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A translational genomics approach identifies IL10RB as the
top candidate gene target for COVID-19 susceptibility
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Recent efforts have identified genetic loci that are associated with coronavirus disease 2019 (COVID-19) infection rates and disease
outcome severity. Translating these genetic findings into druggable genes that reduce COVID-19 host susceptibility is a critical next
step. Using a translational genomics approach that integrates COVID-19 genetic susceptibility variants, multi-tissue genetically
regulated gene expression (GReX), and perturbagen signatures, we identified IL10RB as the top candidate gene target for COVID-19
host susceptibility. In a series of validation steps, we show that predicted GReX upregulation of IL10RB and higher IL10RB expression
in COVID-19 patient blood is associated with worse COVID-19 outcomes and that in vitro IL10RB overexpression is associated with
increased viral load and activation of disease-relevant molecular pathways.
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INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which causes coronavirus disease 2019 (COVID-19), is the latest of
the betacoronaviruses to pose a global health threat. Of the recent
respiratory virus pandemics, SARS-CoV-2 demonstrates the high-
est transmissibility1. Despite the fact that the overwhelming
majority of affected individuals have mild symptoms, infection-
fatality risk in an urban area of a developed country (e.g., New
York City) is still high, ranging from 1.4% for young adults (25–44
years old) to 19.1% for more susceptible older individuals (aged 75
years and older)2. Unexplained heterogeneity in susceptibility to
the disease and severity of illness exists, even when accounting for
known risk factors such as age3.
The COVID-19 Host Genetics Initiative (HGI)4,5 coordinates a

global effort to elucidate the genetic basis of COVID-19

susceptibility. Ongoing efforts have uncovered multiple risk loci
for COVID-19 susceptibility; however, these risk variants only partly
explain interindividual variability and, as many of the variants
reside within noncoding regions of the genome, the formulation
of testable hypotheses to elucidate their potential effects is
challenging. To translate these genetic findings into novel
therapeutics for COVID-19, we sought to prioritize druggable
gene targets by developing a multidisciplinary translational
genomics framework that integrates genetic studies of COVID-19
susceptibility, genotype-tissue expression datasets, and perturba-
gen signature libraries. We provide evidence from in vitro, in vivo,
and retrospective epidemiological studies that validate the
association of the top candidate gene, interleukin 10 receptor
subunit beta (IL10RB), with COVID-19 outcome severity. Overall,
our study identified gene targets with direct translational value to
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modulate host physiology and immune response, and increase
resilience to SARS-CoV-2 infection.

RESULTS
Overview of the multidisciplinary translational genomics
framework
We developed a translational genomics framework that integrates
three major sources of data (GWAS, genotype-tissue expression
datasets, and perturbagen signature libraries) to identify and
validate susceptibility genes for targeted therapeutics (Fig. 1). We
first integrated GWASs for COVID-19 phenotypes with multi-tissue
transcriptomic imputation models to predict genetically regulated
gene expression (GReX) changes associated with COVID-19
susceptibility (Fig. 1a; Output 1).
We developed and applied a gene prioritization approach

(Fig. 1b; Output 2) that integrates GReX with shRNA signature
libraries6 to identify key genes whose expression: (a) is predicted
to be dysregulated in COVID-19 susceptible individuals, and (b)
can be targeted to reverse the transcriptome-wide gene expres-
sion dysregulation that is associated with COVID-19 susceptibility.
From this prioritization step, we identified IL10RB as the top gene
target candidate, which we then subjected to three validation
steps. The first validation step was to increase phenotypic
specificity by examining whether IL10RB GReX is associated with
COVID-19 severity in patients that tested positive for SARS-CoV-2
(Fig. 1b: EHR validation). In addition, we performed a GReX-based
phenome-wide association study (PheWAS) to further understand
the effect of IL10RB on pre-existing relevant phenotypes (before
the emergence of COVID-19). The second validation step sought
to associate IL10RB gene expression in peripheral blood with
COVID-19 severity in a patient cohort (Fig. 1b: in vivo validation).
The third, and final, validation step involved isogenic manipulation
of IL10RB gene expression in vitro to study its effect on SARS-CoV-
2 viral load and transcriptional dysregulation (Fig. 1b: in vitro
validation).

COVID-19 transcriptome-wide association study
We performed a transcriptome-wide association study (TWAS)
leveraging 2 transformed cell lines and 40 peripheral tissue
models from two cohorts (GTEx: Genotype-Tissue Expression v87

and STARNET: Stockholm-Tartu Atherosclerosis Reverse Network
Engineering Task8; n= 16,738 reliably imputed genes; Supple-
mentary Table 1) by using GWAS summary statistics for COVID-19
phenotypes4 (Supplementary Table 2). Overall, for COVID-19
phenotypes, we observed a high correlation among the imputed
transcriptomes of different tissues (Supplementary Fig. 1), even
though the imputed transcriptomes of the COVID-19 phenotypes
are quite diverse (Supplementary Fig. 2; a more detailed
description of the different phenotypes can be found in the
Supplementary Information). 17 genes were significantly asso-
ciated with COVID-19 infection and outcomes (FDR-adjusted
p ≤ 0.05) when considering all COVID-19 phenotypes and 42
tissues: CCR1, CCR2, CCR3, CCR5, CXCR6, DNPH1, DPP9, IFNAR2,
IL10RB, IL10RB-AS1, KCNN3, KIF15, OAS1, OAS2, OAS3, PDE4A, and
TMEM241. Some of these genes were identified in more than one
COVID-19 phenotype (e.g., IL10RB and IFNAR2), whereas others
(e.g., OAS2) were only associated with one (Supplementary Fig. 3);
the GWAS contributing the highest number of gene-trait
associations is “hospitalized COVID vs. population” (B2 phenotype
as per COVID-19 HGI; 13 out of the 17 genes are captured;
Supplementary Fig. 3). We also observed that most gene-trait
associations are detected in Blood (STARNET), and Mammary
artery (STARNET), identifying 7 and 6 gene-trait associations,
respectively (Supplementary Fig. 4). For the remainder of our
analysis we thus focused on the B2 phenotype which we will refer
to as “COVID-19 associated hospitalization” as: (1) it is the highest

powered GWAS, and (2) conceptually, it captures genetic
determinants protecting individuals both from infection (since
the control group could have been SARS-CoV-2 negative or
nonhospitalized positive) and from severe outcomes of COVID-19.
Unsurprisingly, B2 exhibits moderate GReX correlation with both
these phenotypes (Supplementary Fig. 2).
When considering only the COVID-19-associated hospitalization

(B2) phenotype, we identified 88 gene-trait-tissue associations
corresponding to 26 unique gene-trait associations (AFF3, CCR1,
CCR2, CCR3, CCR5, CDCP1, CRHR1, CXCR6, DPP9, IFNAR2, IL10RB,
IL10RB-AS1, KANSL1-AS1, KCNN3, LINC02210, LRRC37A2, LRRC37A4P,
MAPT, OAS1, OAS3, PDE4A, PIGK, PLEKHM1, PSMD2, THBS3, ZNF778;
FDR-adjusted p ≤ 0.05 while only considering B2; Supplementary
Data 1–7 for all results split by COVID-19 phenotype) across 11
genomic regions (Fig. 2a for protein-coding genes). Testing a
multitude of tissues across different cohorts allowed us to detect
the consistent patterns of GReX dysregulation; for example, IL10RB
is FDR significant in nine different tissue models (Fig. 2a).
Significant genes (from at least one tissue) are enriched for
pathways mainly involved in immune host response (Fig. 2b); a
finding which is replicated when employing an LD-aware,
competitive pathway TWAS method (JEPEGMIX2-P9; Supplemen-
tary Data 8). Overall, these results indicate that genetically-
associated changes in genes involved in immune-related path-
ways predispose individuals to more severe COVID-19 outcomes.

Gene target prioritization identifies IL10RB as a key regulator
Towards prioritizing genes as putative molecular targets for
intervention, we next aimed to identify genes whose perturbation
is predicted to be therapeutic by antagonizing the GReX
associated with COVID-19 susceptibility. Using a computational
shRNA antagonism approach10,11 (Supplementary Fig. 5), whose
output we integrated with the TWAS findings, we identified IL10RB
as the top most significant candidate for gene targeting (Fig. 2c).
IL10RB was predicted to be significantly upregulated in individuals
susceptible to COVID-19 hospitalization, with downregulation
predicted to significantly antagonize the polygenetically driven
gene expression differences associated with COVID-19 hospitaliza-
tion (Supplementary Fig. 5). In mouse models, IL10RB over-
expression was shown to increase susceptibility to lethal bacterial
superinfections in the lungs via postviral increased IL-10 signaling,
which dampens the immune response12, and by direct disruption
of the lung epithelial barrier through increased expression of type
III interferons (IFNλ)13. IFNAR2, which is FDR significant in the TWAS
and in the same locus as IL10RB (less than 2kbp from IL10RB), was
not significant in this analysis, thereby nominating IL10RB as the
most promising candidate in the locus while deprioritizing IFNAR2.
Since this was a new approach, we tested both IL10RB and IFNAR2
in our downstream analyses to determine how well our
prioritization strategy performed in differentiating candidate
genes in such close proximity to one another.

