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The role of RASSF1A methylation in cancer
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Abstract. Tumour suppressor gene inactivation is critical to the pathogenesis of cancers; such loss of function may be mediated
by irreversible processes such as gene deletion or mutation. Alternatively tumour suppressor genes may be inactivated via
epigenetic processes a reversible mechanism that promises to be more amenable to treatment by therapeutic agents. The CpG
dinucleotide is under-represented in the genome, but it is found in clusters within the promoters of some genes, and methylation
of these CpG islands play a critical role in the control of gene expression. Inhibitors of the DNA methyltransferases DNMT1
and DNMT3b have been used in a clinical setting, these nucleotide analogues lack specificity but the side effects of low dose
treatments were minimal and in 2004 Vidaza (5-azacitidine) was licensed for use in myelodysplastic syndrome. Methylation
inhibitors are also entering trials in conjunction with another class of epigenetic modifiers, the histone deacetylase inhibitors
and this epigenetic double bullet offers hope of improved treatment regimes. Recently there has been a plethora of reports
demonstrating epigenetic inactivation of genes that play important roles in development of cancer, including Ras-association
domain family of genes. Epigenetic inactivation of RASSF1A (Ras-association domain family 1, isoform A) is one of the most
common molecular changes in cancer. Hypermethylation of the RASSF1A promoter CpG island silences expression of the gene
in many cancers including lung, breast, prostate, glioma, neuroblastoma and kidney cancer. Several recent studies have illustrated
the diagnostic and prognostic potential of RASSF1A methylation. This presents RASSF1A methylation as an attractive biomarker
for early cancer detection which, for most cancers, results in improved clinical outcome. DNA methylation analysis is applicable
to a range of body fluids including serum, urine, bronchioalveolar lavage and sputum. The ease with which these body fluids can
be acquired negates the need for invasive procedures to obtain biopsy material. This review will discuss the feasibility of using
RASSF1A methylation as a diagnostic and prognostic marker in cancer management.
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1. Introduction

Cancer mortality could be greatly reduced by earlier
detection since existing surgical and treatment strate-
gies are more effective against early stage tumours. In
the case of lung cancer around two-thirds of patients
present with advanced metastatic tumours at the time
of diagnosis [125]. This is also true for ovarian cancer
patients 70% of whom have advanced disease (stage III
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or IV) and 5 year survival of only 15–20% upon presen-
tation [57]. DNA methylation has several advantages
over commonly used biomarkers such as cytology or the
assay of tumour-derived RNA or protein. DNA methy-
lation is a molecular change more readily detectable
than gross cytogenetic or cellular abnormalities which
can also be subjective. Other techniques such as radio-
graphy rely on a visible tumour mass, which can make
them unsuitable for early detection. Some screening
strategies rely on the detection of tumour-derived RNA
or protein. However, DNA is much more stable and
unlike protein can be amplified for increased sensitivity
and is not dependent on levels of gene expression. This
also makes the use of DNA more suitable when a lim-
ited amount of tissue/fluid is available. DNA methyla-
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tion associated with particular genes is one of the ear-
liest detectable changes and in some cases may even
precede tumour-formation. DNA methylation may also
provide prognostic information. Furthermore, tumour-
associated hypermethylation usually occurs in discrete
CpG island promoter regions. This minimises the re-
gion of analysis when compared to mutation screening
involving several exons. Since DNA methylation is
heritable, a gene that acquires methylation will usually
remain methylated throughout tumour progression. Fi-
nally, some cancer biomarkers such as allelic loss, ex-
perimentally rely on loss of signal as opposed to DNA
methylation which is gain of signal [88,124].

A further advantage of DNA methylation analysis is
its applicability to a range of body fluids. The pres-
ence of tumour-derived DNA within the blood stream
(either within tumour cells or as free DNA) has been
known for some time [73]. Tumour DNA within the
bloodstream arises following vascular invasion or ab-
sorption of DNA from apoptotic or necrotic cells at the
tumour site. Tumour-derived DNA may also be found
in bodily fluids that drain from the organ of interest
including urine, bronchioalveolar lavage, nipple aspi-
rates, mouth and throat rinsings, nasopharyngeal swabs
and stool samples. The ease with which body fluids
can be acquired negates the need for invasive proce-
dures to obtain biopsy material. A range of techniques
are available to study DNA methylation. These include
CoBRA (Combined Bisulphite Restriction Analysis)
and bisulphite sequencing, methylation-specific PCR
(MSP) and high throughput quantitative MethyLight
assays [34,48,116,129].

