~ International Journal of
Molecular Sciences

Article

Physosmotic Induction of Chondrogenic Maturation Is TGF-f3
Dependent and Enhanced by Calcineurin Inhibitor FK506

Holger Jahr '2*©, Anna E. van der Windt 3, Ufuk Tan Timur 1-2, Esther B. Baart 4, Wei-Shiung Lian 3¢,
Bernd Rolauffs ”(”, Feng-Sheng Wang ¢ and Thomas Pufe !

check for
updates

Citation: Jahr, H.; van der Windt,
A.E.; Timur, U.T,; Baart, E.B.; Lian,
W.-S.; Rolauffs, B.; Wang, F.--S.; Pufe,
T. Physosmotic Induction of
Chondrogenic Maturation Is TGF-3
Dependent and Enhanced by
Calcineurin Inhibitor FK506. Int. J.
Mol. Sci. 2022, 23, 5110. https://
doi.org/10.3390/ijms23095110

Academic Editor: Alfonso Baldi

Received: 5 April 2022
Accepted: 30 April 2022
Published: 4 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Anatomy and Cell Biology, University Hospital RWTH Aachen University,

52074 Aachen, Germany; u.timur@maastrichtuniversity.nl (U.T.T.); tpufe@ukaachen.de (T.P.)

Department of Orthopaedic Surgery, Maastricht University Medical Center,

6229 HX Maastricht, The Netherlands

3 Department of Orthopaedics, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
a.vanderwindt@erasmusmc.nl

Department of Obstetrics & Gynaecology, Erasmus University Medical Center,

3015 GD Rotterdam, The Netherlands; e.baart@erasmusmc.nl

Core Laboratory for Phenomics and Diagnostics, Department of Medical Research, College of Medicine,
Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
lianws@gmail.com (W.-S.L.); wangfs@ms33.hinet.net (F.-5.W.)

Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital,

Kaohsiung 83301, Taiwan

G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics
and Trauma Surgery, Faculty of Medicine, Medical Center, Albert-Ludwigs-University,

79085 Freiburg, Germany; bernd.rolauffs@uniklinik-freiburg.de

*  Correspondence: h.jahr@maastrichtuniversity.nl; Tel.: +49-2418089525

Abstract: Increasing extracellular osmolarity 100 mOsm/kg above plasma level to the physiological
levels for cartilage induces chondrogenic marker expression and the differentiation of chondropro-
genitor cells. The calcineurin inhibitor FK506 has been reported to modulate the hypertrophic
differentiation of primary chondrocytes under such conditions, but the molecular mechanism has
remained unclear. We aimed at clarifying its role. Chondrocyte cell lines and primary cells were
cultured under plasma osmolarity and chondrocyte-specific in situ osmolarity (+100 mOsm, physos-
molarity) was increased to compare the activation of nuclear factor of activated T-cells 5 (NFATS5).
The effects of osmolarity and FK506 on calcineurin activity, cell proliferation, extracellular matrix
quality, and BMP- and TGF-f3 signaling were analyzed using biochemical, gene, and protein ex-
pression, as well as reporter and bio-assays. NFATS5 translocation was similar in chondrocyte cell
lines and primary cells. High supraphysiological osmolarity compromised cell proliferation, while
physosmolarity or FK506 did not, but in combination increased proteoglycan and collagen expression
in chondrocytes in vitro and in situ. The expression of the TGF-p-inducible protein TGFBI, as well
as chondrogenic (SOX9, Col2) and terminal differentiation markers (e.g., Col10) were affected by
osmolarity. Particularly, the expression of minor collagens (e.g., Col9, Col11) was affected. The
inhibition of the FK506-binding protein suggests modulation at the TGF-§3 receptor level, rather than
calcineurin-mediated signaling, as a cause. Physiological osmolarity promotes terminal chondrogenic
differentiation of progenitor cells through the sensitization of the TGF- superfamily signaling at the
type I receptor. While hyperosmolarity alone facilitates TGF-3 superfamily signaling, FK506 further
enhances signaling by releasing the FKBP12 break from the type I receptor to improve collagenous
marker expression. Our results help explain earlier findings and potentially benefit future cell-based
cartilage repair strategies.

Keywords: hyperosmolarity; chondrocyte; differentiation; ATDC5; FK506; calcineurin; minor colla-
gens; TGFBIL; BMP signaling; FKBP-12
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1. Introduction

Articular cartilage is the highly specialized connective tissue of diarthrodial joints
and composed of a dense extracellular matrix (ECM) with a sparse distribution of highly
specialized chondrocytes. Principal ECM components are water, collagens, and proteogly-
cans, which together are critical to maintain the tissue’s unique mechanical properties [1].
While osteoarthritis (OA) is now considered a disease of the whole joint, articular cartilage
breakdown remains one of its hallmarks [2]. Several signaling pathways contribute to
articular cartilage homeostasis, its focal deterioration, and eventually OA progression, such
as transforming growth factor beta (Tgf-f3) and nuclear factor of activated T cells (NFAT)
signaling [3,4].

NFATSs are a family of highly regulated transcription factors that have the potential to
link many extracellular signals to the nuclear transcriptional machinery [5]. Canonically, the
phosphatase calcineurin (Cn) is induced by calcium signaling to subsequently activate the
transcription of nuclear factors of activated T cells (NFATs), comprising NFAT1 to NFAT4
(i.e., NFATc1-c4), in different cell types [6], which regulate, amongst others, chondrogene-
sis [3,7,8]. We recently showed that Cn inhibitors promote the chondrogenesis of human
adult osteoarthritic chondrocytes in vitro through stimulating TGF-f1 synthesis [9].Cn-
NEFAT signaling further receives much attention as targets for the immunosuppressive
drugs cyclosporin A (CsA) and FK506 (Tacrolimus) [10]. Both bind to two different intra-
cellular proteins, FK506 to FKBPs and CsA to cyclophilin, respectively, but both inhibit
Cn activity and the Cn-mediated dephosphorylation of NFAT1-4 [6,7]. Interestingly, the
fifth family member (NFAT5), also known as TonEBP, is not known to be directly regulated
by calcium signaling. Instead, NFATS5 is quite uniquely activated by hyperosmotic stress
in response to elevated concentrations of extracellular sodium ions [11]. In mammals,
NFATS5 dimerization in response to osmotic stress is particularly important in load-bearing
connective tissues, such as the intervertebral disc (IVD) [12,13], to protect vertebrae in the
spine from impaction. In articular cartilage, which protects bones in articulating joints in a
similar way, chondrocytes are also known to be mechano-responsive and react to cartilage
deformation, consequently changing extracellular ionic composition [14,15].