Predicted upregulation of blood IL10RB is associated with
COVID-19 severity and increased incidence of respiratory
failure
The COVID-19-related hospitalization GWAS utilized a broadly-
defined phenotype to increase cohort inclusion and sample size.
To enhance granularity and phenotyping depth of IL10RB GReX
association with COVID-19 associated hospitalization, we deter-
mined whether predicted upregulation of blood IL10RB was a
good predictor of COVID-19 outcome severity and death in
individuals who tested positive for SARS-CoV-2. We performed
individual GReX imputation and association analysis in the VA’s
Million Veteran Program (MVP)14, where the severity of COVID-19-
related outcomes was deduced from EHR of COVID-19 positive
cases (n= 23,226; cohort characteristics in Supplementary
Table 3). IL10RB GReX was associated with increased incidence of
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a Integration of multi-tissue imputed transcriptome for COVID-19
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b Gene target prioritization
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Expression data and EHR 
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Fig. 1 Data-driven GReX (genetically regulated gene expression)-based approach for molecular target prioritization for COVID-19.
a Multi-tissue (n= 42) transcriptome-wide association study using: (1) GWAS summary statistics from the COVID-19 Host Genetics Initiative for
COVID-19 phenotypes, and (2) transcriptomic imputation models trained in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network
Engineering Task) and GTEx (Genotype-Tissue Expression) cohorts. b Gene target prioritization via integration of multi-tissue transcriptomes
(17 FDR-significant tissues for COVID-19 associated hospitalization) with perturbational transcriptomic profiles from LINCS (library of
integrated network-based cellular signatures) identified IL10RB as the top candidate. In a series of validation experiments we found that: (1)
blood IL10RB genetically regulated gene expression (GReX) is associated with COVID-19 severity in the VA’s Million Veteran Program—“EHR
validation”, (2) COVID-19 severity was associated with increased assayed IL10RB expression in patients’ blood—“in vivo validation”, and (3)
increasing IL10RB expression resulted in higher SARS-CoV-2 viral load in two different model cell systems for SARS-CoV-2 infection and
replication—“in vitro validation”.
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COVID-19 related death in individuals of European descent (EUR;
logistic regression; OR= 1.13; Bonferroni-adjusted p= 0.01;
n= 14,262) and in the trans-ethnic meta-analysis (logistic regres-
sion; OR= 1.12; Bonferroni-adjusted p= 0.002; n= 23,226) (Fig. 3a
and Supplementary Fig. 6); IFNAR2 GReX was not associated with
COVID-19 death. However, both IL10RB and IFNAR2 GReX are
associated with more severe COVID-19 clinical outcomes in EUR,
participants of African descent (AFR), and in the trans-ethnic meta-
analyses (ordinal logistic regression; Fig. 3a and Supplementary
Fig. 6; Supplementary Table 4). It is important to note the

association with severity or death controls for age, sex, Elixhauser’s
comorbidity score15, and ancestry-specific population structure
(Fig. 3a).
To better understand the phenotypic variation linked with

IL10RB and IFNAR2 imputed expression, we next performed a
phenome-wide association study (PheWAS) utilizing the IL10RB
and IFNAR2 GReX models in MVP (Fig. 3b; cohort characteristics in
Supplementary Table 3; Supplementary Data 9 for a complete set
of results). For IL10RB, among significant results, we found that
COVID-19-related GReX dysregulation (higher IL10RB GReX in the
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blood) was positively associated with respiratory failure and
tracheostomy complications and disorders of the circulatory
system such as heart aneurysms and non-rheumatic mitral valve
disorders, as well as cholecystitis without cholelithiasis and
inflammatory conditions of the jaw. On the other hand, IL10RB
was negatively associated with intracerebral hemorrhage, infec-
tions of the skin (e.g., lower limb cellulitis) and genitourinary
system (e.g., cystitis and urethritis), type 1 diabetes, kidney disease
(e.g., renal osteodystrophy), schizophrenia, functional disorders of
the digestive system and bladder, and overall unspecified debility
and sequela. COVID-19-related IFNAR2 GReX dysregulation (lower
IFNAR2 GReX in the blood) shares some positive associations with
IL10RB, including respiratory failure and heart aneurysms, but is
independently associated with congestive heart failure, (chronic)
renal failure and dialysis, delirium dementia, stomach cancer, and
antisocial/borderline personality disorder. Furthermore, we also
identified negative associations with cerebral ischemia, specific
infections (cellulitis of foot, toe, and pyoderma, acute osteomye-
litis), arthropathies, functional disorders of the digestive system
and bladder, and overall unspecified debility and sequela. Overall,
in addition to predisposing individuals to COVID-19-related
hospitalization and outcome severity, increased IL10RB and
decreased IFNAR2 GReX are associated with respiratory failure
independent of COVID-19 exposure.

Increased IL10RB blood expression predicts worse COVID-19
outcome
Transcriptome imputation models can only partially explain the
variance in observed IL10RB and IFNAR2 gene expression (R2CV is
0.099 and 0.278, respectively). To further confirm the association
of IL10RB with COVID-19 severity, we utilized blood gene
expression profiling data from COVID-19 patients and controls at
the Mount Sinai COVID-19 Biobank16 (cohort characteristics in
Supplementary Table 5 and Supplementary Table 6). We
established a direct significant association between observed
blood IL10RB expression and severe COVID-19 outcomes, includ-
ing end-organ damage. The levels of IL10RB expression gradually
increased with disease severity with a higher effect size in the
most severe COVID-19 patient group (end-organ damage) against
all other groups (Fig. 4a). Similar analysis for blood IFNAR2 gene
expression failed to demonstrate a robust association.

IL10RB overexpression increases in vitro SARS-CoV-2 viral load
It has recently been shown that SARS-CoV-2 viral load in patients is
associated with increased disease severity and mortality17. To
explore the effect of IL10RB expression on SARS-CoV-2 viral load,
we performed a series of in vitro experiments where we
manipulated gene expression levels with a short hairpin (shRNA;
for downregulation) and clustered regularly interspaced short
palindromic repeats activation (CRISPRa; for upregulation) and
quantified SARS-CoV-2 viral load (Fig. 4b). Overall, we tested (in
technical triplicates) downregulation of IL10RB (and IFNAR2) by

shRNA (Supplementary Fig. 7; Supplementary Fig. 8) and
upregulation of IL10RB by CRISPRa (by using four different guide
RNAs; Fig. 4c). We performed these experiments in NGN2-
glutamatergic postmitotic neurons18 derived from human induced
pluripotent stem cells (hiPSCs). These cells are permissive to SARS-
CoV-2 and, therefore, can serve as a model cell system for SARS-
CoV-2 infection19. Importantly, for the same COVID-19 phenotype
(B2), IL10RB brain GReX has the same direction of predicted
dysregulation (z-score= 5.53; dorso-lateral prefrontal cortex)20 as
the STARNET blood (z-score= 6.06) and GTEx lung (z-score= 3.02)
models in this study. Indeed, we found that the gene expression
dysregulation caused by SARS-CoV-2 infection in our model cell
system mimics the transcriptional signatures corresponding to
SARS-CoV-2 (and other betacoronaviruses) infection of a diverse
range of cell types21 (Fig. 4d; Supplementary Fig. 9).
We observed a significant increase in SARS-CoV-2 viral load (Fig.