Recently we and others have cloned and charac-
terised the RASSF1 gene and shown frequent inactiva-
tion of the A isoform by promoter CpG island hyper-
methylation in a broad spectrum of tumour types. Sev-
eral studies reveal that RASSF1A methylation can also
be detected in several body fluids in cancer patients
highlighting its potential as a disease marker.

2. RASSF1A inactivation in cancer

Allelic losses of 3p are one of the most frequently
detected genetic alterations in many cancers including
lung, kidney and breast cancers. Loss of heterozy-
gosity studies and the identification of overlapping ho-
mozygous deletions in lung and breast tumour cell lines
indicated a critical region at 3p21.3 that may harbour
one or more tumour suppressor genes (TSGs). Eight
genes, namely CACNA2D2, PL6/Placental protein

6, 101F6, TUSC4/NPRL2, ZMYND10/BLU, RASSF1,
TUSC2/FUS1 and HYAL2 were cloned from the min-
imal 120 kb overlapping region. Despite extensive
investigation only rare mutations and polymorphisms
of those genes were identified. Interestingly however,
expression of RASSF1A, but not its alternative splice
form RASSF1C, was lost or downregulated in most
lung tumour cell lines [26,74]. The principal cause of
this loss of expression was promoter CpG island hy-
permethylation. The Ras-association domain family
member 1 (RASSF1) gene is comprised of eight exons
and generates seven transcripts, designated RASSF1A-
G, via differential promoter usage and alternative splic-
ing. Two major isoforms RASSF1A and RASSF1C,
are transcribed from two separate CpG island promoter
regions (See figure 1a). Both RASSF1A and RASSF1C
proteins contain a C-terminal Ras-association domain
and a putative ATM phosphorylation site. In addition
to this RASSF1A also contains an N-terminal diacyl-
glycerol binding/protein kinase C conserved 1 (C1) do-
main. RASSF1A inactivation by methylation was orig-
inally described in lung and breast cancers [26]. Since
then it has emerged that RASSF1A is one of the most
frequently hypermethylated genes so far described in
human cancer. Inactivation is frequently observed in a
broad spectrum of tumours (summarised in Table 1 and
Fig. 2). Associated loss of expression has been shown
in lung, breast, bladder, gastric, cholangiocarcinoma
and oesophageal sqaumous cell carcinoma primary tu-
mours [12,13,26,67,70,126]. While allelic loss at the
RASSF1 locus has been shown to be a frequent ‘second
hit’ [3,5,67,85], mutation is described as an occasional
event [3,26,68,74,80]. Recently however, using a more
sensitive methodology a high incidence of RASSF1A
mutations were found in primary NPC tumours [93].
In some cases, such as in medulloblastoma, biallelic in-
activation of RASSF1A by promoter hypermethylation
has been observed [80].

3. Human homologues of RASSF1

Homology searches of the human genome have
identified several other members of the RASSF gene
family that also contain a Ras-association domain.
These are RASSF2 (20pter-p12.1), RASSF3 (12q14.1),
RASSF4/AD037 (10p11.21), RASSF5/NORE1 (1q32.1)
and RASSF6 (4q21.21), (Fig. 1b). Interestingly some
of these additional members are also inactivated by
promoter hypermethylation. Tumour-specific RASSF2
promoter hypermethylation frequently inactivates
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Table 1
RASSF1A methylation occurs in a broad spectrum of tumours. Fre-
quencies (given as percentages) can differ significantly between tumour
types

Cancer RASSF1A methylation
Percentage of RASSF1A Reference

methylation in
primary tumours

Anal SCC 15 (19/127) [135]
Bladder 62 (34/55) [70]

35 (34/98) [82]
48 (19/40) [15]
51 (23/45) [33]

Breast 62 (28/45) [28]
49 (19/39) [12]
65 (11/17) [53]

Biliary tract 27 (10/37) [115]
Cervical SCC 30 (10/33) [134]