Osmolarity is a major biophysical regulator of chondrocyte function; increasing culture
medium osmolarity from plasma level to physosmotic values (i.e., > 350 < 480 mOsm) not
only improves chondrocyte-specific marker gene expression in vitro for primary cell-based
regenerative approaches [16,17], but also shows chondroprotective effects in situ [18] with
implications for arthroscopic irrigating solutions [19,20]. We recently showed that NFAT5 is
not only important for maintaining and preserving the chondrocyte phenotype, but it also
plays a crucial role during the chondrogenic differentiation of different types of stem cells
from different species [21]. In particular, ATDCS5 cells turned out to be an excellent model
that synchronously displays the multistep differentiation process of mesenchymal progeni-
tor cells until hypertrophic differentiation and matrix mineralization [1,2]. Increasing the
osmolarity of the differentiation medium with 100 mOsm from a plasma level baseline sig-
nificantly increased chondrogenic marker expression, such as glycosaminoglycans (GAG)
and collagens types II (Col2al) and X (Col10al) during the chondrogenic differentiation of
these murine chondroprogenitor cells [21].

In normal articular cartilage, tissue fluid represents 65 to 80% of its total weight [22],
with collagens and proteoglycans accounting for the remaining dry weight. Collagens are
the most abundant structural ECM macromolecules, making up about 60% of the tissue’s
dry weight, with collagen type Il representing 90 to 95% of all ECM collagen. Consequently,
collagen types I, IV, V, VI, IX, and XI are only contributing a minor mass proportion, but
help to form and stabilize the collagen type II fibril network. All collagens comprise
triple helical x-chains, which help to stabilize the ECM and provide articular cartilage
with important shear and tensile properties [1,23,24]. Proteoglycans (PGs) are heavily
glycosylated proteins and represent the second-largest group of ECM macromolecules.
Articular cartilage contains a variety of functionally essential PGs, including aggrecan, the
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largest and most abundant by weight [1], which interacts with hyaluronan to form large
PG aggregates via link proteins [25].

In mammals, the Tgf-p superfamily of secreted factors comprises three prototypic Tgf-
B isoforms, bone morphogenetic proteins (Bmps), Activins, Nodals, and GDFs [26]. TGF-f3
superfamily signaling is known to govern diverse physiological and pathological processes,
such as tissue homeostasis and differentiation, in a wide variety of cell types [27,28]. In
cartilage, the TGF-f superfamily regulates, amongst others, chondrocyte differentiation,
and in particular the expression of collagens and proteoglycans [29-32]. The binding of a
TGF- superfamily ligand to its cell surface receptor triggers several signaling cascades,
including the one most extensively studied, the Tgf-3/SMAD pathway. Chondrocyte
maturation is tightly regulated through the SMAD-mediated control of transcription factor
RUNX2 [30,33,34]. TGF-p superfamily receptors have intrinsic serine/threonine kinase
activity and the binding of Tgf- type Il receptor (T3RII) causes the phosphorylation of
the type I receptor (TBRI), which subsequently activates Tgf-p-specific SMADs. Type
I receptors of the TGF-f3 superfamily members are also known as activin receptor-like
kinases (ALKs). ALK5 predominantly transduces Tgf-p signaling, while ALK1 tends to
phosphorylate SMAD1/5/8 to activate chondrocyte-specific target gene expression [35,36].

Surprisingly, FK506 further enhanced osmotic stress-induced anabolic ECM markers
in human chondrocytes in vitro [16,17] and protected the collagenous ECM in vivo [37].
In vitro, the expression of BMP and TGF-f isoforms as well as TGF-f bioactivity is mod-
ulated by osmolarity [9,38], confirming in silico predictions of TGF-f3 signaling in post-
transcriptional responses to osmotic changes in chondrocytes [39].

Given the different intracellular binding partners of FK506 and CsA, we aimed to shed
light on how FK506 enhances chondrogenic differentiation under physosmotic conditions.
We showed that safe concentrations of 620 nM or less of FK506 under physosmotic culture
conditions not only improved proteoglycan and type II collagen content in chondrocytes,
but also upregulated minor collagens important for EC maturation, such as type IX and
XL In conclusion, we discovered evidence that FK506 may not exert its effects primarily
through the inhibition of Cn, but rather through sequestering FKBP12 away from type I
serine/threonine kinase receptors of the TGF-5 superfamily.

2. Results
2.1. Extracellular Physiological Osmolarity Dose-Dependently Influences NEAT5 Nuclear
Translocation and Cell Proliferation

Increasing culture medium osmolarity by 100 or 200 mOsm/kg (i.e., +100, +200
mOsm), respectively, resulted in a quick nuclear translocation of transcription factor NFATS5,
as qualitatively shown by representative snapshots of live confocal immunofluorescent
imaging (Figure 1A). The nuclear translocation of NFAT5 is dependent on the quantity of the
osmotic stress and is more pronounced under higher extracellular osmotic pressure. Within
the physiological range (i.e., < 500 mOsm/kg), this response appears to be almost linear
(Figure 1B). The fold change in nuclear translocation further appears to be similar between
pre-chondrogenic cells (ATDC5) and primary human chondrocytes (hAC) in vitro, upon
signal normalization to histone H3 (Figure 1C). Increased osmolarity induced more NFAT5
nuclear translocation than the addition of FK506. Of note, increasing the extracellular
osmolarity by +200 mOsm above plasma level (control) significantly inhibited ATDC5
proliferation (Figure 1D). Therefore, subsequently, only +100 mOsm/kg was studied as a
relevant NFAT5-recruiting osmotic trigger, which would still optimally facilitate cell-based
tissue engineering applications.
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Figure 1. Effects of osmolarity and FK506 on sub-cellular localization of NFAT5 and cell proliferation.
(A) Representative confocal microscopy images of the sub-cellular localization of NFAT5 (green) and
(B) quantification of the changes in nuclear-to-cytoplasmic distribution of NFAT5 in ATDCS5 cells
within 2 h. (C) Increasing culture medium osmolarity over plasma level (baseline) by +100 and +200
mOsm/kg, respectively, significantly changed sub-cellular distribution of NFAT5 in ATDCS5 cells
and human articular chondrocytes (hAC), while adding FK506 (620 nM) did not. (D) Increasing
the osmotic value of the culture medium beyond +100 mOsm/kg negatively influenced ATDC5 cell
proliferation. Ubiquitously expressed histone H3 (H3), red; ns, not significant; *, p < 0.05; **, p < 0.01.

