01
Glutamine binding protein 1.83 +0.67
HIV-1 protease 1.45 �0.13
Phosphoglycerate kinase 1.47 +0.77
Lactoferrin 1.66 +0.56

The first column displays the cRMS displacement relative to the starting
configuration, and the second the cRMS change during minimization with
respect to the closed target structure.

Figure 1. Overlap between structural change and low frequency normal modes,
measured as the scalar product between the Ca displacement vectors from open
to closed conformation and the first 25 non-trivial normal mode eigenvectors.
From top to bottom: maltodextrin binding protein, citrate synthase, glutamine
binding protein, HIV protease, phosphoglycerate kinase and lactoferrin.
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minimization, but also because it is insensitive to energy bar-
riers. Normal mode amplitudes in the range �500 to +500
were sampled with a spacing of 10, and the amplitude corres-
ponding to lowest energy frozen before the next higher mode
in frequency order was added. Figure 5 illustrates the results
for all the test receptors when between 1 and 5 non-trivial
normal modes are used in the scanning. Hypothetically, a
simple scanning refinement approach using the lowest three
normal modes of each structure would reduce the cRMS of the
maltodextrin binding protein, citrate synthase and glutamine
binding protein to their target conformations by >50%, it
would improve phosphoglycerate kinase and lactoferrin
slightly, and finally leave HIV-1 protease close to its initial
state. The only problem is that some structures still deteriorate
when additional modes are included. We choose to address
this in two ways, first by restricting scanning to the normal
modes that are most likely to improve the structure, and second
by constraining the receptor structure distortion.

Final protocol: mode sorting and restrained scanning

The refinement would probably be improved if it was known
a priori which degrees of freedom to apply first. This was

Figure 3. (A) Non-bonded intermolecular energy (kcal/mol) for the maltodextrin binding protein, as a function of the two lowest non-trivial normal modes (left) and
cRMS variation relative to the closed target state (right). The minimum is slightly offset from both axes, indicating that both modes contribute to refinement. The
global cRMS minimum is 1.21 Å, and the value at the energy minimum 1.26 Å. (B) Similar plots for the glutamine binding protein. In this case, the lowest attainable
cRMS is 2.20 Å, and at the energy minimum it is 2.28 Å.

Figure 4. Test protocol 2—L-BFGS minimization of non-bonded energy along
1–5 normal modes. Shaded bars indicate the initial cRMS values before
refinement. This is substantially more efficient than unconstrained Cartesian
minimization, but not entirely stable—structures sometimes end up in worse
states when additional normal modes are used.
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estimated through pre-scanning of individually excited modes
and subsequent sorting in order of largest energy reduction.
The receptor distortion was simultaneously controlled by add-
ing restraints on the mode amplitudes, as discussed in the
Methods section. The combination of these methods leads
to a dramatic improvement in stability, as evident from
Figure 6. When using five sorted normal modes, the cRMS
value of maltodextrin binding protein is refined from 3.77 to
1.86 Å, chicken citrate synthase from 2.84 to 1.68 Å, glutam-
ine binding protein from 5.33 to 2.16 Å, HIV-1 protease from
1.91 to 1.58 Å, phosphoglycerate kinase from 3.45 to 2.58 Å,
and the lactoferrin cRMS drops from 6.44 to 5.78 Å.

This refinement scheme reduces the cRMS value of all
structures compared to the respective initial states, and is
much less sensitive to the number of extra modes used.

In almost all cases, the most significant reduction in cRMS
is seen when the first sorted normal mode is applied. The
maltodextrin binding protein result is slightly worse than
with unrestrained scanning (1.86 Å instead of 1.26 Å), but
we believe it is a reasonable sacrifice for the massive gain in
robustness.

Refinement of DNA–protein complexes

The final protocol was also applied to the DNA–protein com-
plexes previously described. Both for the 1BER and 1LWS
complexes, the cRMS is reduced significantly even when only
a single normal mode degree of freedom is used. For 1BER,
the cRMS value drops from 8.42 to 4.74 Å, i.e. slightly better
than the 4.82 Å achieved when the first five modes are used
simultaneously. The results when 1BER is replaced with the
unbound protein structure 1G6N are similar; DNA refinement
with five modes results in a cRMS of 4.34 Å.