4c; p= 0.0087; unpaired t-test) after IL10RB overexpression using
four different guide RNAs (gRNAs) (Fig. 4c and Supplementary
Table 7). Competitive pathway enrichment analysis demonstrated
that overexpressing IL10RB in uninfected cells leads to the
induction of COVID-19 relevant pathways implicated in vascular,
immune system, and extracellular matrix processes (Fig. 4d), which
were also activated by SARS-CoV-2 infection (Fig. 4d). Surprisingly,
even in the absence of SARS-CoV-2, IL10RB overexpression leads to
transcriptional changes reminiscent of betacoronavirus infection
(Supplementary Fig. 9). In the rescue experiment, shRNA knock-
down of IL10RB did not reduce IL10RB levels robustly, most likely
due to low basal expression (Supplementary Fig. 7; Supplementary
Table 8); it is worth noting that basal IL10RB expression has been
shown to be low in all cell types from lung, heart, liver, and
kidney22. We were also able to successfully knock down IFNAR2
(higher basal expression; Supplementary Fig. 8; Supplementary
Table 8), leading to a decrease in SARS-CoV-2 load. Interestingly,
SARS-CoV-2 infection-induced expression of IFNAR2 (Supplemen-
tary Fig. 8; Supplementary Table 9) but not IL10RB (Supplementary
Fig. 7; Supplementary Table 9). This suggests that the increased
IFNAR2 (but not IL10RB) levels observed in the most severe group
of COVID-19 patients (Fig. 4a) may reflect the increased likelihood
of SARS-CoV-2 viremia in those patients17.
The effect of IL10RB and IFNAR2 expression levels on SARS-CoV-

2 viral load was replicated in A549-ACE2 cells, which constitute a
more relevant cellular context for COVID-19 infection. A549-
ACE223 is a human alveolar basal epithelial carcinoma cell line
(A549) that constitutively expresses ACE2 (the host receptor
required for SARS-CoV-2 entry) and is able to support SARS-CoV-2
infection and replication24. Specifically, we verified that IL10RB
expression is positively correlated with SARS-CoV-2 viral load via
siRNA-mediated knockdown of IL10RB and exogenous IL10RB
overexpression (Pearson’s r= 0.88, p= 8.5 × 10–4; Supplementary
Fig. 10; Supplementary Table 10). Consistent with the findings
above in NGN2 cells, we also found that IFNAR2 levels are
positively correlated with viral load (Pearson’s r= 0.92,
p= 4.7 × 10−5; Supplementary Fig. 10; Supplementary Table 10).

Fig. 2 Transcriptome-Wide Association Study (TWAS) for COVID-19-associated hospitalization (hospitalized COVID vs. the general
population) identifies associated genes, pathways, and aids in identification of druggable gene targets. a FDR-significant TWAS results for
COVID-19 susceptibility across all tissues. Box color indicates gene-trait-tissue association z-scores. Gray squares represent genes whose
genetically regulated gene expression (GReX) could not be imputed. ***, **, and * correspond to FDR-adjusted p-values of association equal or
less than 0.001, 0.01, and 0.05 respectively. Dendrogram on the bottom edge is shown from Ward hierarchical clustering for tissues based on
all GReX (not just FDR-significant results). Displayed results are limited to protein-coding genes; cytogenetic location (at band level resolution)
is also provided on the left of each gene. b Enrichment of COVID-19 TWAS associated genes for biological processes and canonical pathways.
Odds ratio with 95% confidence interval (CI) is plotted for the significant enrichments of TWAS gene-trait associations from all tissues.
Pathways are ranked based on estimated enrichment odds ratio. Analysis is limited to protein-coding genes and excludes genes residing in
the major histocompatibility complex (MHC) on chromosome 6. Enrichments that are FDR significant are annotated as follows: *, **, and ***
for FDR-adjusted p ≤ 0.05, 0.01, and 0.001 respectively; Fisher’s exact test. c Prioritization of candidate gene targets to reverse TWAS gene-trait
associations. p-value is estimated based on the joint statistic of two approaches (zcombined ¼ zTWAS þ pseudo zGReX antagonism) against the null.
FDR-significant candidate genes are labeled orange. The direction of the predicted therapeutic intervention (upregulation or downregulation)
is illustrated. IL10RB, PMVK, and ZNF426 are FDR-significant target genes (n= 4302 imputed genes with reliable shRNA signatures).
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DISCUSSION
Our multidisciplinary translational genomics framework integrates
GReX and perturbagen signature libraries to identify druggable
gene targets for COVID-19 (Fig. 1). Transcriptomic imputation11,25,26

serves as the genomics backbone of this approach, and it trades off
a part of SNP heritability in exchange for GReX27 which has
translational potential. We first performed TWAS for all publicly
available GWASs for different COVID-19 phenotypes from the

a
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COVID-19 outcome severity information was available. For COVID-19-related death (left panel) we checked the association of GReX with the
outcome of COVID-19 related death (4.8% of this cohort) under logistic regression models for IL10RB and IFNAR2 GReX, while adjusting for age,
sex, Elixhauser’s comorbidity score, and ancestry-specific population structure. For COVID-19 outcome severity, we applied an ordinal
regression model (same predictors and covariates as above) using an outcome scale corresponding to mild (74.9% of the cohort), moderate
(17%), severe (3.2%) COVID-19 related outcomes, and death (4.8%). EUR, AFR, and HIS refer to harmonized European, African and Hispanic
ancestry respectively and the sample sizes are provided in the legend at the top. For both panels, a population of Asian ancestry (n= 266) was
included in the fixed effects meta-analysis (Population: “ALL” in the graph) but not plotted. ***, **, and * correspond to Bonferroni-adjusted
association p-values (for ngenes × noutcomes for each population cohort) of equal or less than 0.001, 0.01, and 0.05 respectively. Error bars show
95% CI. b Phenome-wide association study (PheWAS) of IL10RB and IFNAR2 blood GReX for individuals of European descent in the MVP cohort
(n= 296,407). Phenotypes are grouped in categories shown in the x-axis, while the y-axis represents −log10(Bonferroni-adjusted p-values).
Triangles represent data points for positive (pointing up) and negative (pointing down) association with GReX; triangle size indicates the
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and blue for IL10RB); full results are provided in Supplementary Data 9. The horizontal black line corresponds to Bonferroni-adjusted p= 0.05.
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COVID-19 Host Genetics Initiative (Supplementary Table 2) and
decided to base our downstream analyses on the COVID-19-
associated hospitalization vs. population phenotype. We would
have preferred to use a GWAS that compares severe, or
hospitalized, COVID-19 cases against milder cases (infected
controls), but these studies are not sufficiently powered (Supple-
mentary Table 2); in retrospect, neither the flagship paper of the

COVID-19 Host Genetics Initiative5, nor other TWAS-based studies
of COVID-1928,29, considered the GWASs based on these case/
control definitions. Finally, when interpreting TWAS results, we
have to take into account that there are differences in the cohort
eligibility and sample collection between cohorts, which will be
reflected in the TWAS results. For example, in the STARNET cohort,
blood was collected from beating heart donors, whereas in GTEx
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the samples were obtained mostly (but not exclusively) post-
mortem. Taking into account that IL10RB has been shown to be
significantly (FDR= 4.55 × 10−35) differentially expressed in pre-
and postmortem blood samples in GTEx30, we should be cautious
when, e.g., directly comparing findings for blood tissue between
these two cohorts.
For our novel gene target prioritization approach, we integrated

the multi-tissue TWAS results with an shRNA signature library6 to
identify genes whose perturbation can reverse the disease-
associated GReX. This shRNA GReX antagonism approach identi-
fied IL10RB (21q22.11) as the most promising gene target and
overcame traditional limitations of GWAS and TWAS analyses by
identifying key genes within a gene cluster. Based on existing
approaches, IL10RB would not have been the top candidate for
further investigation. First, the index SNP for COVID-19 suscept-
ibility in 21q22.11, rs130507285, falls within an intronic region of
IFNAR2 (less than 24kbp from IL10RB). In addition, integrating
genotype-gene expression datasets cannot identify the most likely
causal gene in this locus since the index SNP is associated with
gene expression changes of both IFNAR2 and IL10RB5. Similarly,
the genes can only be partially prioritized with targeted individual
imputation (Fig. 3a; IFNAR2 is not associated with COVID-19 death
but is associated with COVID-19 severity) and cannot be prioritized
with TWAS based on summary statistics (Fig. 2a) even when
considering splicing28 due to co-regulation31 (Supplementary Fig.
11). Finally, Mendelian randomization from the VA Million Veteran
Program COVID-19 Science Initiative identified both IFNAR2
(p= 9.8 × 10−11) and IL10RB (p= 2.3 × 10−14) with good colocali-
zation properties (PP.H4 > 0.8) and suggested a bigger role for
IFNAR2 based on PheWAS and pathway enrichment analysis for
peak instrumental variants32. In our approach, IL10RB was
prioritized primarily because its downregulation in cell lines
reverses the GReX signature of COVID-19 and, secondarily,
because it has a more uniform imputed transcriptional dysregula-
tion across tissues (predominant downregulation; Fig. 2a, Supple-
mentary Fig. 12). On the other hand, IFNAR2 is expected to be
upregulated in some tissues and downregulated in others28 (Fig.
2a, Supplementary Fig. 12), e.g., there was a consistent, predicted,
downregulation in adipose tissue and an opposing upregulation
in muscle tissue (Supplementary Fig. 13). Unfortunately, techno-
logical innovations that would allow differential targeting of
tissues are not readily available; thus, our gene target prioritization
approach inherently penalizes opposing effects on GReX by
integrating multiple tissues (Supplementary Fig. 5). Our study
confirms that IFNAR2 is important for COVID-19 susceptibility29,32;
however, we prioritized IL10RB over IFNAR2 as a suitable gene
target for novel therapeutic development. To our knowledge,
there is one other data-driven study that also nominated IL10RB
from this locus by integrating information derived from single-
cell/single-nucleus expression profiling of COVID-19 and healthy
tissues (lung, ear, liver, and kidney)22.
Toward validating IL10RB as a suitable molecular target, we