10 (4/42) [69]
0 (0/31) [24]

Cervical adenosqaumous 21 (4/19) [69]
Cervical adenocarcinoma 12 (2/17) [134]

24 (8/34) [69]
45 (9/20) [24]

Cholangiocarcinoma 69 (9/13) [126]
65 (47/72) [131]
85 (28/33) [18]

Colorectal 20 (45/222) [117]
45 (13/29) [122]
16 (24/149) [71]

Ependymoma 86 (30/35) [45]
Esophageal SCC 52 (25/48) [67]

24 (13/55) [130]
Ewing’s sarcoma 0 (0/8) [46]
Gastric EBV+ 67 (14/21) [60]
Gastric EBV− 4 (2/56) [60]
Gastric 43 (39/90) [13]
Glioma 57 (36/63) [49]

54 (25/46) [56]
57 (12/21) [7]
57 (16/28) [97]

Head and neck 0 (0/32) [81]
15 (7/46) [29]
17 (2/24) [52]
8 (6/80) [47]

12 (5/42) [91]
Hepatoblastoma 19 (5/27) [46]
Hepatocellular 85 (70/83) [136]

100 (29/29) [133]
95 (41/43) [137]

Hodgkin’s lymphoma 65 (34/52) [89]
Kidney 91 (39/43) [30]

26 (44/165) [85]
46 (23/50) [32]

Lung: SCLC 72 (21/29) [3]
79 (22/28) [28]
84 (36/43) [114]

Lung: NSCLC 34 (14/41) [3]
30 (32/107) [12]
32 (35/110) [111]

Leukaemia (acute) 15 (3/20) [46]
Medulloblastoma 79 (27/34) [80]
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Table 1, continued

Cancer RASSF1A methylation
Percentage of RASSF1A Reference

methylation in
primary tumours

Melanoma 41 (14/44) [108]
15 (3/20) [55]

Meningioma 17 (2/12) [56]
Mesothelioma 32 (21/66) [113]
Multiple myeloma 28 (9/32) [90]

15 (17/113) [104]
0 (0/56) [44]

Nasopharyngeal 67 (20/30) [16]
67 (14/21) [79]

Neuroblastoma 55 (37/67) [5]
52 (14/27) [46]
84 (26/31) [8]

Osteosarcoma 0 (0/11) [46]
Ovarian 40 (8/20) [132]

50 (25/50) [57]
41 (20/49) [98]

Pancreatic 62 (47/75) [27]
Phaeochromocytoma 22 (5/23) [5]
Pituitary adenoma 28 (20/52) [95]
Primitive neuroectodermal
tumours (supratentorial)

79 (19/24) [86]

Prostate 54 (53/101) [83]
71 (37/52) [78]
99 (117/118) [59]

Rhabdomyosarcoma 61 (11/18) [46]
Retinoblastoma 59 (10/17) [46]

82 (56/68) [23]
Salivary gland adenoid cys-
tic carcinoma

40 (25/60) [76]

Schwannoma 10 (1/10) [56]
Testicular nonseminoma 83 (15/18) [54]

21 (9/44) [64]
Testicular seminoma 40 (4/10) [54]
Thyroid 71 (27/38) [102]

37 (19/51) [128]
Wilms’ tumour 71 (22/31) [36]

54 (21/39) [122]

RASSF2A expression in colorectal carcinomas at fre-
quencies ranging from 42% to 70%. Furthermore, in
colorectal carcinoma RASSF2A inactivation is an early
event detectable in adenoma polyps [4,51]. Inactivation
of RASSF2A in colorectal carcinomas is a much earlier
and more frequent event than inactivation of RASSF1A
(15–45%; [4,51,117,122]). Hence, RASSF2 methyla-
tion may provide a much more effective marker for
early detection and diagnosis of colorectal carcinomas.
RASSF2 methylation has also been found in gastric
cancer at frequencies ranging from 29% to 79% [38].
Whilst RASSF4/AD037 is expressed in a variety of
normal tissues, it is lost or downregulated in a variety
of tumour cell lines and primary tumours. In some
cases this loss of expression is caused by promoter hy-
permethylation [22,35]. Expression of NORE1A, but

not NORE1B, is lost or downregulated in cancer due
to promoter hypermethylation, whilst mutation of the
NORE1 gene is a rare event [17,50,58]. RASSF3A is not
methylated in human tumours [4,49,51], and RASSF6
is not methylated in colorectal cancer [4].