For 1LWS, the single-mode result is 5.62 Å (starting from
8.72 Å), which improves to 5.45 Å with the first five modes. In
both these cases, the DNA wraps around the protein. The DNA
bound to the protein of the 1A1H structure (a variant of Zif 268
zinc finger) does not refine further from the initial 2.28 Å
cRMS, but the structure remains fairly stable—with five nor-
mal modes, the final structure has a cRMS of 2.46 Å compared
to the target. The DNA–protein refinement results are sum-
marized in Figure 7.

In general, iterating the normal mode calculation and refine-
ment did not enhance the results, except for DNA bound to the
Catabolite Activator Protein (1BER)—in this case, a second
iteration improved the cRMS further from 4.8 to 4.1 Å.

Refinement of relative rotation/translation

To test the effect of errors in ligand placement, we performed
an additional 50 restrained scans for each target, in cases

where the ligands were randomly translated 1.0 Å and rotated
30
, which resulted in an average ligand cRMS displacement
of 2.04 Å. The extra rotational/translational flexibility was

Figure 7. Refinement of DNA structures complexed with proteins using the
final protocol. Dark shaded bars indicate initial cRMS values for all heavy
atoms, and the remaining ones are the results from refinement using 1–5 normal
mode degrees of freedom. Even a single degree of freedom reduces the cRMS
of DNA bound to 1BER, 1G6N and 1LWS by almost a factor 2. The starting
B-DNA was generated with NAHELIX (68).

Figure 6. Final refinement protocol—restrained discrete amplitude scanning
along normal modes first sorted by pre-scanning. The first dark shaded bar for
each target is the cRMS value prior to refinement and the next five the results
using 1–5 normal modes. The final open bar in each group is the average result
of refinement with five modes after random translation/rotation. Restraints
combined with pre-sorting makes the scheme quite robust, at the cost of slightly
higher final cRMS values.

Figure 5. Test protocol 3—energy optimization through discrete amplitude
scanning along low frequency normal modes. Bars in each group indicate the
initial cRMS value (shaded) followed by refinement with 1–5 normal modes.
Scanning provides a better alternative than minimization along the normal
mode eigenvectors, but is still somewhat unstable.
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handled transparently by including the six lowest normal
modes in the scanning, thus using 11 modes in total. There
are obviously better choices for rigid body moves since all
normal mode deformations are linear, and 30
 of rotation will
introduce some structural distortion. Still, it is quite entertain-
ing as a proof-of-concept and the general conclusions remain
valid (Figure 6). On average, the cRMS value of the displaced
maltodextrin binding protein was refined to 2.4 Å (compared
to 1.86 Å without the random translation), citrate synthase
achieved a cRMS of 2.1 Å (1.68 Å when correctly superposi-
tioned), glutamine binding protein reached cRMS 2.5 Å
(instead of 2.16 Å), HIV-1 protease remained at the initial
cRMS 1.9 Å (refined to 1.58 Å above), phosphoglycerate

kinase refined to a cRMS of 3.0 Å (2.58 Å without translation),
and lactoferrin a cRMS of 6.2 Å (was 5.78 Å). These results
are shown as open bars in Figure 6. Compared to the initial
unrefined cRMS values, all structures except the HIV protease
are still improved. This was not unexpected, since the random
translation is five times larger than the best cRMS improve-
ment reported for the ideal ligand placement for HIV protease.

DISCUSSION

Many of the optimization results are quite significant, and even
more so when the refined structures are studied in detail.

A

B

Figure 8. Refined structures of maltodextrin binding protein (A) and DNA bound to Catabolite Gene Protein (B). The left panels show the initial unbound (red)
compared with the bound target state (blue), while the right panels display the structure after normal mode energy optimization (red) compared with the same
target state. Fixed protein/ligand parts are shown in yellow. The maltodextrin binding protein cRMS reached 1.86 Å (starting from 3.77 Å) and the DNA structure was
refined from 8.42 to 4.82 Å. Secondary structure elements move significantly, but the positions of individual helices and in particular beta sheets agree very well with
the target state after refinement. Figures drawn with PyMol (W. L. DeLano, http://www.pymol.org).
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Figure 8 displays the effect of restrained scanning refinement
using five sorted modes for the maltodextrin binding protein
and DNA bound to the Catabolite Activator Protein (1G6N),
and the other structures are illustrated in the Supplementary
Material. Helices overlap very well for the maltodextrin bind-
ing protein, and the structure around the active site agrees
almost perfectly with the closed form. There is also room
for future improvements, since the unrestrained scanning or
minimization reached cRMS values of 1.26 Å, at the cost of
stability. The DNA structure bound to 1G6N moves signific-
antly to wrap around the protein—in particular, the middle
section agrees very well with the target state. Incidentally,
starting from this refined state it is actually possible to also
improve the protein (1G6N) structure from 2.3 to 1.82 Å.
While encouraging, this is not yet a general result; we are cur-
rently working on methods to allow simultaneous flexibility
in both ligand and receptor structures.

