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Abstract
A central challenge in the analysis of genetic variation is to provide realistic genome simula-

tion across millions of samples. Present day coalescent simulations do not scale well, or

use approximations that fail to capture important long-range linkage properties. Analysing

the results of simulations also presents a substantial challenge, as current methods to store

genealogies consume a great deal of space, are slow to parse and do not take advantage of

shared structure in correlated trees. We solve these problems by introducing sparse trees

and coalescence records as the key units of genealogical analysis. Using these tools, exact

simulation of the coalescent with recombination for chromosome-sized regions over hun-

dreds of thousands of samples is possible, and substantially faster than present-day

approximate methods. We can also analyse the results orders of magnitude more quickly

than with existing methods.

Author Summary

Our understanding of the distribution of genetic variation in natural populations has been
driven by mathematical models of the underlying biological and demographic processes.
A key strength of such coalescent models is that they enable efficient simulation of data we
might see under a variety of evolutionary scenarios. However, current methods are not
well suited to simulating genome-scale data sets on hundreds of thousands of samples,
which is essential if we are to understand the data generated by population-scale sequenc-
ing projects. Similarly, processing the results of large simulations also presents researchers
with a major challenge, as it can take many days just to read the data files. In this paper we
solve these problems by introducing a new way to represent information about the ances-
tral process. This new representation leads to huge gains in simulation speed and storage
efficiency so that large simulations complete in minutes and the output files can be pro-
cessed in seconds.
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Introduction
The coalescent process [1, 2] underlies much of modern population genetics and is fundamen-
tal to our understanding of molecular evolution. The coalescent describes the ancestry of a
sample of n genes in the absence of recombination, selection, population structure and other
complicating factors. The model has proved to be highly extensible, and these and many other
complexities required to model real populations have successfully been incorporated [3]. Simu-
lation has played a key role in coalescent theory since its beginnings [2], partly due to the ease
with which it can be simulated: for a sample of n genes, we require only O(n) time and space to
simulate a genealogy [4].

Soon after the single locus coalescent was derived, Hudson defined an algorithm to simulate
the coalescent with recombination [5]. However, after some early successes in characterising
this process [6, 7] little progress was made because of the complex distribution of blocks of
ancestral material among ancestors. Some years after Hudson’s pioneering work, the study of
recombination in the coalescent was recast in the framework of the Ancestral Recombination
Graph [8, 9]. In the ARG, nodes are events (either recombination or common ancestor) and the
edges are ancestral chromosomes. A recombination event results in a single ancestral chromo-
some splitting into two chromosomes, and a common ancestor event results in two chromo-
somes merging into a common ancestor. Analytically, the ARG is a considerable simplification
of Hudson’s earlier work as it models all recombination events that occurred in the history of a
sample and not just those that can potentially affect the genealogies. Many important results
have been derived using this framework, one of which is particularly significant for our purposes
here. Ethier and Griffiths [10] proved that the expected number of recombination events back
to the Grand MRCA of a sample of n individuals grows like eρ as ρ!1, where ρ is the popula-
tion scaled recombination rate. In this paper we consider a diploid model in which we have a
sequence ofm discrete sites that are indexed from zero. Recombination occurs between adjacent
sites at rate r per generation, and therefore ρ = 4Ne r(m − 1). The Ethier and Griffiths result
implies that the time required to simulate an ARG grows exponentially with the sequence
length, and we can only ever hope to simulate ARGs for the shortest of sequences.

This result, coupled with the observed poor scaling of coalescent simulators such as the sem-
inal ms program [11] seems to imply that simulating the coalescent with recombination over
chromosome scales is hopeless, and researchers have therefore sought alternatives. The sequen-
tially Markov coalescent (SMC) approximation [12, 13] underlies the majority of present day
genome scale simulation [14–16] and inference methods [17–19]. The SMC simplifies the pro-
cess of simulating genealogies by assuming that each marginal tree depends only on its imme-
diate predecessor as we move from left-to-right across the sequence. As a consequence, the
time required to simulate genealogies scales linearly with increasing sequence length. In prac-
tice, SMC based simulators such as MaCS [14] and scrm [16] are many times faster than ms.

The SMC has disadvantages, however. Firstly, the SMC discards all long range linkage infor-
mation and therefore can be a poor approximation when modelling features such as the length
of admixture blocks [20]. Improving the accuracy of the SMC can also be difficult. For example,
MaCS has a parameter to increase the number of previous trees on which a marginal tree can
depend. Counter-intuitively, increasing this parameter beyond a certain limit results in a worse
approximation to the coalescent with recombination [16]. (The scrm simulator provides a sim-
ilar parameter that does not exhibit this unfortunate behaviour, however.) Incorporating com-
plexities such as population structure [21], intra-codon recombination [22] and inversions [23]
is non-trivial and can be substantially more complex than the corresponding modification to
the exact coalescent model. Also, while SMC based methods scale well in terms of increasing
sequence length, currently available simulators do not scale well in terms of sample size.
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We solve these problems by introducing sparse trees and coalescence records as the funda-
mental units of genealogical analysis. By creating a concrete formalisation of the genealogies
generated by the coalescent process in terms of an integer vector, we greatly increase the effi-
ciency of simulating the exact coalescent with recombination. In the section Efficient coales-
cent simulation, we discuss how Hudson’s classical simulation algorithm can be defined in
terms of these sparse trees, and why this leads to substantial gains in terms of the simulation
speed and memory usage. We show that our implementation of the exact coalescent,
msprime, is competitive with approximate simulators for small sample sizes, and is faster
than all other simulators for large sample sizes. This is possible because Hudson’s algorithm
does not traverse the entire ARG, but rather a small subset of it. The ARG contains a large
number of nodes that do not affect the genealogies of the sample [24], and Hudson’s algorithm
saves time by not visiting these nodes. This subset of the ARG (sometimes known as the ‘little’
ARG) has not been well characterised, which makes analysis of Hudson’s algorithm difficult.
However, we show some numerical results indicating that the number of nodes in the little
ARG may be a quadratic function of the scaled recombination rate ρ rather than an
exponential.