2.2. Calcineurin Inhibition by FK506 Does Not Affect Chondrocyte Proliferation at
Physiological Osmolarity

The proliferation of ATDCS5 cells at physiological culture osmolarity is not inhibited
by the addition of FK506 (Figure 2A). Of note, FK506 is about 10 times more potent in
inhibiting calcineurin activity in chondrocytes than cyclosporin A (CsA) (Figure 2B).
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Figure 2. FK506 inhibits calcineurin activity, but not proliferation of ATDCS5 cells. (A) Increasing the
culture medium osmolarity by +100 mOsm/kg does not influence cell proliferation as compared to
vehicle control (i.e., baseline plasma osmolarity), nor does FK506 (620 nM). (B) FK506 concentration
more potently inhibits calcineurin (Cn) activity than cyclosporin (CsA). Dotted blue line: FK506 (nM);
orange and green bars: CsA and Siro (uM), respectively. Data are means + standard deviation of
triplicate experiments.
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CsA served as an FKBP-independent, but potent, Cn inhibitor. Sirolimus (Siro, syn.
Rapamycin), an mTOR inhibitor immunosuppressant, served as a Cn-independent negative
control that is often used to show Cn-specificity of Cn-dependent drugs.

2.3. FK506 Stimulates Glycosaminoglycan Synthesis by Chondrocytes

In ATDCS5 culture, from day 14 onwards, FK506 dose-dependently increased GAG
content (Figure 3A). High-dose FK506 (620 nM) induced a two-fold increase in GAG content
compared to the control and low-dose FK506 (62 nM) at day 14 (Figure 3A). The effect
became more prominent at later stages of differentiation (day 21) when the highest dose
of FK506 stimulated GAG synthesis about six times more than in the control (i.e., plasma
level osmolarity). Interestingly, at day 14 of culture, the physiological osmolarity (+100
mOsm/kg) increased GAG content about fourfold in ATDC5 cells and FK506 further
increased this difference as compared to the control (Figure 3B). Of note, increasing the
extracellular osmolarity beyond +100 mOsm/kg decreased the overall GAG content of
ATDCS5 cultures (+200 mOsm/kg, black bar). We further studied Col2al and COL2A1
expression in ATDC5 and human chondrocytes (P1) to reveal an osmolarity- and FK506-
depedency of the mRNA expression of this key ECM marker (Figure 3C,D). Of note,
the fold change in FK506-depedent expression was most prominent in primary articular
chondrocytes under physosmotic conditions (20- and 43-fold, respectively; Figure 3D).
When cultured at plasma osmolarity, FK506 dose-dependently increased Col2a1 mRNA
abundance of the AT805-derived murine cell line by 3.5- and 4.5-fold, respectively, at early
time points during differentiation (day 1) or 5.1- and 8.2-fold later during differentiation
(day 10, Figure 3C).

A ] [baseline .
] 10| E+100 mOsm
g:‘r(rlsos (62 nM) Ebaselineo FK506 8
+100 mOsm + FK506 .
081
BFK506 (620 nM) ) foaces |

rel. GAG content
o o
-~ -]

o
~
—

o
=)

_ i
T e ] i - | .
L ‘
da R | | | |
7 14 2

3 1 14

(D)
" D280 mOsm -380m05m e
I:I 280 mOsm s [C] 280 mosm +F62 ] 380 mOsm + F62
[] 280 mOsm + F62 5 |[1280mOsm + F620 /7] 380 mOsm + F620
[] 280 mOsm + F620 {
*r 16 ok
| 8
’_l_ |—x— 1 -

day 1

day 10

Figure 3. FK506 dose-dependently stimulates glycosaminoglycan and collagen synthesis in physos-
motic ATDCS5 cultures. (A) During chondrogenic differentiation, from day 14 on, FK506 significantly
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stimulates GAG production as compared to the control (ctrl) condition without addition of FK506.
(B) Under physosmolarity (i.e., +100 mOsm), FK506 stimulates GAG synthesis. (C) Osmolarity- and
FK506-dependent collagen type II expression in murine and (D) primary human chondrocytes. All
data are means £ SD; *, F62 and F620 are 62 nM and 620 nM of FK506, respectively. Significant
differences between groups are indicated as *, p < 0.05; **, p < 0.01; ***, p < 0.001.

2.4. Cartilage-Specific Physiological Osmolarity Improves ECM Composition

Aggrecan and collagen type II are the main ECM constituents of cartilage. Along
with evaluating the effects of FK506 on the osmolarity-mediated GAG and collagen type
II content, we also looked into the collagenous portion of the ECM of chondrocytes in
more detail. Cartilage collagen fibrils consist mainly of collagen type II (to approx. 90%
of the total collagen) and the quantitatively minor collagens IX and XI, as well as several
non-collagenous fibril-associated proteins.

We previously looked into the osmolarity dependency of collagen type II expression,
as it is the key marker of the proper chondrocytic phenotype [16,21]. During differentiation,
its mRNA abundance increased about 130 times (d14 vs. d0, gray bars) in controls, while
under physiological osmolarity at day 14 (black bars), Col2al expression levels increased
160 times. Col2a1 expression is further responsive to FK506 in a dose-dependent manner
(62-620 nM), resulting in an additional 31% increase over iso-osmotic controls (Figure 4A).
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Figure 4. FK506 dose-dependently stimulates expression of fibrillar and minor collagens in physos-
motic ATDC5 cultures. (A) Increased osmolarity enhances collagen mRNA expression, as well as
key osteogenic (Runx2) and chondrogenic (Sox9) transcription factors, in ATDCS5 cells. Addition of
FK506 (62, 620 nM) dose-dependently increased mRNA abundance of Col2a1, Col9a1 and Col11al
even further, but not that of Col10al. Cells were cultured under plasma level osmolarity (i.e., baseline)
and under physosmotic conditions (baseline +100 mOsm/kg; by addition of sterile sodium chloride
from day 7 onwards). Shown are mRNA levels as quantified by RT-qPCR (n = 7), with a collagen
type Il vs. type I (i.e., Col2al/Collal) expression ratio, next to expression of osteogenic (Runx2)
and chondrogenic (Sox9) master regulators. Differences in osmolarity-related mRNA expression are
indicated by * or by # for iso-osmotic FK506-specific differences, respectively. (B) Densitometrically
determined differences in protein levels of collagen type IX (Col IX) and collagen type XI (Col XI),
n = 3; B-tubulin (loading control); FK, 620 nM FK506; p < 0.05.
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We then studied the osmolarity and FK506 dependence of the expression of so-called
minor fibrillar collagens, i.e., type IX and XI collagen, as well as those of collagen type
X. All these collagens were expressed at a higher level under physosmotic conditions
(Figure 4). Interestingly, similar to Col2a1, Col9al and Col11al, mRNA expression was
upregulated by FK506 in a dose-dependent manner. Of these, Col9a1 was relatively most
prominently regulated. During differentiation (d14 vs. d0), Col9a1 mRNA abundance
increased about twice as much as that of Col2a1 under control conditions. Physiological
osmolarity doubled its mRNA expression and the highest dose of FK506 synergistically
increased this by 50% as compared to the iso-osmotic condition (Figure 4A). Compared
to Col9a1, the expression of Col11al increased relatively less during differentiation (about
65-fold) and was not influenced by FK506 under control conditions. Under physosmotic
conditions, Col11al showed an FK506 dose-dependent increase in its expression (Figure 4A)
with up to +50% (620 nM) of the iso-osmotic control. We confirmed that mRNA expression
tends to be representative of the respective protein abundancies for collagen type IX and
XI by immunoblotting (Figure 4B). In the case of collagen type IX, FK506 significantly
improved collagen content in addition to the osmolarity-mediated effect. This is in line
with our hypothesis that physosmotic culture and FK506 synergistically improve ECM
maturation.