4. RASSF1A function

Recent investigation of RASSF1A has revealed a
protein with diverse functions including the regula-
tion of apoptosis and of microtubule dynamics dur-
ing mitotic progression. Re-expression of RASSF1A
also suppresses growth in in vitro and in vivo sys-
tems in lung, breast, kidney, prostate, NPC and glioma
cancer cells [12,21,26,30,49,68]. Overexpression of
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a) RASSF1 gene locus and major transcripts

RASSF6A (337 aa)

NORE1A (418 aa)

AD037A (321 aa)

RASSF3A (238 aa)

RASSF1A (340 aa) 

RASSF2A (326 aa) 

1α 1β 2αβ 2γ 3 4 5 6
3 cent 3p tel

RASSF1A 1949bp

RASSF1C 1753bp

b) RASSF family proteins

Fig. 1. a) The RASSF1 gene locus and major transcripts. RASSF1 isoforms are generated by differential promoter usage (arrows) and alternative
splicing. The two promoter associated CpG islands are shown in black, and the major transcripts associated with these promoters are also
depicted. b) The domain structures of the A isoforms of the RASSF family of proteins. Putative functional domains (predicted using Prosite) of
RASSF1 (AAD44174), RASSF2 (AAN59975), RASSF3 (AAO61687), AD037 (AAH32593), NORE1 (NP 872604) and RASSF6 (NP 803876)
are shown: RA, RalGDS/AF6 Ras association domain; C1, DAG/diacylglycerol binding domain; and SARAH, Sav/RASSF/Hpo interaction
domain.

RASSF1A results in cell cycle arrest and is accom-
panied by dramatic changes in gene expression [1,
20]. This includes changes to the expression of im-
portant cell cycle regulatory genes such as cyclin
D [105] but also to genes involved in diverse func-
tions including transcription, cytoskeletal organisa-
tion, angiogenesis, signalling, cell adhesion, cell mi-
gration and apoptosis. RASSF1A regulates apop-
tosis via at least two pathways. RASSF1A binds
the proapoptotic serine/threonine kinase MST1 [62].
NORE1A and RASSF1A are constitutively complexed
with MST1 and serve as sensory modules to de-
tect pro-apoptotic signals initiated through Ras path-
ways [62,94]. Although RASSF2, NORE1/RASSF5
and AD037/RASSF4 bind to Ras proteins directly
RASSF1A associates with K-Ras indirectly through
NORE1A [35,92,118,119,121]. The RASSF1A-MST1
complex may also indirectly associate with Ras via

CNK1 [96]. RASSF1A may also regulate apoptosis
through MOAP-1 (Modulator of Apoptosis 1). MOAP-
1 associates with Bcl-2 family members Bax and Bcl-2
and initiates caspase-dependent apoptosis when over-
expressed [109]. Following apoptotic stimulation,
RASSF1A associates with MOAP-1, promoting Bax
conformational change, integration of Bax into the mi-
tochondrial membrane and the release of cytochrome-
c. In support of this, the effects of RASSF1A on
Bax conformation were reversed by siRNA directed
against RASSF1A [6]. RASSF1A is also involved
in the regulation of cytoskeletal dynamics and co-
localises with microtubules, spindles and centrosomes
during metaphase and promotes microtubule stability
and polymerisation [25,77,120]. RASSF1A micro-
tubule association may be mediated in part by inter-
action with MAP1B and C19ORF5 [25]. RASSF1A
also binds Cdc20, which negatively regulates APC
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Fig. 2. Frequency of RASSF1A methylation in several tumour types. Several of the most common cancers are shown. Frequencies represent the
average of at least three independent studies on a given tumour type (see Table 1).

(anaphase promoting complex). The Cdc20-APC com-
plex is a central component of the spindle assem-
bly checkpoint during mitosis [107]. RASSF1A can
also inhibit G1-S phase transition by interacting with
p120E4F, a protein known to associate with pRb, p53
and p14ARF [39,40,99,101]. For a more extensive re-
view of RASSF1 functions, see [2].