Generating simulated data is of little use if the results cannot be processed in an efficient
and convenient manner. Currently available methods for storing and processing genealogies
perform very poorly on trees with hundreds of thousands of nodes. In the section Efficient
genealogical analysis, we show how the encoding of the correlated trees output by our simula-
tions leads to an extremely compact method of storing these genealogies. For large simulations,
the representation can be thousands of times smaller than the most compact tree serialisation
format currently available. Our encoding also leads to very efficient tree processing algorithms;
for example, sequential access to trees is several orders of magnitude faster than existing
methods.

The advantages of faster and more accurate simulation over huge sample sizes, and the abil-
ity to quickly process very large result sets may enable applications that were not previously
feasible. In the Results and Discussion we conclude by considering some of these applications
and other uses of our novel encoding of genealogies. The methods developed in this paper
allow us to simulate the coalescent for very large sample sizes, where the underlying assump-
tions of the model may be violated [25–27]. Addressing these issues is beyond the scope of this
work, but we note that the majority of our results can be applied to simulations of any retro-
spective population model.

Methods

Efficient coalescent simulation
In this section we define our encoding of coalescent genealogies, and show how this leads to
very efficient simulations. There are many different simulation packages, and so we begin with
a brief review of the state-of-the-art before defining our encoding and analysing the resulting
algorithm in the following subsections.

Two basic approaches exist to simulate the coalescent with recombination. The first
approach was defined by Hudson [5], and works by applying the effects of recombination and
common ancestor events to the ancestors of the sample as we go backwards in time. Events
occur at a rate that depends only on the state of the extant ancestors, and so we can generate
the waiting times to these events efficiently without considering the intervening generations.
This contrasts with time-reversed generation-by-generation methods [28–31] which are more
flexible but also considerably less efficient. The first simulation program published based on
Hudson’s algorithm was ms [11]. After this, many programs were published to simulate
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various evolutionary complexities not handled by ms, such as selection [32–35], recombination
hotspots [36], codon models [37], intra-codon recombination [22] and models of species with
a skewed offspring distribution [38]. Others developed user interfaces to facilitate easier analy-
sis [39, 40].

The second fundamental method of simulating the coalescent with recombination is due to
Wiuf and Hein [24]. In Wiuf and Hein’s algorithm we begin by generating a coalescent tree for
the left-most locus and then move across the sequence, updating the genealogy to account for
recombination events. This process is considerably more complex than Hudson’s algorithm
because the relationship between trees as we move across the genome is non-Markovian: each
tree depends on all previously generated trees. Because of this complexity, exact simulators
based on Wiuf and Hein’s algorithm are significantly less efficient than ms [16, 41]. However,
Wiuf and Hein’s algorithm has provided the basis for the SMC approximation [12, 13], and
programs based on this approach [14–16] can simulate long sequences far more efficiently
than exact methods such as ms. Very roughly, we can think of Wiuf and Hein’s algorithm per-
forming a depth-first traversal of the ARG, and Hudson’s algorithm a breadth-first traversal.
Neither explore the full ARG, but instead traverse the subset required to contruct all marginal
genealogies.

Recently, Hudson’s algorithm has been utilised in cosi2 [35], which takes a novel
approach to simulating sequences under the coalescent. The majority of simulators first gener-
ate genealogies and then throw down mutations in a separate process. In cosi2 these two pro-
cesses are merged, so that mutations are generated during traversal of the ARG. Instead of
associating a partial genealogy with each ancestral segment, cosi2maps ancestral segments
directly to the set of sampled individuals at the leaves of this tree. When a coalescence between
two overlapping segments occurs, we then have sufficient information to generate mutations
and map them to the affected samples. This strategy, coupled with the use of sophisticated data
structures, makes cosi2many times faster than competing simulators such as msms [34].
The disadvantage of combining the mutation process with ARG traversal, however, is that the
underlying genealogies are not available, and cosi2 cannot directly output coalescent trees.

Many reviews are available to compare the various coalescent simulators in terms of their
features [42–47]. Little information is available, however, about their relative efficiencies. Hud-
son’s ms is widely regarded as the most efficient implementation of the exact coalescent and is
the benchmark against which other programs are measured [13–16, 41, 47]. However, for
larger sample sizes and long sequence lengths, msms is much faster than ms. Also, for these
larger sequence lengths and sample sizes, ms is unreliable and crashes [15, 47]. Thus, msms is a
much more suitable baseline against which to judge performance. The scrm simulator is the
most efficient SMC based method currently available [16].

Hudson’s algorithm with sparse trees. An oriented tree [48, p. 461] is a sequence of inte-
gers π1 π2. . ., such that πu is the parent of node u and u is a root if πu = 0. Fig 1 shows some exam-
ple tree topologies and corresponding integer sequence encodings. Oriented trees provide a
concise and efficient method of representing genealogies, and have been used in coalescent simu-
lations of a spatial continuummodel [49, 50]. These simulations adopted the convention that the
individuals in the sample (leaf nodes) are mapped to the integers 1, . . ., n. For every internal node
u we have n< u< 2n and (for a binary tree) the root is 2n − 1. We refer to such trees as dense
because the 2n − 2 non-zero entries of the (binary) tree π occur at u = 1, . . ., 2n − 2. A sparse ori-
ented tree (or more concisely, sparse tree) is an oriented tree π in which the leaf nodes are 1, . . ., n
as before, but internal nodes can be any integer> n. For example, the oriented trees h5, 4, 4, 5, 0i
and h6, 5, 5, 0, 6, 0i are topologically equivalent, but the former is dense and the latter sparse.