In contrast, Col10al did not show an FK506 responsiveness (Figure 4A). While increas-
ing osmolarity above physiological levels increased the ratio of collagen type II vs. collagen
type I mRNA levels (Col2a1/Collal), FK506 had no additional effect. The expression of
osteogenic key transcription factor RUNX2 was also elevated by physosmotic conditions,
but without clear regulation by FK506. Interestingly, the expression of the master regulator
of chondrogenic differentiation SOX9 was regulated in a similar way, but with a tendency
towards dose-dependent suppression by FK506 (Figure 4A).

2.5. FK506 Improves Expression of Osmolarity-Mediated Cartilage-Specific ECM Key Markers

As the large proteoglycan aggrecan and collagen type II are two of the main macro-
molecular key ECM constituents of articular cartilage, we further examined their expression
in primary human chondrocytes (Figure 5A,B) and cartilage explants (Figure 5C,D), re-
spectively. Considering a two-fold change in expression as the minimum for biological
significance, physosmotic culture clearly induced ACAN and COL2A1 in human chondro-
cytes. The general response to osmolarity and FK506 was less pronounced in explants as
compared to isolated cells. However, FK506 significantly increased the expression of both
key cartilage ECM markers in human chondrocytes in vitro and in situ.
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50 - *% 5 - 5
40 4 4 4
* *
30 - 3 * 3

] I .
J 0 J

- +100 +100 - +100 +100 - +100 +100
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Figure 5. Effects of physosmotic culture and FK506 stimulation on human primary chondrocytes
in vitro and in situ. (A,B) Chondrocytes were cultured for 7 days and (C,D) explants for 10 days,
respectively. Relative changes in mRNA expression are shown as compared to iso-osmotic controls
without FK506. Only the expression of main ECM markers aggrecan (ACAN) and collagen type I
(COL2A1) are shown. Error bars indicate standard deviations from triplicate experiments; *, p < 0.05;
**, p<0.01.
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2.6. Cartilage-Specific Physiological Osmolarity Improves Chondrocyte ECM Maturation

Based on the aforementioned results, we hypothesized that FK506 improved osmolarity-
enhanced ECM maturation during chondrogenic differentiation. To test this, we inves-
tigated the expression of transforming growth factor-beta-induced protein (TGFBI), a
TGF-p-inducible ECM protein that binds to, among others, type II collagen and seems
essential during mesenchymal chondrogenesis [40]. Through controlling cell-collagen
interactions, TGFBI has been shown to stimulate cell proliferation and differentiation, while
inhibiting hypertrophy and mineralization [40].

In ATDCS5 cells, TGFBI is induced during chondrogenic differentiation (Figure 6A).
Dot blotting showed TGFBI expression in ATDCS5 cells was induced by physiological
concentrations (0.1-0.5 ng/mL) of TGF-f32 (Figure 6B). Chondrocytes have been shown
to release similar concentrations of TGF-f in response to an increased osmolarity (+100
mOsm/kg) [38]. At different stages of chondrogenic maturation, TGFBI was induced in
ATDCS5 cells under increased culture medium osmolarity (+100 mOsm/kg, Figure 6C). On
day 10 of physosmotic culture, TGFBI mRNA expression upregulated 4.1-fold by conditions
and an additional 1.5-fold by adding 620 nM FK506 (Figure 6D).
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Figure 6. Expression of Transforming Growth Factor Beta Induced (TGFBI) protein. (A) Representa-
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tive correlation of TGFBI expression during ATDC5 differentiation as dot blots and Western blotting
(n = 2). (B) TGF-3-dependence of TGFBI protein expression at baseline and (C) its inducibility by
osmolarity is shown (n = 3). (D) FK506-dependence of relative TGFBI mRNA expression (day 10,
n =5). —, plasma level osmolarity; +, +100 mOsm/kg; *, p < 0.05; **, p < 0.01; #, inter-day p < 0.05.

In line with earlier reports that increased osmolarity improves the secretion of TGF-f3
ligands in chondrocytes and chondrocytic cells from different species [38], physosmotic
culture conditions (+100 mOsm/kg) alone increased Col2al mRNA expression (Figure 7A).
Adding powerful cytokines, such as TGF-32 (1 ng/mL), increased Col2al expression about
six-fold (Figure 7A). Interestingly, under these conditions, FKBP12 inhibition (FKBPi, 1
uM) enhanced Col2al expression to a similar extent as FK506 (Figure 7A), which suggests
that FK506 may affect TGF-f signaling. While physosmotic culture also improved ALK5
expression and thus shifted the ALK5/ALKI mRNA expression ratio (Figure 7B), FK506
did not significantly change this. However, physosmotic conditions alone already elevated
BMP- and TGF-{3 bioactivity in chondrocytes, and FK506 was able to further enhance both
(Figure 7C,D).
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Figure 7. Modulation of collagen expression by FK506 is calcineurin and TGF-3 dependent. (A) Col2a1
mRNA expression (n = 5) and (B) Effect of osmolarity and FK506 on the mRNA expression ratio of
ALK5/ALK1 (n = 3), and on (C) BMP- and (D) TGF-f3 bioactivity, respectively, in chondrocytes (n = 3);
*,p <0.05;**, p <0.01.

2.7. TGF-B Signaling Pathway-Dependency of FK506 Effects

FK506-mediated inhibition of calcineurin activity requires binding to its intracellular
binding partner, FK506-binding protein-12 (FKBP12). Interestingly, FKBP12 is also known
to bind and modulate TGF-f3 receptors in some cell types [41]. We showed earlier that
Cn inhibitor FK506 further promotes the chondrocytic phenotype of human chondrocytes
in vitro through stimulating TGF-31 synthesis at plasma level osmolarity [9] and reported
seemingly contradictory results when looking into TGF-f3 superfamily signaling upon
osmotic stimulation [38]. To shed further light on how FK506 may induce collagenous ECM
maturation in chondrocytes under physosmotic conditions, we next compared the effects
of FK506 and cyclosporin A (CsA) as two FKBP-dependent and -independent Cn inhibitors,
respectively, to those of the pharmacological inhibitors of TGE-f3 superfamily signaling and
FKBP12.