established a direct association between increased IL10RB GReX
(Fig. 3a) and expression (Fig. 4a) with worse COVID-19 clinical

outcomes and death. Importantly, these results provide external
validity for our findings beyond individuals of European ancestry
(EA)33 by performing ancestry-specific analysis for GReX (Fig. 3a)
and leveraging a diverse patient cohort for expression profiling
(Fig. 4a). Since available multi-tissue reference training datasets
comprise mostly EA subjects, there are limitations when perform-
ing non-EA GReX association analyses; e.g., differential coverage of
SNP predictors across different ancestry groups (Supplementary
Table 11). Overall, EA-derived imputation models perform better in
similar EA target populations33, and a decrease in relative power is
observed when performing trans-ethnic association studies where
gene-trait associations reach significance only in EA-specific and
not the trans-ethic analysis34. However, despite these limitations,
we did observe good concordance among the ancestry groups in
our study (Fig. 3a). Male sex is a strong risk factor for COVID-19;
while sex-specific analyses were not performed due to power
considerations, both of these analyses were adjusted for sex.
Finally, isogenic manipulation of IL10RB in a model cell system for
SARS-CoV-2 using NGN2 cells19 revealed that inducing IL10RB
expression led to priming of SARS-CoV-2 pathways (Fig. 4d) and
increased SARS-CoV-2 viral load upon infection (Fig. 4c) which is
associated with worse COVID-19 outcomes17. A limitation of this
part of the study is the model cell system that we utilized (NGN2
cells); however, this was the only cell system available to us during
the challenging times of the pandemic with the capability to
perform isogenic overexpression. NGN2 cells have transcriptional
regulatory pathways that may differ from e.g., innate immune
cells; however, we found that SARS-CoV-2 infection in this cell
system mimicked the transcriptional signatures corresponding to
SARS-CoV-2 infection of a diverse range of cell types21 (Fig. 4d;
Supplementary Fig. 9) and identified SARS-CoV-2-relevant path-
way dysregulation. Finally, the effect of IL10RB and IFNAR2
expression on SARS-CoV-2 viral load was replicated in a lung
alveolar cell line which is a more relevant model system for
COVID-1924.
It was recently shown that IL10RB is significantly upregulated (z-

score= 4.16) in ciliated cells in COVID-19 compared with healthy
lung22. IL10RB serves as a receptor for members of the extended
IL-10 family of cytokines (IL10RA2IL10RB2 heterotetramer for IL-10;
IL10RB heterodimers with IL22RA1, IL20RA, and IFNLR1 for IL-22,
IL-26 and IFNL1/IFNL2/IFNL3 respectively) which emerged before
the adaptive immune response and are essential in modulating
host defense mechanisms, especially in epithelial cells, to limit the
damage caused by viral and bacterial infections35. This family of
ligands has diverse and often contradicting roles in host response
with an undetermined extent of functional crosstalk between
them36; thus, further molecular dissection will be required to
identify the causal signaling pathway(s) of IL10RB in COVID-19
susceptibility. IL-10 was found to be an important mediator of
enhanced susceptibility to respiratory postviral bacterial super-
infections in a mouse model12. IL-22 promotes antibacterial
activity37 and enhances tissue regeneration and wound healing38.
IL-26 is poorly understood. Finally, IFN-λs(IL-28/IL29) are induced
by a viral infection and show antiviral activity39,40; unsurprisingly,

Fig. 4 Increased IL10RB expression is associated with worse COVID-19 outcomes in vivo and increased SARS-CoV-2 viral load in vitro.
a Increased IL10RB expression is associated with worse COVID-19 outcomes in vivo. *, **, and *** for FDR-adjusted p (FDR) ≤ 0.05, 0.01, and
0.001, respectively. Error bars show 95% CI. b In vitro experimental overview. c CRISPRa gRNAs (IL10RB-1, IL10RB-2, IL10RB-3, and IL10RB-4)
were used to overexpress IL10RB in hiPSC-derived NGN2-glutamatergic neurons. ***, **, and * correspond to p-values from the linear model of
equal or less than 0.001, 0.01, and 0.05, respectively. For the SARS-CoV-2 viral load (right panel) we performed pairwise comparison with
unpaired t-test; ***, **, and * correspond to p values equal to, or less than, 0.001, 0.01, and 0.05, respectively. d Competitive gene set
enrichment analysis in hiPSC-derived NGN2 glutamatergic neurons. Each row represents a different experimental condition and each column
a different gene set; the top row shows the effect of SARS-CoV-2 infection, while the remaining rows show the effect of gene manipulation
(e.g., IL10RB vs. nontargeting siRNA) within a specific group (e.g., CoV(−): uninfected cells). The left side of the plot (Gene ontology gene sets;
white background) indicates enrichment for canonical pathways and biological processes that are significantly enriched (FDR < 0.05) in SARS-
CoV-2 infection (top row), while the right side (Betacoronavirus Gene sets; gray background) illustrates enrichment for gene sets that
correspond to betacoronavirus infections across different cell systems21 (only significant results are shown; FDR < 0.05).
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in a COVID-19 mouse model, administration of IFN-λ1a led to
diminished SARS-CoV-2 replication41. However, the participation
of IFN-λs in damaging pro-inflammatory responses remains to be
evaluated since recent mouse model studies showed that: (1) viral
RNA-induced IFN-λ production causes direct disruption of the lung
epithelial barrier and increases susceptibility to bacterial super-
infections13, and (2) IFN-λ signaling aggravates viral infection by
impairing lung epithelial regeneration42. Clinical outcomes from
pegylated IFN-λ1a clinical trials against COVID-19 will provide
evidence about the desired modulation direction of this pathway
in COVID-19 treatment (phase II clinical trials: NCT04343976,
NCT04354259, NCT04534673, and NCT04344600). Possible next
steps include the evaluation of readily available IL-10 neutralizing
antibodies (e.g., BT063, Biotest; NCT02554019) and IL-22 neutraliz-
ing antibodies (e.g., ILV-094/095, Pfizer). While the molecular
dissection of this COVID-19 susceptibility pathway is important,
transiently downregulating IL10RB with RNA interference43 may be
sufficient if a lung targeting approach is developed.

METHODS
Transcriptome-wide association study
Transcriptomic imputation model construction. Transcriptomic
imputation models were constructed as previously described11 for
peripheral tissues of the GTEx v87 (excluding brain and tissues with
n ≤ 73) and STARNET8 cohorts (Supplementary Table 1; Fig. 1a). The
genetic datasets of the GTEx and STARNET cohorts were uniformly
processed for quality control (QC) steps before genotype imputa-
tion. We restricted our analysis to samples with European ancestry
as previously described11. Genotypes were imputed using the
University of Michigan server44 with the Haplotype Reference
Consortium (HRC) reference panel45. Gene expression information
was derived from RNA-seq gene-level counts, which were adjusted
for known and hidden confounds, followed by quantile normal-
ization. For GTEx, we used publicly available, quality-controlled
gene expression datasets from the GTEx consortium (http://
www.gtexportal.org/). RNA-seq data for STARNET were obtained
in the form of residualized gene counts from a previously published
study8. For the construction of the transcriptomic imputation
models, we used elastic net-based methods; when epigenetic
annotation information46 was available for a given tissue, we
employed the EpiXcan11 method to maximize power; when not
available, we used the PrediXcan25 method.

COVID-19 phenotypes GWAS summary statistics. Summary statis-
tics for all 7 COVID-19 phenotypes (A1, A2, B1, B2, C1, C2, and D1;
Supplementary Table 2) were obtained from the COVID-19 Host
Genetics initiative4 (Release 4; 2020-10-20; https://
www.covid19hg.org/results/r4/).