In our simulations, ancestral nodes are numbered sequentially from n + 1, and a new node
is created when a coalescence occurs within one or more of the marginal genealogies. Note that
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we make a distinction between common ancestor events and coalescence events throughout. A
common ancestor event occurs when two ancestors merge to form a common ancestor. If these
ancestors have overlapping ancestral material, then there will also be at least one coalescence
event, which is defined as a single contiguous block of sequence coalescing within a common
ancestor. In Hudson’s algorithm there are many common ancestor events that do not result in
coalescence, and it is important to distinguish between them.

Let the tuple (ℓ, r, u) define a segment carrying ancestral material. This segment represents
the mapping of the half-closed genomic interval [ℓ, r) to the tree node u. Each ancestor a is
defined by a set of non-overlapping segments. Initially we have n ancestors, each consisting of
a single segment (0,m, u) for 1� u� n. The only other state required by the algorithm is the
time t, and the next node w; initially, t = 0 and w = n + 1.

Let P be the set of ancestors at a given time t. Recombination events happen at rate ρL/(m − 1)
where

L ¼
X
a2P

max
ð‘;r;uÞ2a

r � min
ð‘;r;uÞ2a

‘� 1

� �

is the number of available ‘links’ that may be broken. (We use a fixed recombination rate here
for simplicity, but an arbitrary recombination map can be incorporated without difficulty.) We
choose one of the available breakpoints uniformly, and split the ancestry of the individual at
that point into two recombinant ancestors. If this breakpoint is at k, we assign all segments with
r� k to one ancestor and all segments with ℓ� k to the other. If there is a segment (ℓ, r, u) such
that ℓ< k< r, then k falls within this segment and it is split such that the segment (ℓ, k, u) is
assigned to one ancestor and (k, r, u) is assigned to the other.

Common ancestor events occur at rate |P|(|P| − 1). Two ancestors a and b are chosen and
their ancestry merged to form their common ancestor. If their segments do not overlap, the set
of ancestral segments of the common ancestor is the union of those of a and b. If segments do
overlap, we have coalescence events which must be recorded. We define a coalescence event as
the merging of two segments over the interval [ℓ, r) into a single ancestral segment. In general
the coordinates of overlapping segments x and y will not exactly coincide, in which case we cre-
ate an equivalent set of segments by subdividing into the intersections and ‘overhangs’. Sup-
pose then that we have two exactly intersecting segments (ℓ, r, u) and (ℓ, r, v) from a and b
respectively; over the interval [ℓ, r) the nodes u and v coalesce into a common ancestor, which
we associate with the next available node w. We record this information by storing the coales-
cence record (ℓ, r, w, (u, v), t). As we see in the Generating trees section, these records provide
sufficient information to later recover all marginal trees. After recording this coalescence, we
then check if there are any other segments in P that intersect with [ℓ, r). If there are, the simula-
tion of this region is not yet complete and we insert the segment (ℓ, r, w) into the ancestor of a

Fig 1. Example oriented trees. From left-to-right, these trees are defined by the sequences h5, 4, 4, 5, 0i, h4, 4, 4, 0i and h4, 4, 5, 5, 0i, respectively.
doi:10.1371/journal.pcbi.1004842.g001
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and b. On the other hand, if there is some subset of [ℓ, r) such that there is no other segment in
P that intersects with it, we know that the marginal tree covering this interval is complete and
therefore we do not need to trace its history any further. If any other intervals overlap in a and
b, we perform the same operations, and finally update the next available node by incrementing
w. In this way, all coalescing intervals within the same ancestor map to the same node w, even
if they are disjoint. Conversely, if two disjoint marginal trees contain the same node, we know
that this is because multiple segments coalesced simultaneously within the same ancestor.

The algorithm continues generating recombination and common ancestor events at the
appropriate rates until P is empty, and all marginal trees are complete. This interpretation of
Hudson’s algorithm differs from the standard formulations [4, 5, 12] by concretely defining the
representation of ancestry and by introducing the idea of coalescence records. We have omitted
many important details here in the interest of brevity; see S1 Text for a detailed listing of our
implementation of Hudson’s algorithm, and S2 Text for an illustration of a complete invoca-
tion of the algorithm.

There are several advantages to our sparse tree representation of ancestry. Firstly, we do not
need to store partially built trees in memory, and the only state we need to maintain is the set
of ancestral segments. This leads to substantial time and memory savings, since we no longer
have to copy partially built trees at recombination events or update them during coalescences.
We can also actively defragment the segments in memory. For example, suppose that as a result
of a common ancestor event we have two segments (ℓ, k, u) and (k, r, u) in an ancestor. We can
replace these segments with the equivalent segment (ℓ, r, u). Such defragmentation yields sig-
nificant time and memory savings.

We have developed an implementation of Hudson’s algorithm called msprime based on
these ideas. This package (written in C and Python) provides an ms compatible command line
interface along with a Python API, and is freely available under the terms of the GNU GPL at
https://pypi.python.org/pypi/msprime. The implementation uses a simple linked-list based
representation of ancestral segments, and uses a binary indexed tree [51, 52] to ensure the
choice of ancestral segment involved in a recombination event can be done in logarithmic
time. The implementation of msprime is based on the listings for Hudson’s algorithm given
in S1 Text, which should provide sufficient detail to make implementation in a variety of lan-
guages routine.

Performance analysis. Surprisingly little is known about the complexity of Hudson’s algo-
rithm. We do not know, for example, what the expected maximum number of extant ancestors
is, nor the distribution of ancestral material among them. The most important unknown value
in terms of quantifying the complexity of the algorithm is the expected number of events that
must be generated. It is sufficient to consider the recombination events as the number of com-
mon ancestor and recombination events is approximately equal [24]. Hudson’s algorithm tra-
verses a subset of the ARG as it generates the marginal genealogies in which we are interested,
and so we know that the expected number of recombination events we encounter is less than eρ

[10]. This subset of the ARG is sometimes known as the ‘little’ ARG, but the relationship
between the ‘big’ and little ARGs has not been well characterised.