TGF-BRI inhibitor LY210961 decreased SMAD3 mRNA abundances in a dose-dependent
manner, while FK506 increased SMAD3 expression in both control and physosmotic condi-
tions (Figure 8A). FK506 was more effective at increasing SMAD3 expression under higher
osmotic values (i.e., plasma level control vs. +100 mOsm/kg). TGFBI showed a clear TGF-f3
ligand-dependent inducibility (7.5-fold), while physosmotic conditions increased TGFBI ex-
pression (3.6-fold, Figure 8B). FK506 and FKBP12 inhibition (FKBPi) showed an additional
increase in TGFBI mRNA levels in physosmotic conditions (5.5- and 4.9-fold, respectively;
Figure 8B). In contrast, Id1 expression increased 2.3-fold with increased culture medium
osmolarity (+100 mOsm/kg), but was not affected by TGF-3 (Figure 8C). Unexpectedly,
FK506 and FKBP12 inhibition independently increased Id1 mRNA levels under physos-
motic conditions (3.1- and 3.5-fold, respectively; Figure 8C). FK506 (FKBP12-dependent)
upregulated the aggrecan mRNA level 3.47-fold, but CsA (FKBP12-independent) only
increased the Acan mRNA 1.55-fold (Figure 8D).
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Figure 8. FK506 modulates TGF-f signaling in chondrocytic cells. (A) Effects of FK506 and TGF-RI
inhibitor (LY210961) on SMAD3 expression. (B) Physosmotic TGFBI induction and modulation
by TGF-31, FK506, or FKBPi. (C) Physosmotic regulation of Id1 expression and effects of TGF-f3,
FK506 and FKBPi (n = 5). (D) Effects of FKBP-independent and -dependent calcineurin inhibitors
cyclosporin A (CsA, 1 uM) and FK506 (620 nM), respectively, on aggrecan expression (n = 3); osmo
+ = +100 mOsm/kg; LY210961 +, 0.1 uM; ++, 1 pM; isosmotic *, p < 0.5; **, p < 0.01; #, ## 380 vs. 280;

n.s., not significant.

3. Discussion

Earlier we showed that culturing chondrocytic and bone marrow-derived stromal
stem cells from different species under increased osmolarity has a beneficial effect on
chondrogenic phenotype [9,16,21] and that FK506 modulates the expression of several of
these markers [17]. Recently, similar results have been reported for human adipose-derived
mesenchymal stem cells (ADSCs) [42] too, which hints towards a broader applicability of
this concept. Additionally, we reported that this involves TGF-3 or BMP signaling under
cartilage-specific physiological osmolarity [38].

In this study, we aimed at elucidating the mechanism by which FK506 modulates the
physosmolarity-induced differentiation of chondrocytic (progenitor) cells and compared
responses to physosmolar stimulation and FK506 between primary chondrocytes and
chondrocytic cell lines. For the latter, ATDCS5 cells were chosen as an optimized model for
rapid and physiological matrix maturation [43,44]. Using the immunofluorescence imag-
ing of NFAT5/NFATS5, we first showed a similar nuclear translocation between primary
human chondrocytes and murine chondroprogenitor cells, confirming a similar response
to elevated extracellular osmolarity (+100 mOsm/kg) in both cell types. Osmolarity was
also used to differentiate ADSCs into nucleus pulposus cells [45], with potential epige-
netic involvement, which matters in light of similar responses between cells from articular
cartilage and nucleus pulposus [12]. However, details, such as osmotic baseline values,
seem to influence the results and should be carefully considered, as we found that osmotic
values in the range of about +100 mOsm /kg above plasma osmolarity do not negatively
affect cell proliferation, while those around +200 mOsm /kg exert inhibiting effects. This
is in agreement with reports by others [16,21,46,47], showing that culturing chondrocytic
cells in a medium of 350450 mOsm/kg appears to be optimal for tissue engineering
and regenerative medicine, including closely related cell types, such as nucleus pulposus
cells [12,13].

While calcineurin inhibition promotes the re-expression of chondrogenic markers in
de-differentiated human chondrocytes in standard culture through the involvement of TGF-
B signaling [9], the chondrogenesis of human synovial stromal cells was FK506- and SMAD
signaling-dependent [48]. This is in agreement with FK506 improving the phenotype of
primary osteoarthritic chondrocytes in vitro [16,17] and protecting the ECM of hyaline
cartilage against collagen degradation in a rat model of OA in vivo [37]. Furthermore,
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in this paper from day 14 onwards during ATDC5 differentiation, an FK506-dependent
accumulation of the non-collagenous ECM was shown using biochemical GAG quantifica-
tion and proteoglycan (i.e., Acan) mRNA expression analyses. Interestingly, by raising the
osmolarity by +200 mOsm/kg above plasma level, we observed a drop in GAG content.
This is in line with earlier reports [21] and probably due to a reduced synthesis rate and
paralleled by a compromised proliferation rate under these conditions.

Additionally, FK506 improved collagen type II expression not only in murine ATDC5
cells, but also in primary human chondrocytes to a similar extent. This is in line with other
studies showing that FK506 can induce proteoglycan content in ATDCS5 cells or collagen
and aggrecan expression in human progenitor cells [17,49]. Our data further show that
FK506, up to 620 nM, does not negatively affect the proliferation of chondrocytic cells under
physiological osmolarity [30].

SOX9 (Sry-type high-mobility-group box 9) is expressed in all chondrocytes and
regulated by osmolarity [21,50,51]; it is a key transcription factor essential for the expression
of aggrecan [52] and most collagens [53]. As the main ECM constituents of cartilage,
aggrecan and collagen type II, both benefit from physiologically osmotic culture conditions
and the addition of FK506, our present data suggest that cartilage-specific physiological
osmolarity improves the non-collagenous and collagenous composition of the ECM and
thus likely influences its maturation. To this end, our data confirm earlier studies [17,37,49],
but increasing the osmolarity to physiological levels also improved the collagen type II
vs. collagen type I (Col2a1/Collal) expression ratio. FK506 did not significantly influence
this further, but we speculate that upregulation of the osteogenic key transcription factor
RUNX2 by physosmotic conditions may be overruled by the higher co-stimulation of the
dominant master regulator of chondrogenic differentiation, SOX9 [54].