It is tempting but a bit risky to make predictions about the
actual in vivo docking process from these results. Induced fit
has sometimes been described alternatively as a selection of a
pre-existing state (67), where multiple receptor structures exist
in equilibrium and the introduction of the ligand displaces the
equilibrium towards the closed form. Normal mode refinement
can be viewed as a computational simulation of this process;
the variable normal mode amplitudes are simply introduced as
a way to generate a pre-existing ensemble of conformations
from a simple basis set, and non-bonded energy used to select
the most advantageous of these.

Only a single test case (1BER) was improved by
re-determining normal modes as the structure is deformed.
This agrees well with our previous results that the normal
mode eigenvectors of the open form usually is an excellent
basis for the closed and intermediate states normal modes (35).

One nice feature of normal mode refinement is that it always
produces realistic protein structures, containing very few steric
clashes. This is an expected result, because the elastic network
Hamiltonian is expressed as constraints in pairwise distance
space rij, and the low frequency normal modes tend to preserve
typical bonded interactions as well as secondary structure ele-
ments by construction, while emphasizing collective motions.
This also sets the limits of the model—this kind of refinement
will not be good at reproducing structural transitions involving
only local movements, such as loop rearrangements.

While the refinement protocol described here does not solve
the problem of ligand placement, which is crucial for success
of the method, it is fast enough to be incorporated in con-
junction with a docking algorithm, as suggested by Zacharias
et al. (8,40).

CONCLUSIONS

The efficiency of normal mode docking refinement without
experimental data is considerably better than what we first
expected, considering the absence of fitted parameters and
very simple energy functions. All six protein receptor systems
show cRMS improvements ranging from 0.3 to 3.2 Å
(12–65%) when the ligand was superimposed based on the
experimental coordinates. With errors in the ligand position, 5
of the 6 receptors are still improved by the refinement, and
the last one did not deteriorate—it was left at its initial con-
formation. Complications such as the dimer structure of the

citrate synthase turned out to be a non-issue after pre-scanning
and sorting of modes. For DNA bound to proteins, 2 of the 3 test
systems exhibit significant reduction of cRMS (from 8.4 to
4.8 Å, and 8.7 to 5.4 Å) while a third one stays close to the
initial cRMS value of 2.3 Å.

Two of the protein targets (maltodextrin binding protein and
citrate synthase) studied here have recently been used for
refinement based on X-ray structure factors (35), and another
two (Glutamine binding protein and HIV protease) to test
molecular replacement refinement (36). With the present
work, we achieve almost the same accuracy entirely without
experimental guidance.

The refinement appears to be most successful when the
transition between the states is well described by 2–3 low
frequency normal modes, not only in the obvious sense of
larger absolute cRMS improvements, but the optimization
also appears to attain a large fraction of the best possible
improvement for the modes used. This is not a severe limita-
tion, since Gerstein and coworkers (33) have shown that transi-
tions between alternate structures in the PDB usually can be
described with a handful of low-frequency elastic network
modes. Given the primitive energy function, the current imple-
mentation is primarily useful for low or medium resolution
refinement, but with more efficient discrimination that can
handle 25–30 modes it should be possible to approach
high-resolution refinement.

In conclusion, normal modes seem to provide a strikingly
simple but quite promising approach to refinement in general,
with or without experimental data. Source code for both
refinement and our newly developed fast all-atom normal
mode calculation is freely available by contacting either of
the authors, and a public web server implementation of the
algorithms is provided at http://lorentz.immstr.pasteur.fr/.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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25. Brünger,A.T. (1992) Free R value: a novel statistical quantity
for assessing the accuracy of crystal structures. Nature, 355,
472–475.

26. Go,N., Noguti,T. and Nishikawa,T. (1983) Dynamics of a small globular
protein in terms of low-frequency vibrational modes. Proc. Natl Acad. Sci.
USA, 80, 3696–3700.