Fig 2 plots the average number of recombination events generated by Hudson’s algorithm
for varying sequence lengths and sample sizes. In this plot we also show the results of fitting a
quadratic function to the number of recombination events as we increase the scaled recombi-
nation rate ρ. The fit is excellent, suggesting that the current upper bound of eρ is far too pessi-
mistic. Wiuf and Hein [24] previously noted that the observed number of events in Hudson’s
algorithm was ‘subexponential’ but did not suggest a quadratic bound. Another point to note is
that the rate at which the number of events grows as we increase the sample size is extremely
slow, suggesting that Hudson’s algorithm should scale well for large sample sizes.
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These expectations are borne out well in observations of our implementation of Hudson’s
algorithm in msprime. Fig 3 compares the time required to simulate coalescent trees using a
number of simulation packages. As we increase the sequence length in the left-hand panel, the
running time of msprime increases faster than linearly, but at quite a slow rate. msprime is
faster than the SMC approximations (MaCS and scrm) until ρ is roughly 20000, and the differ-
ence is minor for sequence lengths greater than this. msprime is far faster than msms, the
only other exact simulator in the comparison (we did not include ms in these comparisons as it
was too slow and is unreliable for large sample sizes). As we increase the sample size in the
right-hand panel, we can see that msprime is far faster than any other simulator. Two ver-
sions of msprime are shown in these plots: one outputting Newick trees (to ensure that the
comparison with other simulators is fair), and another that outputs directly in msprime’s
native format. Conversion to Newick is an expensive process, particularly for larger sample
sizes. When we eliminate this bottleneck, simulation time grows at quite a slow, approximately
linear rate. The memory usage of msprime is also modest, with the simulations in Fig 3
requiring less than a gigabyte of RAM. S3 Fig shows that the mean number of recombination
breakpoints (i.e., the number of recombination events within ancestral material) output by all

Fig 2. Themean number of recombination events in Hudson’s algorithm over 100 replicates for varying sequence length and sample size. In the
left panel we fix n = 1000 and vary the sequence length. Shown in dots is a quadratic fitted to these data, which has a leading coefficient of 8.4 × 10−3. In the
right panel we fix the sequence length at 50 megabases and vary the sample size.

doi:10.1371/journal.pcbi.1004842.g002

Efficient Coalescent Simulation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004842 May 4, 2016 7 / 22



these simulators is identical, and matches Hudson and Kaplan’s prediction [6] very well, giving
us some confidence in the correctness of the results. S4 Fig shows the relative performance of
msprime and scrm for a small sample size, and also shows the effect of increasing the size of
scrm’s sliding window.

We are often interested in the haplotypes that result from imposing a mutation process
onto genealogies as well as the genealogies themselves. S1 Fig compares the time required to
generate haplotypes using scrm, msprime and cosi2. Simulation times are similar in all
three for a fixed sample size of 1000 and increasing sequence length. For increasing sample
sizes, both cosi2 and msprime are substantially faster than scrm. However, msprime is
significantly faster than cosi2 (and uses less memory; see S2 Fig), particularly when we
remove the large overhead of outputting the haplotypes in text form.

Performance statistics were measured on Intel Xeon E5-2680 processors running Debian
8.2. All code required to run comparisons and generate plots is available at https://github.com/
jeromekelleher/msprime-paper.

Fig 3. Comparison of the average running time over 100 replicates for various coalescent simulators with varying sequence length and sample
size. msms [34] is the most efficient published simulator based on Hudson’s algorithm that can output genealogies. MaCS [14] is a popular SMC based
simulator, and scrm [16] is the most efficient sequential simulator currently available. Both MaCS and scrmwere run in SMC0 mode. Two results are shown
for msprime; one outputting Newick trees and another outputting the native HDF5 based format.

doi:10.1371/journal.pcbi.1004842.g003
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Efficient genealogical analysis
There has been much recent interest in the problem of representing large scale genetic data in
formats that facilitate efficient access and calculation of statistics [53–55]. The use of ‘succinct’
data structures, which are highly compressed but also allow for efficient queries is becoming
essential: the scale of the data available to researchers is so large that naive methods simply no
longer work.

Although genealogies are fundamental to biology, there has been little attention to the prob-
lem of encoding trees in a form that facilitates efficient computation. The majority of research
has focused on the accurate interchange of tree structures and associated metadata. The most
common format for exchanging tree data is the Newick format [56], which although ill-defined
[57] has become the de-facto standard. Newick is based on the correspondence of tree structures
with nested parentheses, and is a concise method of expressing tree topologies. Because of this
recursive structure, specific extensions to the syntax are required to associate information with
tree nodes [58, 59]. XML based formats [57, 60] are much more flexible, but tend to require sub-
stantially more storage space than Newick [57]. Various extensions to Newick have been pro-
posed to incorporate more general graph structures [61–64], as well as a GraphML extension to
encode ARGs directly [65]. Because Newick stores branch lengths rather than node times,
numerical precision issues also arise when summing over many short branches [65].

General purpose Bioinformatics toolkits such as BioPerl [66] and BioPython [67] provide
basic tools to import trees in the various formats. More specific tree processing libraries such as
DendroPy [68], ETE [69], and APE [70] provide more sophisticated tools such as visualisation
and tree comparison algorithms. None of these libraries are designed to handle large collections
of correlated trees, and cannot make use of the shared structure within a sequence of correlated
genealogies. The methods employed rarely scale well to trees containing hundreds of thousands
of nodes.