5. RASSF1A methylation as a cancer biomarker

Methylation of RASSF1A seems an ideal cancer
biomarker for three main reasons. Firstly, methyla-
tion occurs in a very broad spectrum of tumour types.
Secondly, the frequency of methylation is often mod-
erate to very high (Table 1) thus providing a high fre-
quency of diagnostic coverage. Thirdly, methylation of
RASSF1A is rare in normal tissues providing a marker
with a high specificity. Many studies have shown hy-
permethylationof RASSF1A in cancer may have several
clinical utilities. These include its use as a diagnostic
marker, as a marker for early detection or patient prog-
nosis, as a predictive marker in benign growths from
‘at risk’ patients or even as a marker for resistance to
some treatments.

5.1. Diagnostic marker

For lung cancer surgical intervention is more suc-
cessful when tumours are detected early and are still re-

sectable. One strategy for early detection could be the
screening of populations at risk such as smokers. The
lifetime risk of never smokers developing lung cancer
is 1 × 10−4 whereas for current and former chronic
smokers the yearly risk is 0.3% [11]. Bronchial aspi-
rates from smokers and never smokers with lung cancer
showed frequencies of RASSF1A methylation of 21%
and 1% respectively. Amongst smokers the frequency
of methylation was 10% for � 30 pack years smoked
versus 26% for > 30 pack years smoked [103]. Methy-
lation was also significantly associated with the number
of pack years smoked during the lifetime (p � 0.05).
Another population at risk of developing lung cancer
are lung cancer survivors (6.0% risk per patient year,
5-year survival of 60% [11]). A recent investigation of
RASSF1A methylation in plasma and sputum revealed a
frequency of 7% in current and former smokers whereas
in lung cancer survivors it was 25% (p � 0.01) [11].
Using a panel of four genes commonly methylated in
cancer, including RASSF1A, methylation of at least
one gene could be detected in the upper aerodiges-
tive tract from 48% of current smokers without can-
cer [138]. This study included samples obtained from
bronchial brushes, bronchoalveolar lavage and oropha-
ryngeal brushes with RASSF1A methylation detected in
6%, 5% and 2% of the samples respectively. In a sep-
arate study of sputum from current and former smok-
ers some of whom later developed cancer RASSF1A
methylation could be detected [53]. RASSF1A methy-
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lation has also been detected in the tumour and cor-
responding bronchoalveolar lavages in 29% (5/17) of
methylated lung cancer cases and in combination with
5 other tumour-related genes could diagnose lung can-
cer in 68% (21/31) of patients [112]. These data sug-
gest regular screening for RASSF1A methylation in spu-
tum, bronchoalveolar lavages and serum from popu-
lations at risk, particularly smokers and lung cancer
survivors, may enable earlier detection of lung cancer
and the reduction of lung cancer mortality. Ramirez et
al. [97] showed 34% (17/51) NSCLC tumours showed
RASSF1A methylation with concomitant methylation
observed in the corresponding serum.

In a recent report, methylation analysis of a panel of
just 3 genes (RASSF1A, APC and DAPK1) was suffi-
cient to differentiate normal and tumour tissue in 94%
of breast cancer cases. Dulaimi et al. [31] also showed
76% of corresponding serum DNA was also positive
for methylation illustrating the potential sensitivity of
these methylation markers in early detection of breast
cancer [31]. Furthermore, in breast cancer patients
where RASSF1A methylation is undetectable in plasma,
methylation may be detected in tumour DNA eluted
from the surface of erythrocytes and leukocytes sug-
gesting a further measure to increase sensitivity of de-
tection [100]. Alternatively, breast cancer has also been
detected in nipple aspirate fluid in 82% (18/22) cases
including ductal carcinoma in situ and stage I cancer
by CpG island hypermethylation [66]. Analysis of
urine DNA represents a simple method for kidney and
bladder cancer detection. Investigation of 45 urothe-
lial cancer patients and 12 normal healthy individuals
using a panel of just three genes (RASSF1A, APC and
p14ARF) gave a diagnostic coverage of 100%, sensi-
tivity of 87% and specificity of 100% [33]. More im-
portantly, methylation analysis identified 16 cases that
had negative cytology. In a different study RASSF1A
methylation was detected in the urine of 50% (7/14)
bladder cancer patients, but not in normal control sam-
ples. This study also showed methylation analysis of
urine DNA was more sensitive than conventional cytol-
ogy especially for low-grade tumours [15]. Battagli et
al. [10] found at least one of a panel of six genes (VHL,
p16INK4A, p14ARF, APC, RASSF1A and TIMP3) were
methylated in all 50 kidney tumours investigated. Fur-
thermore, the same pattern of methylation was observed
in corresponding urine DNA in 88% (44/50) of cases,
including 27/30 cases of stage I disease. The diagnos-
tic potential of DNA hypermethylation has also been
explored in ovarian cancer. In one study the use of
6 genes (RASSF1A, BRCA1, APC, DAPK1, p14ARF