Multi-tissue transcriptome-wide association study (TWAS). We
performed the gene-trait association analysis as previously
described11. Briefly, we applied the S-PrediXcan method26 to
integrate the COVID-19 GWAS summary statistics and the
transcriptomic imputation models constructed above to obtain
gene-level association results.

Gene set enrichment analysis for TWAS results. To investigate
whether the genes associated with a given trait exhibit enrich-
ment for biological pathways, we used gene sets from MsigDB
5.147 and filtered out nonprotein coding genes, genes located at
MHC, as well as genes whose expression could not be reliably
imputed. Statistical significance was evaluated with one-sided
Fisher’s exact test and the adjusted p values obtained by the
Benjamini–Hochberg method48. We also performed separately LD-
aware TWAS pathway enrichment analysis with JEPEGMIX2-P9

v01.1.0 with SNP and gene set annotations v0.3.0.

Genetically regulated gene expression (GReX-) based gene
targeting approach
The gene targeting approach integrates genetically regulated
gene expression (GReX) information (using the TWAS gene-trait-
tissue association results) with a perturbagen signature library6

(Fig. 1).

Perturbagen Library used. We used the LINCS Phase II L1000
dataset (GSE70138) perturbagen reference library6; specifically the
shRNA signatures (gene expression changes after knocking down
a gene). All inferred genes (AIG; n= 12,328) were considered. Only
“gold” signatures were considered.

Imputed transcriptomes used. We only considered GReX from 17
EpiXcan tissue models of the B2 phenotype that had significant
TWAS results (FDR adjustment was applied to all COVID-19
phenotypes and tissues; Supplementary Table 1; the steps of the
method are also outlined in Supplementary Fig. 5).

Signature antagonism of trait GReX. Each signature from the
shRNA signature library (e.g., IL10RB shRNA treatment for 96 h in
MCF7 cells) was assessed and ranked for its ability to reverse the
trait-associated imputed transcriptomes using a previously pub-
lished CDR method10.

Summarization of the effect of signatures across tissues. Signatures
were grouped by peturbagen (shRNA), and we first tested whether
the signatures for a specific perturbagen were more likely to be
ranked higher or lower (Mann–Whitney U test). Then, we obtained a
perturbagen-specific GReX antagonism pseudo-z-score which is
defined as the negative Hodges-Lehmann estimator (of the median
difference between that specific shRNA vs. the other shRNAs) divided
by the standard deviation of the ranks of the shRNAs as follows:
pseudo zGReX antagonism ¼ � Hodges�Lehmann estimatorperturbagen

SD average ranks of all perturbagens . A positive
pseudo-z-score is interpreted as a potential therapeutic candidate,
whereas a negative pseudo-z-score would suggest that the shRNA is
not antagonizing the imputed transcriptome and is thus likely to
exacerbate the phenotype. FDR is estimated with the
Benjamini–Hochberg procedure48. All shRNAs were considered.

Gene prioritization approach. For prioritization, we estimated, for
each gene, the p-value corresponding to the joint statistic of the
two approaches zcombined ¼ zTWAS þ pseudo zGReX antagonism

� �
.

IL10RB and IFNAR2 GReX association with COVID-19 severity
and other phenotypes in the Million Veteran Program
Cohort. Within the broader cohort of the Million Veteran
Program14, for the COVID-19 severity analysis we used all
COVID-19-positive individuals as of March 11, 2021 (nEUR= 14,262,
nAFR= 5828, nHIS= 2870, nASN= 266; EUR: European; AFR: African;
HIS: Hispanic; ASN: Asian) from MVP release 4. For the phenome-
wide association study (PheWAS), we used individuals of European
Ancestry (n= 296,407) from MVP release 3. Ancestries were
defined by the HARE method49. Genotypes used for imputation
were filtered by Minor Allele Frequency (>0.01), Variant level
Missingness (<0.02), as well as imputation R2 (>0.9). We
considered the MVP severity cohort an independent cohort from
the GWAS since less than 7% (1519) of its participants were
included in the COVID-19-related hospitalization GWAS
(“B2_ALL_eur_leave_23andme”; release 4), comprising less than
7% and 0.2% of the GWAS’s cases and total individuals,
respectively. For the individual imputation, we used the EpiXcan
tissue model of blood from the STARNET cohort for the following
reasons: (1) as tissue, blood is relevant (immune cells) and
accessible—allowing for testing and validation, and (2) as an
imputation model, the blood (STARNET) is the most powerful
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model (identifying the most FDR-significant gene-trait associa-
tions; Supplementary Fig. 4), allows the concurrent study of both
IL10RB and IFNAR2 (Fig. 2a), and is based on collection from
beating heart donors (in contrast to the GTEx model which is
based mostly on postmortem blood). These analyses were
conducted under the protocol “VA Million Veteran Program
COVID-19 Science Initiative”, which was approved by the Veterans
Affairs Central Institutional Review Board and by the Research &
Development Committee at the James J. Peters VA Medical
Center.

Phenotypes. There are four COVID-19 severity levels: mild,
moderate, severe, and death (see Supplementary Table 12 for
more information on the phenotypic definition and counts).

Transcriptomic imputation. GReX for blood IL10RB and IFNAR2
was calculated with the EpiXcan11 Blood (STARNET) transcriptomic
imputation model (Supplementary Table 1). For TWAS, we only
considered SNPs with imputation R2 ≥ 0.3. Ancestry-specific
principal component analysis was performed using the EIGEN-
SOFT50 v6 software as previously described51.

GReX association with COVID-19 severity. Associations of GReX
and COVID-19 severity (Supplementary Table 12) were indepen-
dently performed in each ancestry group. All associations were
performed on scaled GReX with the following covariates:
Elixhauser comorbidity index15 for 2 years, sex, age, age squared
(age2), and top 10 ancestry-specific principal components. To
estimate the effect of GReX on COVID-19-related death, we used a
logistic regression analysis (binomial distribution) where death
was defined as “1”, while mild, moderate, and severe cases were
defined as “0”. To estimate the effect of GReX on COVID-19-related
outcome severity, we performed an ordinal logistic regression
where COVID-19 severity was ordered as follows: mild, moderate,
severe, and death. The ancestry-specific associations were meta-
analyzed with a fixed-effect model using the inverse-variance
method to estimate the effect of IL10RB and IFNAR2 GReX in the
total population.

GReX PheWAS. Phecodes52 assigned to clinical encounters up to
2018 (predating the COVID-19 pandemic) were grouped into
categories using Phecode Map v1.2 with manual curation for some
uncategorized phecodes (as provided in Supplementary Data 10).
All phecodes with at least one count in more than 25 individuals in
the cohort were considered for further analysis. Association
testing was performed between scaled GReX and counts of each
phecode with a negative binomial distribution—this is the
appropriate distribution to capture the full range of phecode
counts since variance was higher than the mean phecode count in
99.95% of the phecodes evaluated (1840/1841; the only exception
was “Other disorders of purine and pyrimidine metabolism”). The
following covariates were used: total number of phecodes per
individual, length of the record, sex, age, and top 10 ancestry-
specific principal components. Phecodes with nonconvergent
regression models were dropped. Significance was tested at the
0.05 false discovery rate (FDR) level.

Gene expression profiling and EHR-based phenotyping in the
Mount Sinai COVID-19 Biobank
Bio-specimens for this analysis were obtained from 568 indivi-
duals16; some of whom (n= 392) contributed more than one bio-
specimen. The complete biobank dataset and analyses will be
presented in Thompson et al.53.

RNA-seq gene expression profiling. RNA was extracted from whole
blood samples and used to prepare RNA-seq libraries which were
quality controlled and sequenced, as previously described53,54. In

addition, we confirmed that no samples were mislabeled. RNA-seq
reads were processed, quality controlled, and aligned to a
reference genome as previously described53,54. After removing
lowly expressed genes (keeping genes with counts per million >1
in at least half of the number of control subjects in the cohort), we
normalized the raw count data of the 21,194 remaining genes
using voom55 with dream56 weights from the variancePartition R
package57. Samples that failed to pass all quality controls were
removed from further analyses. Principal component analysis was
performed using the prcomp R function to explore covariate effect
on gene expression variance genome-wide. Batch effect was
calculated on a per gene basis using technical replicates
sequenced in all batches, as previously described53. The following
additional covariates were included in the model: Subject ID,
number of days since first blood sample, RNA Library Prep Plate,
Sex, DV200 Percent, and PICARD metrics PCT_R2_TRANSCRIPT_-
STRAND_READS, PCT_INTRONIC_BASES, WIDTH_OF_95_PERCENT,
MEDIAN_5PRIME_BIAS, MEDIAN_3PRIME_BIAS53. Cell type propor-
tions were calculated with CIBERSORTx58 using the LM22
reference53,59. COVID-19 severity-associated cell types are identi-
fied as having nonzero coefficients in a linear mixed model lasso
procedure (R package glmmlasso) predicting COVID-19 severity53.
Finally, we used dream56 (a precision-weighted linear mixed
model to consider repeated measures) for differential gene
expression analysis while accounting for covariates identified by
variancePartition57, above, as well as the proportions of COVID-19
severity associated with cell types identified above. A total of 6 DE
signatures were generated (Severe end-organ damage Vs. Severe;
Severe end-organ damage Vs. Moderate; Severe end-organ
damage Vs. Control; Severe Vs. Moderate; Severe Vs. Control;
Moderate Vs. Control). Multiple testing was controlled separately
for each DE comparison accounting for the 21,114 genes tested
using the false discovery rate (FDR) estimation method of
Benjamini–Hochberg48.