In this section we introduce a new representation of the correlated trees output by a coales-
cent simulation using coalescence records. In the Tree sequences subsection we discuss this
structure and show how it compares in practice to existing approaches in terms of storage size.
Then, theGenerating trees subsection presents an algorithm to sequentially generate the mar-
ginal genealogies from a tree sequence, which we compare with existing Newick-based methods.
Finally, in the Counting leaves subsection we show how the algorithm to sequentially visit trees
can be extended to efficiently maintain the counts of leaves from a specific subset, and show
how this can be applied in a calculation commonly used in genome wide association studies.

Tree sequences. As described earlier, the output of our formulation of Hudson’s algorithm
is a list of coalescence records. Each coalescence record is a tuple (ℓ, r, u, c, t) describing the
coalescence of a list of child nodes c into the parent u at time t over the half-closed genomic
interval [ℓ, r). (Because only binary trees are possible in the standard coalescent, we assume the
child node list c is a 2-tuple (c1, c2) throughout. However, arbitrary numbers of children can be
accommodated without difficulty to support common ancestor events in which more than two
lineages merge [71–74]) We refer to this set of records as a tree sequence, as it is a compact
encoding of the set of correlated trees representing the genealogies of a sample. Fig 4 shows an
illustration of the tree sequence output by an example simulation (see S2 Text for a full trace of
this simulation).

The tree sequence provides a concise method of representing the correlated genealogies gen-
erated by coalescent simulations because it stores node assignments shared across adjacent
trees exactly once. Consider node 7 in Fig 4. This node is shared in the first two marginal trees,
and in both cases it has two children, 1 and 6. Even though the node spans two marginal trees,
the node assignment is represented in one coalescence record (0, 7, 7, (1, 6), 0.170).

Efficient Coalescent Simulation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004842 May 4, 2016 9 / 22



Importantly, this holds true even though the subtree beneath 6 is different in these trees. Thus,
any assignment of a pair of children to a given parent that is shared across adjacent trees will
be represented by exactly one coalescence record.

Coalescence records provide a full history of the coalescence events that occurred in our sim-
ulation. (Recall that we distinguish between common ancestor events, which may or may not
result in marginal coalescences, and coalescence events which are defined as a single contiguous
block of genome merging within a common ancestor.) The effects of recombination events are
also stored indirectly in this representation in the form of the left and right coordinate of each
record. For every distinct coordinate between 0 andm, there must have been at least one recom-
bination event that occurred at that breakpoint. However, there is no direct information about
the times of these recombination events, and many recombinations will happen that leave no
trace in the set of coalescence records. For example, if we have a recombination event that splits
the ancestry of a given lineage, and this is immediately followed by a common ancestor event
involving these two lineages, there will be no record of this pair of events.

On the other hand, if we consider the records in order of their left and right coordinates we
can also see them as defining the way in which we transform the marginal genealogies as we
move across a chromosome. Because many adjacent sites may share the same genealogy, we
need only consider the coordinates of our records in order to recover the distinct genealogies
and the coordinate ranges over which they are defined. To obtain the marginal tree covering the
interval [0,2), for example, we simply find all records with left coordinate equal to 0 and apply
these to the empty sparse tree π. To subsequently obtain the tree corresponding to the interval
[2, 7) we first remove the records that do not apply over this interval, which must have right

Fig 4. Coalescence records and correspondingmarginal trees. The x-axis represents genomic coordinates, and y-axis represents time (with the present
at the top). Each line segment in the top section of the figure represents a coalescence record; e.g., the first segment corresponds to the coalescence record
(2, 10, 5, (3, 4), 0.071). The lower section of the figure shows the corresponding trees in pictorial and sparse tree form. We have omitted commas and
brackets from this sequence representation for compactness.

doi:10.1371/journal.pcbi.1004842.g004
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coordinate equal to 2. In the example, this corresponds to removing the assignments (2, 4)! 6
and (3, 7)! 9. Having removed the ‘stale’ records that do not cover the current interval, we
must now apply the new records that have left coordinate 2. In this case, we have two node
assignments (3, 4)! 5 and (2, 5)! 6, and applying these changes to the current tree completes
the transformation of the first marginal tree into the second.

There is an important point here. As we moved from left-to-right across the simulated chro-
mosome we transitioned from one marginal tree to the next by removing and applying only
two records. Crucially, modifying the nodes that were affected by this transition did not result
in a relabelling of any nodes that were not affected. As Wiuf and Hein [24,75] showed, the
effect of a recombination at a given point in the sequence is to cut the branch above some node
in the tree to the left of this point, and reattach it within another branch. This process is known
as a subtree-prune-and-regraft [76, 77] and requires a maximum of three records to express in
our tree sequence formulation.

Prune-and-regraft operations that do not affect the root require three records, as illustrated
in Fig 5. Two other possibilities exist for how the current tree can be edited as we move along
the sequence. The first case is when we have a prune and regraft that involves a change in root
node; this requires only two records and is illustrated in the first transition in Fig 4. The other
case that can arise from a single recombination event is a simple root change in which the only
difference between the adjacent trees is the time of the MRCA. This requires one record, and is
illustrated in the second transition in Fig 4. These three possibilities are closely related to the
three classes of subtree-prune-and-regraft identified by Song [76, 77].

Knowing the maximum number of records arising from a single recombination event pro-
vides us with a useful bound on the expected number of records in a tree sequence. Because the
expected number of recombination events within ancestral material is approximately ρ log n
[6, 24] we know that the expected number of tree transitions is ρ log n. The number of records
we require for these tree transitions is then clearly� 3ρ log n. We also require n − 1 records to
describe the first tree in the sequence, and so the total number of records is� n + 3ρ log n − 1.

Storing a tree sequence as a set of coalescence records therefore requires O(n + ρ log n)
space, whereas any representation that stores each tree separately (such as Newick) must
require O(nρ log n) space. This difference is substantial in practice. As an example of a practical
simulation of the sort currently being undertaken, we repeated the simulation run by Layer
et al. [54], in which we simulate a 100 megabase region with a recombination rate of 10−3 per
base per 4Ne generations for a sample of 100,000 individuals. This simulation required approxi-
mately 6 minutes and 850MB of RAM to run using msprime; the original simulation report-
edly required over 4 weeks using MaCS on similar hardware.