As most collagenous ECM components are also controlled by Sox transcription fac-
tors [53], this may also explain why physosmolarity and FK506 also affect the expression of
so-called minor collagens. Although cartilage collagen fibrils consist of approx. 90% of type
II collagen, such minor collagens fulfill important stabilizing roles during the functional
maturation of the ECM [24]. We selected collagen type XI as a minor member of the type II
collagen-group of fibril-forming collagens, and collagen type IX as a member of the fibril-
associated collagens with interrupted triple helices (FACITs), which do not form fibrils,
but associate with fibril surfaces [55]. For instance, fibronectin (FN) interacts with type
IX collagen and both co-localize in cartilage. Their interaction may be crucial for matrix
integrity in vivo [56]. The importance of both collagens for a normal skeletal development
are further underscored by the fact that transgenic collagen type Il-deficient (Col2a1—/ —)
mice die at birth with a severely malformed skeleton and collagen type IX-deficient mice
(Col9a1—/—) develop an early osteoarthritis-like phenotype in knee joints [57].

In situ, the FK506 treatment protected the collagenous network of articular cartilage in
a rat model of osteoarthritis [37], in which chondrocytes already experience physiological
osmolarities during joint movement [14,58]. Interestingly, a recent study has suggested
that the expression of minor collagens may be compromised in osteoarthritic cartilage [59],
which would be in agreement with the protective effects of FK506 in this earlier in vivo
model. Of note, within the cartilage ECM, type IX collagen is covalently bound to the
surface of type II collagen fibrils, and type IX collagen co-localizes there with FN, to
improve matrix integrity in this tissue [56]. Our future studies will address the role of FN
in assembling a functional cartilage matrix under these situations [60]. The importance of
type IX collagen, which is also involved in a number of other ECM interactions, for ECM
integrity becomes apparent from the fact that mechanical stress is required to cause joint
cartilage degeneration in knockout mice [61]. In normal adult cartilage, collagen types
IX and XI become more restricted to the pericellular matrix with increasing age [62] and
type IX is concentrated pericellularly in skeletally mature cartilage, but more uniformly
distributed in fetal tissue [63,64]. The predominantly pericellular localization of both type
IX collagen and FN suggests that there may be a direct or indirect interaction with the
chondrocyte itself, and a chondroprotective role for type IX collagen, in particular, has



Int. J. Mol. Sci. 2022, 23,5110

12 of 21

previously been postulated [65]. This has led us to hypothesize that type IX collagen
is a molecular bridge between matrix components and the chondrocyte, and that FK506
stimulates ECM maturation by improving the expression of these minor collagens. Together,
this underscores the therapeutic potency of FK506 in cartilage disorders.

We reported earlier that FK506 promotes chondrogenic marker expression in human
chondrocytes through endogenous TGF-f3 production under standard culture conditions [9]
and that physosmotic in vitro culture improves the expression of BMP and TGF-f isoforms
and modulates TGF-f3 bioactivity [9,38]. Additionally, microarray data and in silico pre-
dictions hinted towards osmotic changes causing (post-) transcriptional TGF-f3 signaling
responses in chondrocytes [39]. As TGF-f also mediates Acan expression in ATDCS cells
in a dose-dependent manner [66], it is not surprising that not only collagens, but also
key proteoglycans are upregulated through SOX9 by osmolarity. Interestingly, elevated
osmolarity also activates several MAPKSs [51,67], which have not been studied by us yet.
However, the role of FK506 has remained elusive until now.

Therefore, we next investigated the expression of the TGF-f3-induced protein TGFBI,
an RGD-containing and type II collagen-binding ECM protein with an essential role during
mesenchymal chondrogenesis [40]. TGFBI stimulates cell proliferation and differentiation
through controlling cell-collagen interactions; its forced downregulation correlates with
the upregulation of hypertrophic markers [40], and negatively affects the differentiation
and mineralization of osteoblasts and hypertrophic chondrocytes [68]. This is in agreement
with the idea that this molecule plays a key role in proper ECM maturation. We suspected
this molecule to contribute to improving ECM integrity, as we earlier indicated that FK506
contributes to selectively suppressing catabolic markers in osteoarthritic human chondro-
cytes during in vitro expansion [17] and confirmed expression of this 68-kDa protein by
immunoblotting techniques during chondrogenic differentiation of ATDCS cells [4]. TGFBI
mRNA expression was further induced by physosmotic conditions, and by FK506, which
is interesting in light of the TGFBI knockout mice showing ECM degradation in articular
cartilage [69]. Importantly, we showed that TGFBI is inducible by low-end physiological
concentrations of TGF-f3, similar to those reported to be released from chondrocytes upon
increasing culture medium osmolarity by +100 mOsm/kg in vitro [38]. This provides new
circumstantial evidence that physosmolarity, alone or in combination with FK506, may
improve ECM maturation.

We next looked into the effects of osmolarity and FK506 on the expression ratio of
the TGF-p superfamily type I receptors ALK5 and ALK1, as well as into BMP- and TGF-
3 bioactivity in human chondrocytes under physosmotic conditions. The TGFf family
consists of over 30 members, including several mammalian prototypic TGF-f3 ligands and
bone morphogenetic proteins (BMPs) [32].

There are seven type I-, five type II-, and some type Ill-receptors. Upon ligand
binding to type II-receptors, type II- and type I-receptors dimerize and then activate the
type I kinase function, which in turn phosphorylates R-SMADs (i.e., SMAD2/3 upon
TGEF- binding or SMAD1/5/9 upon BMP-binding to TGFBRII/ALKS5 or BMPRII/ALK1,
respectively) [32]. Canonically, the ratio of Alk5/Alk1 is important because Alk5-mediated
signaling increases SOX9, but decreases RUNX2, while Alkl-mediated signaling increases
both SOX9 and RUNX2. Alk1 thus favors terminal maturation, while Alk5 may prevent
hypertrophy [30,70]. Elevating osmolarity increased the ALK5/ALK1 ratio, while FK506
had no effect. In contrast, BMP- and TGF-{ specific bioactivities were both increased by
FK506 under physosmotic conditions.

Second, proper SMAD signaling is essential to maintain a healthy cartilage ECM [32,71].
To reduce complexity, we further focused on SMAD3 expression, which has recently been
shown to correlate well with its activation status in nucleus pulpous cells [72]. As compared
to controls, physosmolarity alone increased SMAD3 expression, while FK506 surprisingly
further improved SMAD3 expression under both conditions.