COVID-19 severity scale. Phenotypic information was obtained by
the EMR of the Mount Sinai Health System, which is reviewed by a
screening team that includes practicing physicians. Each bio-
specimen was associated, when possible—given the information
in the EMR—with a COVID-19 severity measurement that
corresponded to the time of collection. There are four levels of
severity60: controls, moderate, severe, and severe end-organ
damage, summarized in Supplementary Table 13.

Ethics statement. This study was approved by the Human
Research Protection Program at the Icahn School of Medicine at
Mount Sinai (STUDY-20-00341). All patients admitted to the Mount
Sinai Health System were made aware of the research study by a
notice included in their hospital intake packet. The notice outlined
details of the specimen collection and planned research. Flyers
announcing the study were also posted in the hospital, and a
video was run on the in-room hospital video channel. Given the
monumental hurdles of consenting sick and infectious patients in
isolation rooms, the Human Research Protection Program allowed
for sample collection, which occurred at the time of clinical
collection and included at most an extra 5–10 cc of blood prior to
obtaining research consent. Limited existing clinical data obtained
from the medical record was collected and associated with the
samples. As the research laboratory processing needed to begin
proximal to sample collection, a portion of the data was generated
prior to obtaining informed consent. During or after hospitaliza-
tion, research participants and/or their legally authorized repre-
sentative provided consent to the research study, including
genetic profiling for research and data sharing on an individual
level. In those circumstances where consent could not be
obtained (13.8% of subjects, 0% of subjects who completed the
post-discharge checklist), data already generated could continue
to be used for analysis purposes only when not doing so would
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have compromised the scientific integrity of the work. The data
were not identifiable to the researchers doing the analyses.

Manipulation of IL10RB and IFNAR2 expression in NGN2 cells
and their effect on SARS-CoV-2 viral load and transcriptional
profiles
Overview. NGN2-glutamatergic neurons were derived from
hiPSC-NPCs of donor NSB260761 as previously described62. gRNAs
were designed using the CRISPR-ERA (http://crispr-
era.stanford.edu) web tool and cloned into a lentiviral transfer
vector using Gibson assembly18,62; shRNAs were ordered as
glycerol stocks from Sigma. Wild type or dCas9 expressing NPCs
were infected with rtTA and NGN2 lentiviruses, as well as desired
shRNA or CRISPRa lentiviruses, and differentiated for 7 days before
SARS-CoV-2 infection with a multiplicity of infection (MOI) of 0.1 or
mock infection for 24 h. After the completion of the experiment,
RNA was isolated, quality metrics were obtained, and 200 ng of
RNA was processed through a total RNA library prep using the
KAPA RNA Hyper Prep Kit + RiboErase HMR kit (Roche, cat no:
8098140702) following the manufacturer’s instructions. The
resulting libraries were sequenced on the NovaSeq 6000 S4 flow
cell (Illumina), obtaining 2 × 150 bp reads at 60 M reads per
sample. An additional 20 ng of RNA was run on a SARS-CoV-2
targeted primer panel using AmpliSeq Library Plus and cDNA
Synthesis for Illumina kits (Illumina, Cat no: 20019103 and
20022654). All samples were normalized, pooled, and run on the
NovaSeq 6000 S4 in a 2 × 150 run targeting 750 K reads per
sample. The STAR aligner v2.5.2a63 was used to align reads to the
GRCh38 genome (canonical chromosomes only) and Gencode v25
annotation. The module featureCounts64 from the Subread
package v1.4.3-p165 was used to quantify genes. RSeQC v2.6.166

and Picard v1.7767 were used to generate QC metrics. Differential
expression analysis was performed with limma68 using the first
two components of multidimensional scaling and RIN as
covariates. Competitive gene set testing using sets from Gene
Ontology69 and the COVID-19 Drug and Gene Set Library21 was
performed with camera70. SARS-CoV-2 quantification was per-
formed by taxonomically classifying short-read data with
taxMaps71. The AmpliSeq approach confirmed the presence or
absence of the virus in our samples. A more detailed version of
this section can be found in the Supplementary Methods section.

hiPSC-NPC culture and donor. hiPSC-NPCs of line NSB2607 (male,
15 years old, European descent)61 were cultured in hNPC media
(DMEM/F12 (Life Technologies #10565), 1× N-2 (Life Technologies
#17502-048), 1× B-27-RA (Life Technologies #12587-010), 20 ng/
mL FGF2 (Life Technologies)) on Matrigel (Corning, #354230).
hiPSC-NPCs at the full confluence (1–1.5 × 107 cells/well of a six-
well plate) were dissociated with Accutase (Innovative Cell
Technologies) for 5 min, spun down (5 min × 1000 × g), resus-
pended, and seeded onto Matrigel-coated plates at 3–5 × 106

cells/well. Media was replaced every 24 h for 4 to 7 days until the
next passage.

SARS-CoV-2 virus propagation and infections. SARS-related cor-
onavirus 2 (SARS-CoV-2), isolate USA-WA1/2020 (NR-52281) was
deposited by the Center for Disease Control and Prevention and
obtained through BEI Resources, NIAID, NIH. SARS-CoV-2 was
propagated in Vero E6 cells in DMEM supplemented with 2% FBS,
4.5 g/L D-glucose, 4 mM L-glutamine, 10 mM Non-Essential Amino
Acids, 1 mM Sodium Pyruvate and 10mM HEPES. Virus stock was
filtered by centrifugation using Amicon Ultra-15 Centrifugal filter
unit (Sigma, Cat # UFC910096) and resuspended in viral
propagation media. All infections were performed with either
passage 3 or 4 SARS-CoV-2. Infectious titers of SARS-CoV-2 were
determined by plaque assay in Vero E6 cells in Minimum Essential
Media supplemented with 4mM L-glutamine, 0.2% BSA, 10 mM

HEPES and 0.12% NaHCO3, and 0.7% Oxoid agar (Cat
#OXLP0028B). All SARS-CoV-2 infections were performed in the
CDC/USDA-approved BSL-3 facility of the Global Health and
Emerging Pathogens Institute at the Icahn School of Medicine at
Mount Sinai in accordance with institutional biosafety
requirements.

gRNA design and cloning and shRNAs. gRNAs were designed
using the CRISPR-ERA (http://crispr-era.stanford.edu) web tool.
gRNAs were selected based on their specific locations at
decreasing distances from the TSS as well as their lack of
predicted off-targets and E scores (http://crispr-era.stanford.edu).
For lentiviral cloning: synthesized oligonucleotides were phospho-
annealed (37 °C for 30 min, 95 °C for 5 min, ramped-down to 25 °C
at 5 °C per min), diluted 1:100, ligated into BsmB1-digested
lentiGuide-Hygro-mTagBFP2 (addgene Plasmid #99374) and
transformed into NEB10-beta E. coli, according to manufacturer’s
instructions (NEB # C3019H). shRNAs were ordered as glycerol
stocks from Sigma (IL10RB # SHCLNG-NM_000628; IFNAR2 #
SHCLNG-NM_000874). Gibson Assembly of Vectors: Unless speci-
fied, all cloning reagents were from NEB, and plasmid backbones
were from Addgene (https://www.addgene.org/). Primers were
synthesized by Thermo Fisher Scientific. All fragments were
assembled using NEBuilder HiFi DNA Assembly Master Mix (NEB,
no. E2621X). All assemblies were transformed into either DH5a
Extreme Efficiency Competent Cells (Allele Biotechnology, no.
ABP-CE-CC02050) or Stbl3 Chemically Competent E. coli (Thermo
Fisher Scientific, no. C737303). Positive clones were confirmed by
restriction digest and Sanger sequencing (GENEWIZ). The follow-
ing vectors have been deposited at Addgene: lenti-EF1a- dCas9-
VP64-Puro, lenti-EF1a-dCas9-VPR-Puro, lenti-EF1a-dCas9-KRAB-
Puro, lentiGuide-Hygro-mTagBFP2, lentiGuide-Hygro-eGFP, lenti-
Guide-Hygro-dTomato, lentiGuide-Hygro-iRFP670, and pLV-TetO-
hNGN2-Neo. lentiGuide-dTomato and lentiGuide-mTagBFP2-
Hygro lentiGuide-Puro (Addgene, no. 52963) were digested with
Mlu1 and BsiWI. dTomato was amplified from AAV-hSyn1-
GCaMP6f-P2A-NLS-dTomato (Addgene, no.51085). HygroR
sequence was amplified from lentiMS2-P65-HSF1_Hygro
(Addgene, no. 61426). mTagBFP2 was amplified from pBAD-
mTagBFP2 (Addgene, no. 3463). The P2A self-cleaving peptide
sequence was amplified using a reverse primer of HygroR and a
forward primer of mTagBFP2. All sequences are provided in
Supplementary Table 14.