Fig 5. A prune and regraft not involving the root requires three records. (i) We begin with two subtrees rooted at x and y, and we wish to prune the
subtree rooted at b and graft it in the branch joining e to y. (ii) We remove the assignments (a, b)! α, (α, c)! x and (d, e)! y. After this operation, the
subtrees a, . . ., e are disconnected from the main tree. The main trunk the tree rooted at z is unaffected, as are the subtrees below a, . . ., e. (iii) We add the
records (a, c)! x, (b, e)! β and (d, β)! y, completing the transition.

doi:10.1371/journal.pcbi.1004842.g005
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Outputting the results as coalescence records in a simple tab-delimited text format resulted
in a 173MB file (52MB when gzip compressed). In contrast, writing the trees out in Newick
form required around 3.5TB of space. Because plain text is a poor format for storing structured
numerical data [78], msprime provides a tree sequence storage file format based of the HDF5
standard [79]. Using this storage format, the file size is reduced to 88MB (41MB using the
transparent zlib compression provided by the HDF5 library).

To compare the efficiency of storing correlated trees as coalescence records with the TreeZip
compression algorithm [80] we output the first 1000 trees in Newick format, resulting in a
3.2GB text file (1.1GB gzip compressed). The TreeZip compression algorithm required 10
hours to run and resulted in an 882MB file (83MB gzip compressed). Unfortunately, it was not
feasible to run TreeZip on all 3.5TB of the Newick data, but we can see that with only around
0.1% of the input data, the compressed representation is already larger than the simple text out-
put of the entire tree sequence when expressed as coalescence records.

Associating mutation information with a tree sequence is straightforward. For example, to
represent a mutation that occurs on the branch that joins node 7 to node 9 at site 1 in Fig 4, we
simply record the tuple (7, 1). (Infinite sites mutations can be readily accommodated by assum-
ing that the coordinate space is continuous rather than discrete.) Because only the associated
node and position of each mutation needs to be stored, this results in a very concise representa-
tion of the full genealogical history and mutational state of a sample. Repeating the simulation
above with a scaled mutation rate of 10−3 per unit of sequence length per 4Ne generations
resulted in 1.2 million infinite sites mutations. The total size of the HDF5 representation of the
tree sequence and mutations was 102MB (49MB using HDF5’s zlib compression). In contrast,
the text-based haplotype strings consumed 113GB (9.7GB gzip compressed). Converting to
text haplotypes required roughly 9 minutes and 14GB of RAM.

The PBWT [53] represents binary haplotype data in a format that is both highly compressed
and enables efficient pattern matching algorithms. We converted the mutation data above into
PBWT form, which required 22MB of storage. Thus, the PBWT is a more compact representa-
tion of a set of haplotypes than the tree sequence. However, the PBWT does not contain any
genealogical data, and therefore contains less information than the tree sequence.

Generating trees. Coalescence records provide a very compact means of encoding corre-
lated genealogies. Compressed representations of data usually come at the cost of increased
decompression effort when we wish to access the information. In contrast, we can recover the
marginal trees from a set of coalescence records orders of magnitude more quickly than is pos-
sible using existing methods. In this section we define the basic algorithm required to sequen-
tially generate these marginal genealogies.

For algorithms involving tree sequences it is useful to regard the set of coalescence records
as a table and to index the columns independently (see S2 Text for the table corresponding to
Fig 4). Therefore define a tree sequence T as a tuple of vectors T = (l, r, u, c, t), such that for
each index 1� j�M, (lj, rj, uj, cj, tj) corresponds to one coalescence record output by Hud-
son’s algorithm, and there areM records in total. It is also useful to impose an ordering among
the children at a node, and so we assert that cj,1 < cj,2 for all 1� j�M.

If we wish to obtain the tree for a given site x we simply find the n − 1 records that inter-
sect with this point and build the tree by applying these records. We begin by setting πj 0
for 1� j �max(u), and then set πcj,1 uj and πcj,2 uj for all j such that lj� x< rj. Spatial
indexing structures such as the segment tree [81] allow us to find all k segments out of a set
of N that intersect with a given point in O(k + log N) time. Therefore, since the expected
number of records is O(n + ρ log n) as shown in the previous subsection, the overall complex-
ity of generating a single tree is O(n + log(n + ρ log n)).
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A common requirement is to sequentially visit all trees in a tree sequence in left-to-right
order. One possible way to do this would be to find all of the distinct left coordinates in the l
vector and apply the process outlined above. However, adjacent trees are highly correlated and
share much of their structure, and so this approach would be quite wasteful. A more efficient
approach is given in Algorithm T below. For this algorithm we require two ‘index vectors’ I
andO which give the indexes of the records in the order in which they are inserted and
removed, respectively. Records are applied in order of nondecreasing left coordinate and
increasing time, and records are removed in nondecreasing order of right coordinate and
decreasing time. That is, for every pair of indexes j and k such that 1� j< k�M we have
either lI j

< lIk
or lI j ¼ lIk and tI j < tIk ; and similarly, either rOj

< rOk
or rOj

¼ rOk
and

tOj
> tOk

. We assume that these index vectors have been pre-calculated below.

Algorithm T. (Generate trees). Sequentially visit the sparse trees π in a
tree sequence T = (l,r,u,c,t) with M records.
T1. [Initialisation.] Set πj 0 for 1� j� max(u). Then set j 1, k 1 and

x 0.
T2. [Insert record.] Set h I j, πch,1

 πch,2
 uh, and j j + 1. If j� M and

lI j ¼ x, go to T2.

T3. [Visit tree.] Visit the sparse tree π starting at site x. If j > M terminate
the algorithm. Otherwise, set x lI j.