27. Brooks,B.R. and Karplus,M. (1983) Harmonic dynamics of proteins:
normal modes and fluctuations in bovine pancreatic trypsin inhibitor.
Proc. Natl Acad. Sci. USA, 80, 6571–6575.

28. Levitt,M., Sander,C. and Stern,P.S. (1985) Protein normal-mode
dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.
J. Mol. Biol., 181, 423–447.

29. Tirion,M.M. (1996) Large amplitude elastic motions in proteins from a
single-parameter, atomic analysis. Phys. Rev. Lett., 77, 1905–1908.

30. Tama,F. and Brooks,C.L.,III (2002) The mechanism and pathway of
pH induced swelling in cowpea chlorotic mottle virus. J. Mol. Biol.,
318, 733–747.

31. Tama,F., Valle,M., Frank,J. and Brooks,C.L.,III (2003) Dynamic
reorganization of the functionally active ribosome explored by normal
mode analysis and cryo-electron microscopy. Proc. Natl Acad. Sci. USA,
100, 9319–9323.

32. Tama,F. and Sanejouand,Y.-H. (2001) Conformational change of proteins
arising from normal mode calculations. Protein Eng., 14, 1–6.

33. Krebs,W.G., Alexandrov,V., Wilson,C.A., Echols,N., Yu,H. and
Gerstein,M. (2002) Normal mode analysis of macromolecular motions in
a database framework: developing mode concentration as a useful
classifying statistic. Proteins, 48, 682–695.

34. Hayward,S., Kitao,A. and Berendsen,H.J.C. (1997) Model-free methods
of analyzing domain motions in proteins from simulations: a comparison
of normal mode analysis and molecular dynamics simulation. Proteins,
27, 425–437.

35. Delarue,M. and Dumas,P. (2004) On the use of low-frequency normal
modes to enforce collective movements in refining macromolecular
structural models. Proc. Natl Acad. Sci. USA, 101, 6957–6962.

36. Suhre,K. and Sanejouand,Y.-H. (2004) On the potential of normal-mode
analysis for solving difficult molecular-replacement problems.
Acta Crystallogr. D Biol. Crystallogr., 60, 796–799.

37. Tama,F., Miyashita,O. and Brooks,C.L.,III (2004) Normal mode based
flexible fitting of high-resolution structure into low-resolution
experimental data from cryo-EM. J. Struct. Biol., 147, 315–326.

38. Hinsen,K., Navaza,J., Stokes,D.L. and Lacapere,J.J. (2005) Normal
mode-based fitting of atomic structure into electron density maps:
application to sarcoplasmic reticulum Ca-ATPase. Biophys. J.,
88, 818–827.

39. Qian,B., Ortiz,A.R. and Baker,D. (2004) Improvement of comparative
model accuracy by free-energy optimization along principal components
of natural structural variation. Proc. Natl Acad. Sci. USA, 101,
15346–15351.

40. Zacharias,M. and Sklenar,H. (1999) Harmonic modes as variables to
approximately account for receptor flexibility in ligand-receptor docking
simulations: application to DNA minor groove ligand complex.
J. Comput. Chem., 20, 287–300.

41. Levitt,M. (1983) Protein folding by restrained energy minimization and
molecular dynamics. J. Mol. Biol., 170, 723–764.

42. Hinsen,K. (1998) Analysis of domain motions by approximate normal
mode calculations. Proteins, 33, 417–429.

43. Bahar,I., Atilgan,A.R. and Erman,B. (2001) Anisotropy of fluctuation
dynamics of proteins with an elastic network model. Biophys. J.,
80, 505–515.

44. Bahar,I., Atligan,A.R. and Erman,B. (1997) Direct evaluation of thermal
fluctuations in proteins using a single-parameter harmonic potential.
Fold. Des., 2, 173–181.

45. Delarue,M. and Sanejouand,Y.-H. (2002) Simplified normal mode
analysis of conformational transitions in DNA-dependent polymerases:
the elastic network model. J. Mol. Biol., 320, 1011–1024.

46. Lehoucq,R.B., Sorensen,D.C. and Yang,C. (1998) ARPACK Users’
Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly
Restarted Arnoldi Methods. SIAM, Philadelphia.

47. Durand,P., Trinquier,G. and Sanejouand,Y.-H. (1994) A new approach
for determining low-frequency normal modes in macromolecules.
Biopolymers, 34, 759–771.