Lentiviral dCas9 effectors. To engineer a lentiviral transfer vector
that expresses dCas9: VP64-T2A-Puro (EF1a-NLS-dCas9(N863)-
VP64-T2A-Puro-WPRE), dCas9:VP64-T2A-Blast (EF1a-NLS-
dCas9(N863)-VP64-T2A-Blast-WPRE) (Addgene, no. 61,425) was
digested with BsrGI and EcoRI. T2A-PuroR was amplified from pLV-
TetO-hNGN2-P2A-eGFP-T2A-Puro (Addgene, no. 79823). Frag-
ments were then assembled using NEBuilder HiFi DNA Assembly
Master Mix (NEB, no. E2621). To engineer a lentiviral transfer
vector that expresses dCas9:KRAB-Puro (EF1a-NLS-dCas9(N863)-
KRAB-T2A-Puro-WPRE), dCas9:VP64-T2A-Blast (EF1a-NLS-
dCas9(N863)-VP64-T2A-Blast-WPRE) (Addgene, no.61425) was first
digested with BamHI and BsrGI. KRAB was then amplified from
pHAGE-TRE-dCas9:KRAB (Addgene, no. 50917). Fragments were
assembled using NEBuilder HiFi DNA Assembly Master Mix.
dCas9:KRAB-Blast was digested with BsrGI and EcoRI, and T2A-
PuroR was amplified from pLV-TetO-hNGN2- P2A-eGFP-T2A-Puro
(Addgene, no. 79823). Fragments were then assembled using
NEBuilder HiFi DNA Assembly Master Mix. To engineer a lentiviral
transfer vector that expresses dCas9:VPR-Puro (EF1a- NLS-
dCas9(D10A, D839A, H840A, and N863A)-VPR-T2A-Puro- WPRE),
dCas9:VPR was first amplified from SP-dCas9-VPR (Addgene, no.
63798), and T2A-PuroR was amplified from pLV-TetO-hNGN2- P2A-
eGFP-T2A-Puro (Addgene, no. 79823). dCas9:KRAB-T2A-Puro was
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digested with BsiWI and EcoRI. Fragments were then assembled
using NEBuilder HiFi DNA Assembly Master Mix.

NGN2-glutamatergic neuron induction of shRNA and CRISPRa
treated neurons18,62. On day -1 NPCs were dissociated with
Accutase Cell Detachment Solution for 5 min at 37 °C, counted,
and seeded at a density of 5 × 105 cells/well on Matrigel-coated
24-well plates in hNPC media (DMEM/F12 (Life Technologies
#10565), 1× N-2 (Life Technologies #17502-048), 1× B-27-RA,
20 ng/mL FGF2 (Life Technologies)) on Matrigel (Corning,
#354230). On day 0, cells were transduced with rtTA and NGN2
lentiviruses as well as desired shRNA or CRISPRa viruses in NPC
media containing 10 μM Thiazovivin and spinfected (centrifuged
for 1 h at 1000 × g). On day 1, media was replaced, and
doxycycline was added with 1 ug/mL working concentration. On
day 2, transduced hNPCs were treated with corresponding
antibiotics to the lentiviruses (1 μg/mL puromycin for shRNA, 1
mg/mL G-418 for NGN2-Neo). On day 4, the medium was switched
to Brainphys neuron medium containing 1 μg/mL dox. The
medium was replaced every second day until SARS-CoV-2 (MOI
of 0.1) or mock infection on day 7. The samples were harvested in
Trizol (Invitrogen, Cat #15596026) 24 h later. RNA was isolated by
phenol/chloroform extraction prior to purification using the
RNeasy Mini Kit (Qiagen, Cat # 74106).

Sequencing platform. RNA samples were submitted to the New
York Genome Center and, following an initial quality check, were
normalized onto two different 96-well plates for a total RNA with
RiboErase assay and a SARS-CoV-2 targeted assay. For the total
RNA assay, 200 ng of RNA were normalized into a plate to be run
through the KAPA RNA Hyper Prep Kit + RiboErase HMR (Roche,
cat no: 8098140702). This total RNA prep followed the manufac-
turer’s protocol with minor adjustments for automation on the
PerkinElmer sciclone. Briefly, the RNA first goes through an oligo
hybridization and rRNA depletion, followed by 1st and 2nd strand
synthesis. The cDNA was then adenylated, and unique dual
indexed adapters ligated onto the ends. Finally, samples were
cleaned up, enriched, and purified. The final library was quantified
by picogreen and ran on a fragment analyzer to determine the
final library size. Samples were normalized, pooled and run on a
NovaSeq 6000 S4 in a 2 × 150 bp run format, targeting 60 M reads
per sample. For the SARS-CoV-2 targeted assay, we used the
AmpliSeq Library Plus and cDNA Synthesis for Illumina kits
(Illumina, Cat no: 20019103 & 20022654). Briefly, 20 ng of RNA
were reverse transcribed, the cDNA targets were then amplified
with the Illumina SARS-CoV-2 research panel (Illumina, 20020496).
The amplicons were partially digested, and AmpliSeq CD Indexes
were ligated onto the amplicons. The library was then cleaned up
and amplified. After amplification, there was a final clean-up, and
the libraries were quantified, pooled, and run on a NovaSeq 6000
S4, obtaining 2 × 150 bp reads.

SARS-CoV-2 quantification. Short-read data were taxonomically
classified using taxMaps71. As part of the taxMaps pipeline, reads
were processed prior to mapping. Adapter sequences and low-
quality (Q < 20) bases were trimmed out, and low complexity
reads discarded. The remaining reads were then concurrently
mapped against (1) the phiX174 reference genome
(NC_001422.1); (2) the SARS-CoV-2 reference genome
(NC_045512.2); and (3) a combined index encompassing the
entire NCBI’s nt database, RefSeq archaeal, bacterial, fungal,
protozoan and viral genomes, as well as a selection of RefSeq
model organism genomes, including the human GRCh38 refer-
ence72, to produce the final classification. Given that some human
sequences of ancestral origin (that constitute variation between
individuals) are absent from the GRCh38 reference, a small
percentage of human reads usually maps to other primate
genomes and, consequently, was classified as such. To obtain

more accurate estimates of the human content in these samples,
all reads classified as “primate” were considered of human origin
and reclassified accordingly. SARS-CoV-2 viral load was deter-
mined as the number of SARS-CoV-2 reads over the host
(human) reads.

Competitive gene set testing. Competitive gene set testing using
sets from Gene Ontology69 and the COVID-19 Drug and Gene Set
Library21 was performed with camera70. First, we performed
differential expression analysis with limma68 using the first two
components of multidimensional scaling and RIN as covariates to
identify the signature of SARS-CoV-2 infection in our cells while
adjusting for other treatments. We then performed competitive
gene set enrichment analysis for all gene ontology and
betacoronavirus gene sets (n= 18,553). For gene ontology
datasets, we kept all significantly enriched gene sets (FDR < 0.05)
and kept those with a Jaccard index less than 0.2. For the
betacoronavirus gene sets, we kept all the gene sets and filtered
them based on a Jaccard index of 0.2. The combined SARS-CoV-2
gene set collection with the two datasets above (significantly
pruned gene ontology and all pruned betacoronavirus) was used
for all the following competitive gene set testing except as
otherwise indicated (n= 296). Thus, in Fig. 4d, enrichment analysis
is run across the whole exploratory dataset (n= 18,553) for SARS-
CoV-2 infection (first row), whereas for all other conditions, we are
only exploring the combined SARS-CoV-2 gene set collection
(n= 296).