T4. [Remove record.] Set h Ok, πch,1
 πch,2

 0 and k k + 1. Then, if rOk
¼ x go

to T4; otherwise, go to T2.

Algorithm T sequentially generates all marginal trees in a tree sequence by first applying
records to the sparse tree π in step T2 for a given left coordinate. Once this is complete, the
tree is made available to client code by ‘visiting’ it [48, p.281] in T3. After the user has finished
processing the current tree, we prepare to move to the next tree by removing all stale records
in T4, and then return to T2. The algorithm is very efficient. Because each record is considered
exactly once in step T2 and at most once in step T4 the total time required by the algorithm is
O(n + ρ log n). To illustrate this efficiency, we consider the time required to iterate over the
trees produced by the large example simulation used throughout this section. Reading in the
full tree sequence in msprime’s native HDF5 based format and iterating over all 1.1 million
trees using the Python API required approximately 3 seconds. In contrast, using the BioPy-
thon [67] version 1.64 Newick parser required around 3 seconds per tree, leading to an esti-
mated 38 days to iterate over all trees. Similarly, ETE [69] version 2.3.9 required 4.5 seconds
per tree, and DendroPy [68] version 4.0.2 required around 14 seconds per tree. Comparing
Python Newick parsers to msprimemay be somewhat misleading, since the majority of
msprime’s tree processing code is written in C. However, APE [70] version 3.1, which uses a
Newick parser written in C, also required around 7 seconds per tree. Thus, using msprime’s
API we can iterate over this set of trees more than amillion times faster than any of these
alternatives.

Algorithm T generates only the sparse tree πmapping each node to its parent. It is easy to
extend this algorithm to include information about the node times, children, start and end
coordinates and other information. We have also assumed binary trees here, but it is trivial to
extend the algorithm to work with more general trees. When computing statistics across the
tree sequence it is often useful to know the specific differences between adjacent trees, as this
often allows us to avoid examining the entire tree. This information is directly available in
Algorithm T. The tree iteration code in msprime’s Python API makes all of this information
available, facilitating easy tree traversal in both top-down and bottom-up fashion.
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Counting leaves. The previous subsection provides an algorithm to efficiently visit all mar-
ginal genealogies in a tree sequence. This algorithm can be easily augmented to maintain sum-
maries of tree properties as we sweep across the sequence. As an example of this, we show how
to augment Algorithm T to maintain the counts of the number of leaves from a specific set that
are below each internal node. More precisely, given some subset S of our sample, we maintain a
vector β such that for any node u, βu is the number of leaves below u that belong to the set S.
This allows us to quickly calculate allele frequencies: since each mutation is associated with a
particular node u, βu/|S| is the frequency of the mutation within S. Calculating allele frequencies
within specific subsets of the sample has many applications, for example calculating summary
statistics such as FST [82], and association tests in genome wide association studies [83].

Suppose we have a tree sequence T and we wish to generate the sparse trees π as before. We
now also wish to generate the vector β, such that βu gives the number of leaf nodes in the sub-
tree rooted at u that are in the set S� {1, . . ., n}. We assume that the index vectors I andO
have been precomputed, as before.

Algorithm L. (Count leaves). Generate the sparse trees π and leaf counts β

for a tree sequence T = (l,r,u,c,t) with M records and set of leaves S.
L1. [Initialisation.] Set πj βj 0 for 1 � j � max(u). Set βj 1 for each

j 2 S. Then set j 1, k 1 and x 0.
L2. [Insert record.] Set h I j, πch,1

 πch,2
 uh, b βch,1

+βch,2
and j j + 1.

L3. [Increment leaf counts.] Set v uh. Then, while v 6¼ 0, set βv βv + b and
v πv. Afterwards, if j� M and lI j ¼ x, go to L2.

L4. [Visit tree.] Visit (π, β). If j > M terminate the algorithm; otherwise,
set x  lI j.

L5. [Remove record.] Set h Ok, πch,1
 πch,2

 0, b βch,1
+βch,2

and k k + 1.
L6. [Decrement leaf counts.] Set v uh. Then, while v 6¼ 0, set βv βv − b and

v πv. Afterwards, if rOk
¼ x, go to L5; otherwise, go to L2.

Algorithm L works in the same manner as Algorithm T: for each tree transition, we remove
the stale records that no longer apply to the genomic interval currently under consideration,
and apply all new records that begin at location x. We update the sparse tree π by applying a
record in step L2, and then update the leaf count β to account for this new node assignment. In
step L3 we propagate the corresponding leaf count gain up to the root, before returning to L2 if
necessary. Once we have applied all of the inbound records we then visit the tree by making π
and β available to the user in L4. Then, if any more trees remain, we move on by removing the
outbound records in steps L5 and L6, updating β to account for the corresponding loss in leaf
counts. The correctness of the algorithm depends on the ordering of the index vectors I and
O. Records are always inserted in increasing order of time, and always removed in decreasing
order of time within a tree transition. Therefore, for any record in which subtrees rooted at c1
and c2 become the children of u, we are guaranteed that these subtrees are complete and that
βc1 and βc2 are correct. Removing outbound records in reverse order of time similarly guaran-
tees that the leaf counts within the disconnected subtrees that we create are maintained
correctly.

Algorithm L clearly examines each record at most once in steps L2 and L5. Steps L3 and L6
contain loops to propagate leaf counts up the tree, and are therefore not constant time opera-
tions. Since coalescent genealogies are asymptotically balanced [84], the expected height of a tree
(in terms of the number of nodes) is log2 n. Therefore, the cost of steps L3 and L6 is O(log2 n)
per record, leading to a log2 n extra cost over Algorithm T. In practical terms, this extra cost is
negligible. For example, msprime automatically maintains counts for all leaves (and optionally
can maintain counts for specific subsets) when doing all tree transitions. The 3 second time
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quoted above required to iterate over all 1.1 million trees in the large simulation example
includes the cost of maintaining counts for all 105 leaves at all internal nodes. To demonstrate
this efficiency, we ran a simple genome wide association test, where we split the sample into
50,000 cases and controls. One of the most powerful and popular applications for running such
association tests is plink [85]. After converting the simulated data to a 29G BED file, the stable
version of plink (1.07) required 176 minutes to run a simple association test. The development
version of plink (1.9) required 54 seconds. Using msprime’s Python API, the same odds-
ratio test required around 10 seconds.