Of note, while the role of SMAD?2 in cartilage biology is less clear, defective SMAD3
signaling is associated with hip and knee OA in humans, and SMAD3 KO mice suffer
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from rapidly progressive OA after birth. SMAD?3 is believed to exert anti-hypertrophic
effects by counteracting RUNX2 function and recruiting silencing histone class II deacety-
lases to RUNX2 responsive genes, such as MMP13, COL10A1, and alkaline phosphatase
(ALPL) [32]. This is in agreement with our earlier finding that FK506 suppresses the same
hypertrophic and catabolic genes in primary chondrocytes, while adding FK506 prevents
this [17]. We then used LY210961, an ALK5/TGFBRII autophosphorylation inhibitor, to
evaluate the contribution of this signaling route to osmotic-induced effects. LY210961
dose-dependently suppressed SMAD3 expression, which is consistent with its positive
feedback regulation [73]. ALK5 is commonly believed to activate SMAD2/3 to promote the
expression of PAI-1 or TGFBI, while ALK1 predominately activates SMAD1/5 to BMP- to
specifically induce the expression of Id1 [74-76], which is in agreement with our results, as
Id1 is not induced by TGF-{ itself.

Interestingly, while SMAD3 expression was dose-dependently suppressed by TGF-f3
type I receptor-specific inhibitors, SMAD3 was upregulated in an osmolarity- and FK506-
dependent manner. Hyperosmotic culture has recently been shown to have similar effects
on cell types from other skeletal tissues, such as the nucleus pulposus cells from the
intervertebral disk (IVD) [12,13]. Indeed, a recent report suggested that FK506 induces the
TGF-B1/SMAD3 pathway independently of Cn inhibition to prevent IVD degeneration [77].
This is largely in agreement with our results showing that FK506, but not CsA, induces
Acan expression. Thus, while Cn-NFAT signaling plays a vital role in bone remodeling, Cn
activity does not seem to largely influence Acan expression under physosmotic conditions.

NEFATS, the key regulator of osmotic responses, is not controlled by Cn activity, as
opposed to NFATc1-4 [78]. Rapamycin blocks FKBP12 binding to TGFBRI and reverses the
inhibitory effect of FKBP12 on TGFBRI phosphorylation. However, further investigation is
required.

Maintaining a favorable ALK5-to-ALK1 signaling balance in chondrocytic cells likely
contributes to an overall stimulation of the collagenous and proteoglycan synthesis and
ECM maturation, which potentially involves TGFBI. Both Id1 and TGFBI are induced upon
FKBP12 inhibition. FKBP12 can bind to, and modulate, TGF-[3 receptors in some cells [41],
but also modulate BMP type I receptors in medulla cells [72]. We reported earlier that, in
chondrocytes, blocking BMP signaling with dorsomorphin decreased Col2al expression,
independent of the osmolarity level [38].

However, developmental and stage-dependent differences contribute to variations in
the overall response to osmolarity and FK506 between murine progenitor cells and adult
human chondrocytes, or other cell types, in situ (i.e., in explants) or in vitro. Physosmolarity
seems to stimulate the ALK1 signaling route leading to terminal differentiation [16,21],
whereas FK506 appears to selectively activate the ALKS5 signaling route.

It has been reported that FK506 competes with the GS domain for binding to FKBP12
and thereby dissociates FKBP12 from receptors, leading to an increase in wild-type re-
ceptor signaling by 2.5-fold [79], which fits to the fold change in our regulation. To this
end, FKBP12 may provide a safeguard against leaky signaling from receptor multimeriza-
tion [41]. Mutations in the binding sites of FKBP12 or TGFBRI abolished the interaction
between these proteins, leading to receptor activation in the absence of added ligand. Thus,
FKBP12 does not inhibit TGFBRI association with TGFBRII, but inhibits TGFBRI phosphory-
lation by TGFBRII. Notably, the involvement of FKBP12 may partially explain the seemingly
contradictory findings of earlier studies, in which TGF-f3 RNAi under physosmotic condi-
tions surprisingly increased COL2A1 expression in primary human chondrocytes, while
the pharmacological inhibition of BMP signaling decreased it in SW1353 cells [38].

In ATDCS5 cells, a mutual regulation between BMP and TGF-f3 signaling pathways
is established. TGF-p ligands are known to enhance BMP signaling, while BMP-2 can
antagonize TGF-f3 signaling [80]. We also reported earlier that physosmotic conditions
upregulated TGF-f ligands TGF-32 and -3 [38]. In chondrocytes, TGF-f32 more po-
tently induces SMAD?2 phosphorylation at low concentrations, such as those induced by
physosmotic conditions, as compared to TGF-f1 and TGF-33 [38,81], which adds fur-



Int. J. Mol. Sci. 2022, 23,5110

14 of 21

ther complexity. Using ATDCS5 cells, it was further shown that ECM stiffness primes
the TGF-f3 pathway to promote chondrocyte differentiation [82], which hints towards an
additional physicochemical feedback loop. A limitation of our study is that we cannot
exclude the indirect contribution of other factors resulting from increased osmolarity, such
as macromolecular crowding [83,84].

Although we did not study the specific mechanism by which FK506 regulates TGF-
 superfamily signaling in detail, we speculate that FK506 mainly regulates the TGF-f3
pathway through modulating FKBP12. We used TGF-3-specific targets (i.e., TGFBI) and
BMP-specific target genes (i.e., Id1) to discriminate between the two different major TGF-
 superfamily signaling pathways. We used FKBP-dependent (i.e., FK506) and FKBP-
independent (i.e., CsA) Cn inhibitors [85] to discriminate between the different modes of
action. However, we can only draw limited conclusions from the present study, as the
crosstalk between TGF-f3 superfamily signaling routes is complex and involves positive
and negative regulatory signaling loops and other SMAD proteins [86,87].

FK506 may alter the cytoskeleton of chondrocytic cells through increasing F-actin [88].
In turn, actin polymerization levels may regulate TGF-{3 receptor activation and signal-
ing [89] to alter their cellular phenotype, which is currently under investigation.

Another limitation of our study is that we did not evaluate MAPK-signaling. It is
known that TGF-p1-induced SMAD2/3 and SMAD1/5 phosphorylation are ALK5-kinase-
dependent in primary chondrocytes and mediated by TAK1 kinase activity [32,70]. We also
cannot exclude a contribution of other Cn-activated or -inhibited pathways.

In summary, we propose a novel circular route in which physosmotic culture improves
TGF- signaling to improve the maturation of the ECM, which in turn promotes terminal
chondrocyte differentiation if FK506 does not shift the ALK5/ALK1 signaling towards
the ALK5 route. In light of presently available data, the chondroprotective effects of
FK506 appear conclusive. An improved understanding of how FK506 contributes to
TGEF- superfamily signaling’s control of collagen expression under physiological culture
conditions holds the potential to further improve the phenotypic stability of chondrocytes
for future cell-based therapies of many other common orthopaedic conditions.

Future studies should investigate whether the effects of FK506 are cell type-specific or
whether changes in FK506 concentration and/or timing during the chondrogenic differ-
entiation of progenitor cells could achieve the same inhibiting effect on cell hypertrophy.
This would make FK506 more useful for cartilage tissue engineering approaches using
progenitor cells.