and p16INK4A) gave 100% diagnostic coverage (50/50
tumours) with RASSF1A methylation detected in 50%
cases. Furthermore RASSF1A methylation was de-
tected in patient serum from 84% (21/25) methylated
tumour cases including several stage I tumours. Of the
50 tumours investigated serum or peritoneal fluid was
positive for methylation in 88% of cases thus offering
a much greater diagnostic sensitivity than conventional
cytology. In some cases methylation was detected in
the serum of patients negative for the CA-125 serum
marker [57]. In general however, DNA hypermethy-
lation would provide a very powerful adjunct to con-
ventional diagnostic methods such as cytology and his-
tology. For example, a study of RASSF1A, p16 INK4A

and APC methylation in bronchial aspirates showed
that cytology, quantitative MSP and histology could de-
tect lung cancer in 44% (37/85), 53% (45/85) and 59%
(50/85) of cases respectively. When combined how-
ever diagnostic sensitivity extended to 81% (69/85) of
patients [103].

A novel approach of detecting endometrial can-
cer was recently described with the use of DNA col-
lected from tampons [41]. In this study, hypermethy-
lation of 3 or more of 5 candidate genes, including
RASSF1A, was a significant indicator of endometrial
cancer (p = 0.001) with a sensitivity and specificity
of 100% and 97.2% respectively. Those patients with-
out endometrial cancer that showed hypermethylation
of 3 or more genes were shown to have cervical can-
cer, endometrium polyps or fibroids. RASSF1A methy-
lation was also detectable in 57% (16/28) glioma tu-
mours and in 50% (14/28) of corresponding patient
serum [97]. However, some other studies have shown
limited success in the detection of RASSF1A methyla-
tion in serum. For example, methylation was detected
in 65% (34/52) of Hodgkin’s lymphoma tumours but
in only 2/22 corresponding serum [89]. Methylation of
CDH1, p16INK4A, DAPK1 and p15INK4B could be de-
tected in 46%, 42%, 20% and 20% of plasma from NPC
patients respectively, yet only 5% showed RASSF1A
methylation [127]. In a further study of NPC RASSF1A
methylation was detected in 67% (20/30) of tumour
samples and in 3% of corresponding plasma. However,
in nasopharyngeal swabs and mouth and throat rinsings
methylation was detected at frequencies of 33% and
37% respectively illustrating the importance of select-
ing the correct body fluid [16]. Taken together, these
studies show that RASSF1A methylation can be de-
tected in a range of body fluids from cancer patients and
offers an exciting new approach to cancer diagnosis.
The sensitivity of methylation assays in these body flu-
ids compares favourably with conventional diagnostic
methods.
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5.2. Predictive

Several studies have illustrated the use of RASSF1A
methylation in benign growths or hyperplastic lesions
as a means of predicting cancer risk. In benign breast
tissues from unaffected women at high-risk for breast
cancer RASSF1A methylation was found in 70% of
samples, but in only 29% of samples from women at
low/intermediate risk. Demonstrating that in benign
breast epithelium RASSF1A promoter methylation is
associated with epidemiological markers of increased
breast cancer risk. In particular, biopsies from women
with a previous history of benign breast growths were
statistically more likely to have RASSF1A methyla-
tion [75]. RASSF1A methylation is also prevalent in
breast epithelial hyperplasia, papilloma samples and
ductal carcinoma in situ but not in normal breast tis-
sues [53,72]. Early prediction of prostate cancer may
also be possible since 19–28% of benign prostate hy-
perplasia (BPH) samples also show methylation [9,
106] with some studies describing up to 100% in tu-
mours and BPH samples [59,68]. Precancerous intesti-
nal metaplasia lesions may also be useful for predicting
gastric cancer risk since a subgroup show RASSF1A
methylation [110]. This suggests that RASSF1A methy-
lation in benign growths or hyperplastic lesions often
indicates an increased risk of some forms of cancer
which may be detected at the earliest stages with regular
surveillance.