Results and Discussion
The primary contribution of this paper is to introduce a new encoding for the correlated trees
resulting from simulations of the coalescent with recombination. This encoding follows on
from previous work in which trees are encoded as integer vectors [49, 50], but makes the cru-
cial change that tree vectors are sparse. Using this encoding, the effects of each coalescence
event are stored as simple fixed-size records that provide sufficient information to recover all
marginal genealogies after the simulation has completed. This approach leads to very large
gains in simulation performance over classical simulators such as ms, so that the exact simula-
tion of genealogies for the coalescent with recombination over chromosome scales is feasible
for the first time. We have presented an implementation based on the sparse tree encoding
called msprime, which is faster than all other simulators for large sample sizes. This simulator
supports the full discrete population structure and demographic event model provided by ms
along with variable recombination rates. We plan to include populations evolving in continu-
ous space [86–88] and gene conversion [89] in subsequent releases.

Coalescence records also lead to an extremely compact storage format that is several orders
of magnitude smaller than the most compact method currently available. Despite this very
high level of compression, accessing the genealogical data is very efficient. In an example with
100,000 samples, we saw a roughly 40,000-fold reduction in file size over the Newick tree
encoding, and a greater than million-fold decrease in the time required to iterate over the gene-
alogies compared to several popular libraries. This efficiency is gained through very simple
algorithms that we have stated rigorously and unambiguously, and also analysed in terms of
their computational complexity. Being able to process such large sample sizes is not an idle
curiosity; on the contrary, we have a pressing need to work with such datasets. We envisage
three immediate uses for our work.

Firstly, sequencing projects are being conducted on an unprecedented scale [90–95], and the
storage and analysis of these data pose serious computational challenges. Sophisticated newmeth-
ods are being developed to organise and analyse information on this immense scale [53–55].
Developers have struggled to generate simulated data on a similar scale [53, 54], as present day
simulators perform poorly on these huge sample sizes. Using msprime, the time required to gen-
erate genome scale data for hundreds of thousands of samples is reduced from weeks to minutes.

Secondly, prospective studies such as UK Biobank [96, 97] are collecting genetic and high-
dimensional phenotypic data for hundreds of thousands of samples. The key statistical method
to interrogate such data is the genome wide association study (GWAS) [98], and large sample
size has been identified as the single most important factor in determining the power of these
studies [83]. Simulation plays a key role in GWAS, and typically proceeds by superimposing
the disease model of interest on haplotypes obtained via various methods [99]. Because the
accurate modelling of linkage disequilibrium is essential in disease genetics [100], recombina-
tion must be incorporated. Resampling methods [83, 101–103] generate simulated haplotypes
based on an existing reference panel, and provide a good match to observed linkage patterns.
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However, there is some bias associated with this process, and there are statistical difficulties
when the size of the sample required is larger than the reference panel. Other methods obtain
simulated haplotypes from population genetics models via forwards-in-time [104, 105] or coa-
lescent [106, 107] simulations. None of these methods can efficiently handle the huge sample
sizes required, however. A simulator for high dimensional phenotype data based on msprime
could alleviate these performance issues and be a key application for the library.

Thirdly, today’s large sample sizes provide us with an unprecedented opportunity to under-
stand the history and geographic structure of our species. Aside from its intrinsic interest, cor-
rectly accounting for population stratification is critical for the interpretation of association
studies [108, 109], particularly for rare variants [110, 111]. Researchers are seeking to under-
stand fine scale population structure using methods based on principal component analysis
[112], admixture fractions [113–115], length of haplotype blocks [116–118] and allele frequen-
cies [119]. To date, it has been challenging to assess the accuracy of these methods, as simula-
tions struggle to match the required sequence lengths and sample sizes. Furthermore, methods
based on the SMC approximation [17, 18] have been tested using SMC simulations out of
necessity, making it difficult to assess the impact of the approximation on accuracy. Simula-
tions of the exact coalescent with recombination at chromosome scales for large sample sizes
and arbitrary demographies will be an invaluable tool for developers of such methods.

As we have demonstrated, the tree sequence structure leads to very efficient algorithms, and
allows us to encode simulated data very compactly. We would also wish to encode biological
data in this structure so that we can apply these algorithms to analyse real data. However, to do
this we must estimate a tree sequence from data, which is a non-trivial task. Nonetheless, there
has been much work in this area [120] with several heuristic [121] and more principled
approaches that may be adopted [19, 122]. Using the PBWT [53] to find long haplotypes
(which will usually correspond to long records) seems like a particularly promising avenue.

Finally, an interesting issue arises when we consider the problem of inferring a tree sequence
from data. Suppose we have observed a set of haplotypes resulting from a coalescent simulation
with infinite sites mutations occurring at a very high rate. Under these conditions, the underly-
ing tree sequence can be recovered exactly from the data, but the corresponding ARG (i.e., the
specific realisation of the ARG that was traversed by Hudson’s algorithm) cannot. For example,
a recombination may have occurred during the simulation that was immediately followed by a
common ancestor event involving the same lineages. These nodes in the ARG can have no
effect on the data, and are therefore unobservable. To put this in another way, there is no
observable information in an ARG that is not in a tree sequence. Given this representational
sufficiency and the storage and processing efficiencies demonstrated in this article, we would
argue that a tree sequence is a more natural and powerful representation of observed genetic
variation than an ARG.
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