Manipulation of IL10RB and IFNAR2 expression in A549-ACE2
alveolar cells and their effect on SARS-CoV-2 viral load
Overview. ACE2-expressing A549 cells (A549-ACE2), a gift from
Brad Rosenberg23, were either transfected with siRNA, or
transduced with the TetOne inducible system prior to infection
with SARS-CoV-2. For knockdown, A549-ACE2 cells were trans-
fected with pooled siRNAs (Dharmacon) 48 h prior to SARS-CoV-2
infection. For overexpression, A549-ACE2 cells were transduced
using the TetOne Inducible Expression System (Takara Bio) with
lentivirus-containing TetOne-eGFP, -IL10RB, or -IFNAR2 for 48 h
followed by puromycin selection. To induce gene expression,
A549-ACE2 TetOne-eGFP, -IL10RB, or -IFNAR2 cells were treated
with either 0 ng/mL or 100 ng/mL doxycycline for 24 h before
SARS-CoV-2 infection. Cells were either mock-infected or infected
with media containing SARS-CoV-2 for a multiplicity of infection
(MOI) of 0.02. The cells were incubated for 48 h, and then the cells
were harvested, and the virus was inactivated by Trizol (Invitro-
gen) or RIPA lysis buffer for safe removal from the BSL-3 facility.
Lysates were stored at −80 °C until further analysis. RNA was
isolated from Trizol, cleaned using the Qiagen RNeasy Mini Kit (Cat
# 74106), and quantified by QuBit. A starting input of 500 ng was
used to prepare cDNA via the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Cat # 4368813). Real-time
qPCR was performed using TaqMan probes (Thermo Fisher
Scientific) for the SARS-CoV-2 S (vi07918636_s1), IL10RB
(hs00175123_m1), IFNAR2 (hs01022059_m1) and control gene,
GAPDH (hs02786624_g1). qPCR reactions were performed on the
Applied Biosystems QuantStudio 5 and analyzed using the -ΔΔCt
method for fold change expression to validate genetic manipula-
tion and quantify SARS-CoV-2 infection. A more detailed version of
this section can be found in the Supplementary Methods section.

Plasmids. The pLVX.TetOne-2xstrept-eGFP plasmid was a gift
from Nevan Krogan73. pLVX.TetOne-IL10RB and pLVX.TetOne-
IFNAR2 where cloned using the parental pLVX-TetOne vector
(Takara Bio, Inc.) and cDNA encoding human IL10RB or human
IFNAR2 (IDT) with the InFusion HD Cloning Kit (Takara Bio, Inc.).
Clones were sequence-verified by sanger sequencing (Psomagen).
Sequences are provided in Supplementary Table 14.
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Cells. HEK 293 T cells, a human kidney epithelial cell line (HEK
293 T/17, ATCC®, CRL-11268); and Vero E6 cells (Vero 76, clone
E6, Vero E6, ATCC® CRL-1586; for SARS-CoV-2 propagation), an
African Green Monkey kidney epithelial cell line, were authenti-
cated by ATCC. A monoclonal ACE2-expressing A549 cell line
(A549-ACE2) was a gift from Brad Rosenberg23. All cell lines were
cultured under humidified, 5% CO2, 37 °C conditions in complete
DMEM (10% v/v fetal bovine serum (FBS, Thermo Fisher
Scientific) and 100 I.U. penicillin and 100 µg/mL streptomycin
(Pen/Strept, Corning) in Dulbecco’s Modified Eagle Medium
(DMEM, Corning)). Cells were confirmed negative for mycobac-
teria monthly (Lonza).

Viruses. SARS-related coronavirus 2 (SARS-CoV-2) isolate USA-
WA1/2020 (NR-52281) was obtained from BEI Resources, NIAID,
NIH. Virus stocks were grown, processed, and titrated as
previously described74. The supernatant was collected 30 h
postinfection and concentrated through a 100 kDa centrifugal
filter unit (Amicon). All work with live SARS-CoV-2 was
performed in the CDC/USDA-approved biosafety level 3 (BSL-3)
facility of the NYU Grossman School of Medicine in accordance
with institutional guidelines.

Generation and induction of A549-ACE2 TetOne cell lines. In a
6-well format, for each well, 1.5 × 106 HEK 293 T cells were
transfected with a mixture of 0.75 µg pLVX.TetOne-strept-eGFP,
pLVX.TetOne-IL10RB, or pLVX.TetOne-IFNAR2; 0.75 µg gag/pol
lentivirus packaging plasmid (Takara Bio Inc.), and 0.12 µg
vesicular stomatitis virus G plasmid ((Takara Bio Inc.) in Opti-
MEM (Corning) and Lipofectamine 2000 transfection reagent
(Invitrogen) at a µg of DNA: µL of reagent ratio of 1:3. Twenty-four
hours post-transfection, media was replaced with complete
DMEM. Forty-eight hours post-transfection, cell supernatants were
filtered through a 0.22 µm syringe filter. 4 × 106 A549-ACE2 cells in
a six-well format were then transduced per well, with 0.7 mL
filtered lentivirus-containing supernatant diluted to a total of 2 mL
with complete DMEM supplemented with 10 µg/mL polybrene
(Corning). Forty-eight hours post-transduction, the supernatant
was removed, and fresh complete DMEM containing 2.5 µg/mL
puromycin was added to the transduced cells. Forty-eight hours
post-puromycin treatment, cells were expanded for use in
experiments. Cells were then maintained in 2.5 µg/mL puromycin
when in culture. To induce gene expression prior to infection,
2 × 105 A549-ACE2 TetOne-eGFP, -IL10RB, or -IFNAR2 cells were
plated in a 24-well format in complete DMEM containing 0 ng/mL
or 100 ng/mL doxycycline. Twenty-four hours post-induction, cells
were infected as described below.

siRNA transfections. 2 × 105 A549-ACE2 cells in a 24-well format
were transfected per well with 0.5 µL 10 µM pooled siRNAs
(Dharmacon) in 50 µL Opti-MEM with 1.5 µL RNAiMAX (Invitrogen).
The transfection mix was incubated at room temperature for
15min prior to addition to cells. Forty-eight hours post-transfec-
tion, cells were infected as described below. Sequences are
provided in Supplementary Table 14.

SARS-CoV-2 infections. Media was removed from cells and mock-
infected with 0.5 mL infection media (DMEM, 2% FBS, P/S) or
infected with 0.5 mL infection media containing enough SARS-
CoV-2 for a multiplicity of infection (MOI) of 0.02. The cells were
then incubated under humidified, 5% CO2, 37 °C conditions. Forty-
eight hours postinfection, media was removed from cells, and
0.5 mL Trizol (Invitrogen) or 0.15 mL RIPA lysis buffer (50 mM Tris
HCL, 150mM NaCl, 0.5% v/v NP-40, 1% v/v Triton X-100, 0.1% w/v
SDS, Pierce protease inhibitors) was added to each well. Cells were
then incubated at 4 °C for 15min. Lysates were then transferred to
tubes and removed from the BSL-3 facility. Lysates were stored at
−80 °C until they were analyzed.

SARS-CoV-2 quantification. RNA was isolated from Trizol (Invitro-
gen) using the manufacturer-provided protocol. Isolated RNA was
further cleaned using the Qiagen RNeasy Mini Kit (Cat # 74106)
and supplemented with RNAse inhibitor (Takara, Cat # 2313 A) 5%
by volume. RNA was quantified by QuBit, and a starting input of
500 ng was used to prepare cDNA via the High-Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Cat # 4368813).
TaqMan probes for the SARS-CoV-2 S protein (vi07918636_s1),
IIL10RB (hs00175123_m1), IFNAR2 (hs01022059_m1), and control
gene, GAPDH (hs02786624_g1), were acquired through Thermo
Fisher (Cat # 4331182). Real-time PCR was performed in triplicate
using 2 ng of cDNA per reaction and the Applied Biosystems
TaqMan Gene Expression Mix (Cat # 4369016). Reactions were run
using the Applied Biosystems QuantStudio 5, and SARS-CoV-2 was
quantified using the delta-delta Ct method.

Statistical analysis. For pairwise comparisons, unpaired t-test was
used, as indicated in Supplementary Table 10. For correlation
analysis of IL10RB and IFNAR2 levels with SARS-CoV-2 viral load,
Pearson correlation analysis was used.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data associated with this study are present in the main text or the Supplementary
Data files. Sequencing data from the in vitro experiments (NGN2 cells) have been
uploaded to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo) database under accession number GSE180622. Our study only does targeted
replication in the Mount Sinai COVID-19 Biobank; the complete biobank dataset and
analyses will be presented in Thompson et al.53.
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