5.3. Prognosis

For some cancers an association between RASSF1A
methylation and adverse patient survival has been ob-
served. Burbee et al. [12] found that NSCLC patients
with RASSF1A methylation had a mean overall survival
of 37 months compared with 52 months for patients
without RASSF1A methylation (p = 0.0463) [12]. In
lung adenocarcinoma RASSF1A methylation was sig-
nificantly associated with vascular invasion, pleural in-
volvement, poor tumour differentiation, decreased pa-
tient survival time and allelic loss at 3p21.3 [111].
Since all tumours investigated were stage I this study
suggests RASSF1A methylation would provide a pow-
erful marker for patient prognosis at an early stage of
lung adenocarcinoma development. In a study of 119
well-characterised NSCLC tumours RASSF1A methy-
lation was also more frequently observed in poorly-
differentiated tumours (50%) than in tumours of moder-
ate (26%) or high (0%) differentiation (p = 0.04). More
importantly, methylation of p16INK4A was associated

with stage I/II disease whereas RASSF1A methylation
was associated with stage IIIA disease [123]. This
contradicts the earlier report by Tomizawa et al. [111]
and suggests that RASSF1A methylation occurs during
NSCLC progression whereas p16INK4A inactivation
occurs in the early stages of lung cancer development.
Wang et al. [123] also show p16INK4A and RASSF1A
methylation were powerful prognostic indicators. Pa-
tients with stage I/II tumours containing p16INK4A

methylation had a significantly poorer 5 year survival
rate compared to those without p16INK4A methyla-
tion. However, RASSF1A, and p16 INK4A, methyla-
tion in stage IIIA tumours were profound indicators
of poor survival. All 11 stage IIIA patients with
methylation of both genes died within 3 years post-
surgery, whereas 21 (62%) with methylation of either
p16INK4A or RASSF1A died within 5 years and only
5 (29%) with methylation of neither died within 6.5
years (p = 0.0001). RASSF1A methylation remained a
very strong prognostic indicator irrespective of whether
patients had received adjuvant radiotherapy [123]. In
contrast to this, a more recent study of 116 cases of
NSCLC showed that RASSF1A methylation was not
related to poor prognosis, including tumour stage, re-
currence, lymphatic permeation and smoking dura-
tion [19]. However, a significant association between
RASSF1A methylation, age at which smoking began
(below 19 years) and decreased NSCLC patient survival
time has been observed [63]. Interestingly, another
study showed that earlier recurrence of lung cancer (but
not tumour grade, stage, histological type or patient
survival) is associated with RASSF1A methylation [37].
With regular surveillance this may allow early detec-
tion of recurrent tumours. However, additional stud-
ies will be required to clarify the prognostic value of
RASSF1A methylation in lung cancer. In prostate can-
cer RASSF1A methylation status may be informative
of disease progression. Tumours with a high Gleason
score or high serum prostate-specific antigen (both fea-
tures of poor prognosis and advanced prostate cancer)
showed a significantly higher frequency of RASSF1A
methylation [61,78,83]. However, some studies show
that hypermethylation of GSTP1, APC and PTGS2 in
prostate cancer is more informative of prognosis [9,
59] whereas RASSF1A methylation was only associ-
ated with advanced stage [59]. Many studies have
shown that RASSF1A methylation, as well as methyla-
tion of some other tumour-related genes, occurs signif-
icantly more frequently in tumours of a higher-grade,
later stage or in invasive or metastatic tumours. This
has been shown in many types of cancer including
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breast cancer, bladder cancer, salivary adenoid cys-
tic carcinoma, glioma, pituitary adenomas, pancre-
atic endocrine tumours and gastric cancer indicating
RASSF1A methylation may be used as a marker for tu-
mour progression and metastasis [13,43,49,70,76,82,
84,95]. Methylation of MGMT, RASSF1A and DAPK1
is also significantly associated with progression from
primary melanoma to metastatic melanoma [55]. Many
other studies provide further evidence that RASSF1A
methylation is a marker for disease progression. For ex-
ample, a study of transitional cell carcinomas (compris-
ing 116 bladder and 164 upper-tract tumours) revealed
a significantly higher frequency of RASSF1A methy-
lation in poorly-differentiated (p = 0.017) and more
rapidly progressing tumours (0.0076) [14]. Mortality
was also higher in tumours with RASSF1A methylation
(p = 0.018). Methylated RASSF1A and/or APC DNA
in serum from breast cancer patients is strongly associ-
ated with metastasis, tumour size and increased relative
risk for death [87]. A total of 11% (7/66) of patients
with methylation of RASSF1A or APC died compared
with 53% (10/19) of patients with methylation of both
(p = 0.001). In summary, RASSF1A methylation in tu-
mour tissue and corresponding body fluids often corre-
lates with advanced tumour stage and grade, metastasis,
poor tumour differentiation and adverse survival.