48. Tama,F., Gadea,F.X., Marques,O. and Sanejouand,Y.-H. (2000)
Building-block approach for determining low-frequency normal modes
of macromolecules. Proteins, 31, 1–7.

49. Brooks,B.R., Bruccoleri,R.E., Olafson,B.D., States,D.J., Swaminathan,S.
and Karplus,M. (1983) CHARMM: a program for macromolecular
energy, minimization, and dynamics calculation. J. Comput. Chem.,
4, 187–217.

50. Eisenberg,D. and McLachlan,A.D. (1986) Solvation energy in protein
folding and binding. Nature, 319, 199–203.

51. Koehl,P. and Delarue,M. (1994) Polar and nonpolar atomic environments
in the protein core: implications for folding and binding. Proteins, 20,
264–278.

52. Byrd,R.H., Lu,P. and Nocedal,J. (1995) A limited memory algorithm for
bound constrained optimization. SIAM J. Sci. Stat. Comput., 16,
1190–1208.

53. Bayly,C.I., Cieplak,P., Cornell,W.D. and Kollman,P.A. (1993)
A well-behaved electrostatic potential based method using charge

Nucleic Acids Research, 2005, Vol. 33, No. 14 4505



restraints for determining atom-centered charges: the RESP model.
J. Phys. Chem., 97, 10269–10280.

54. Smith,G.R. and Sternberg,M.J. (2002) Predictions of protein–protein
interactions by docking methods. Curr. Opin. Struct. Biol., 12,
28–35.

55. Valencia,A. and Pazos,F. (2002) Computational methods for the
prediction of protein interactions. Curr. Opin. Struct. Biol.,
12, 368–373.

56. Mendez,R., Leplae,R., Maria,L. and Wodak,S.J. (2003) Assessment of
blind predictions of protein–protein interactions: current status of docking
methods. Proteins, 52, 51–67.

57. Chen,R., Mintseris,J., Janin,J. and Weng,Z. (2003) A protein–protein
docking benchmark. Proteins, 52, 88–91.

58. Kleywegt,G.J. and Jones,T.A. (1998) Databases in protein
crystallography. Acta Crystallogr. D Biol. Crystallogr., 54,
1119–1131.

59. Schuettelkopf,A.W. and van Aalten,D.M.F. (2004) ProDRG—
a tool for high-throughput crystallography of protein–ligand
complexes. Acta Crystallogr. D Biol. Crystallogr., 60,
1355–1363.

60. Hayward,S. (2004) Identification of specific interactions that drive
ligand-induced closure in five enzymes with classic domain movements.
J. Mol. Biol., 339, 1001–1021.

61. Daidone,I., Roccatano,D. and Hayward,S. (2004) Investigating the
accessibility of the closed domain conformation of citrate synthase using
essential dynamics sampling. J. Mol. Biol., 339, 515–525.

62. McLachlan,A.D. (1982) Rapid comparison of protein structures.
Acta Crystallogr. A, 38, 871–873.

63. Marques,O. and Sanejouand,Y.-H. (1995) Hinge-bending motion in
citrate synthase arising from normal mode calculations. Proteins, 23,
557–560.

64. Cui,Q., Li,G., Ma,J. and Karplus,M. (2004) A normal mode analysis of
structural plasticity in the biomolecular motor F(1)-ATPase. J. Mol. Biol.,
340, 345–372.

65. Lindahl,E., Hess,B. and van der Spoel,D. (2001) Gromacs 3.0: a package
for molecular simulation and trajectory analysis. J. Mol. Model., 7,
306–317.

66. Kaminski,G.A., Friesner,R.A., Tirado-Rives,J. and Jorgensen,W.L.
(2001) Evaluation and reparametrization of the OPLS-AA force
field for proteins via comparison with accurate quantum chemical
calculations on peptides. J. Phys. Chem. B, 105, 6474–6487.

67. Goh,C.-S., Milburn,D. and Gerstein,M. (2004) Conformational changes
associated with protein–protein interactions. Curr. Opin. Struct. Biol.,
14, 104–109.

68. Westhof,E., Dumas,P. and Moras,D. (1985) Crystallographic refinement
of yeast tRNA-Asp. J. Mol. Biol., 184, 119–28.

4506 Nucleic Acids Research, 2005, Vol. 33, No. 14