5.4. Drug resistance

Testicular nonseminoma germ cell tumours (NS-
GCT) are particularly sensitive to cisplatin-based
chemotherapy. However, 20–30% of metastatic tu-
mours acquire resistance to such therapy. A recent
study showed hypermethylationof RASSF1A and HIC1
was much more frequent in cisplatin resistant versus
cisplatin sensitive NSGCT [65]. Interestingly the fre-
quency of both RASSF1A and HIC1 methylation in-
creased following each regimen of cisplatin chemother-
apy. Very recently RASSF1A methylation in the serum
of breast cancer patients was identified as a surro-
gate marker for the monitoring of response to adjuvant
tamoxifen treatment [42]. Persistence of RASSF1A
methylation post-surgery and throughout treatment in-
dicated resistance to tamoxifen whereas loss of methy-
lation indicated a response. Thus, RASSF1A methy-
lation may offer a marker for cisplatin and tamoxifen
resistance in some tumours and could be monitored
throughout the course of treatment.

6. Conclusion

Whilst global hypomethylation is a characteristic
of many cancers, the specific hypermethylation of the
CpG islands associated with certain tumour suppressor
genes may be exploitable for the generation of assays
to determine clinical risk. However a current problem
with methylation as a biomarker is its potential lack of
specificity, for example in the colon the genome be-
comes increasingly methylated as an individual ages
and whilst this may reflect the increased risk of colon
cancer experienced by older people, it may also con-
found techniques that rely on an absence of methyla-
tion to predict reduced risk. The use of panels of care-
fully chosen markers specific for the tumour type and
taking into account the demographics of the population
to be tested will be an essential prerequisite to suc-
cessful clinical application of these assays. Regardless
of the role of DNA hypermethylation in cancer these
epigenetic changes will become useful in the clinic as
diagnostic or prognostic markers. The value of us-
ing methylation of RASSF1A and other tumour-related
genes as cancer biomarkers depends on whether these
markers could offer earlier detection, greater reliability
and sensitivity or be more informative of patient prog-
nosis when compared with existing screening strate-
gies. As discussed this appears the case for at least
some cancers. Furthermore, as an adjunct to existing
cancer detection methods screening for hypermethyla-
tion would provide a non-invasive, rapid and cost ef-
fective means of increasing the sensitivity and reliabil-
ity of cancer diagnosis from a range of readily avail-
able body fluids. When compared with existing screen-
ing strategies methylation analysis can provide a more
informative and powerful prognostic indicator with a
greater level of sensitivity for some cancers. However,
the use of hypermethylation as a cancer biomarker re-
quires a panel of several carefully chosen genes that of-
fer the greatest diagnostic coverage and prognostic in-
formation for a given cancer. Given the frequencies of
RASSF1A methylation, the broad spectrum of tumour
types in which this occurs and its potential prognostic
value, RASSF1A should be considered for inclusion in
any such panel of candidate genes.
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