4. Materials and Methods
4.1. In Vitro Culture

Human primary chondrocytes were studied in vitro and in situ (i.e., as explants, using
sterile disposable dermal 4 mm biopsy punches). Primary articular chondrocytes were
isolated from cartilage explants with ethical approval (MEC 2004-322, MEC 08-4-028, MEC
2017-0183), or obtained from commercial sources (Cat.#CC-2550, Lonza group Ltd., Basel,
Switzerland), and cultured as previously reported [16,90]. Osmolality of chondrocyte
differentiation medium was determined using an Osmomat 030 (Berlin, Germany) and
sterile sodium chloride stock solution (5 M) added to reach cartilage-specific physiological
levels [16]. Cells were harvested at indicated timepoints for analyses of mRNA and protein
expressions, as reported earlier by us [16,38].

Cell lines were cultured in monolayers using proliferation medium (DMEM/F12
(Invitrogen, Carlsbad, CA, USA), 5% FCS, 0.1% (v/v) gentamycin, 0.6% (v/v) fungizione and
1% NEAA (nonessential amino acids; all Invitrogen, Darmstadt, Germany), as previously
reported [21]. Briefly, cells were plated, allowed to adhere overnight, and the following
day chondrogenesis was initiated by changing the proliferation medium to differentiation
medium. Differentiation medium comprised proliferation medium supplemented with 1%
ITS (B&D Bioscience, Koln, Germany). Differentiation medium was changed every two
days (day 0 to 10) and daily (from day 10 on). We showed earlier that at plasma osmolarity,
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ATDCS5 cells acquire a chondrogenic phenotype from day 7 in differentiation with increased
expressions of sex determining region Y box 9 (SOX9) and Col2 [21]. Co-stimulation with
indicated concentrations of CsA or Rapamycin occurred as described earlier for FK506 [17].
Cell proliferation was assessed by Trypan Blue (cat. T8154; Sigma, Hamburg, Germany)
and DNA quantification as reported earlier [16]. Experiments were performed in replicates
(n=D5).

4.2. Biochemical Analyses and Glycosaminoglycan (GAG) Content Determination

GAG content was determined using a Blyscan™ Glycosaminoglycan Assay (Biocolor
Ltd., County Antri, UK)) was used to determine sulfated proteoglycans and GAGs ac-
cording to the manufacturer’s guidelines. The 1,9-dimethylmethylene blue chromophore
(Amax. = 656 nm) was measured at 650 nm. Furthermore, mRNA abundance of the
cartilage-specific proteoglycan core protein aggrecan (Acan) was determined by RT-qPCR
(see Section 4.5 for details).

4.3. Immunofluorescent Analyses and Immunoblotting Techniques

To analyse direct effects of increased osmolarity on NFATS5 protein expression by IF,
cells were cultured on 8-well culture slides (BD Falcon) and medium osmolarity changed
by +100 or +200 mOsm/kg, respectively, for 30 min prior to imaging. Analyses of im-
munofluorescence were described earlier by us [91]. Briefly, an anti-NFAT5 antibody
(kindly provided by Dr. Moo Kwon) with conditions as reported [92] and applied our
established normalization procedure using a histone H3-specific antibody [93].

Western and dot blot analyses were essentially performed as reported elsewhere by
us [17,21]. Routine Western blotting with chemiluminescent detection was recently reported
by us [21] and used for TGFBI screening. Briefly, upon harvesting, cells were washed twice
with PBS and lysed in RIPA buffer with addition of protease inhibitors (ThermoFisher
Scientific). Total protein concentration was quantified by BCA assay according to the
manufacturer’s protocol (Pierce, #23225) and subjected to 10% SDS-polyacrylamide gel
electrophoresis (PAGE). Subsequently, electro-blotted nitrocellulose membranes (Protran
BAS83, Schleicher & Schuell) were blocked in 5% low-fat dry milk in 1X PBS, 0.05% v/v NP-
40, incubated with the primary antibody 10188-1-AP, 1:1000; Proteintech, Manchester, UK)
and detected with HRP-linked anti-rabbit IgG (CellSignaling, #7074; 1:2000) in combination
with Pierce™ ECL Western Blotting substrate (#32109, ThermoFisher Scientific, Waltham,
MA, USA), according to the supplier’s instructions. Upon assuring antibody specificity,
dot blotting was performed as described earlier by us [94] to screen TGFBI inducibility.
Collagens (type IX and XI) were essentially blotted in the same way, but detected differently,
using polyclonal collagen type IX and type XI antibodies (ABIN6260946, ABIN6257111; both
1:1500; antibodies-online, Aachen, Germany) and secondary goat anti-rabbit AlexaFluor800
antibodies (1:10,000; #A32735, Li-Cor Biosciences, Bad Homburg, Germany) as reported
earlier [95]. All signals were quantified using the Image]J.JS browser version at https:
/ /ijimjoy.io/ (accessed on 4 April 2022).

4.4. Pharmacological Intervention and Calcineurin Activity Assay

Rapamycin (Sirolimus, #553210, Sigma-Aldrich, Zwijndrecht, The Netherlands), Cy-
closporine (CsA, #30024, Sigma-Aldrich, Zwijndrecht, The Netherlands), and FK506 [37]
were prepared as reported earlier [17]. Cells from monolayer cultures were washed twice
with physiologic saline and lysed with Mammalian Protein Extraction Reagent buffer
(NE-PER, Pierce, Bonn, Germany) according to the supplier’s instructions. Samples were
stored at minus 80 °C until further use. Extracts were purified on a Micro Bio-Spin P-6 chro-
matography column (Bio-Rad Laboratories B.V., Veenendaal, The Netherlands) and protein
concentrations were quantified using the BCA Protein Assay Kit (Pierce) in a microplate
reader (VersaMax, Molecular Devices Ltd., Leiden, The Netherlands) [9]. Calcineurin
activity was measured using the Calcineurin Cellular Assay Kit Plus (BioMol, Tebu-Bio,
Heerhugowaard, The Netherlands) as described earlier [9]. Synthetic FKBP12 inhibitor
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ElteN378 (AOB17229; AOBious Inc., Gloucester, MA, USA) was dissolved in DMSO and
subsequently diluted in culture medium (1:2000) to its effective concentration (1 uM) [96].
TGEF-BRI blocker LY210961 was dissolved in DMSO (4 mM) and then diluted in medium to
< 10 puM; vehicle controls were omitted as DMSO concentrations < 0.1% never showed any
adverse effects (data not shown).

4.5. Reporter Gene Assays and Gene Expression Analyses

Determination of BMP- and TGFE-{3 bioactivity in SW1353 cells was essentially per-
formed as recently described [38], using an established luciferase assay with a CAGA-luc
SMAD2/3 reporter. Cells were seeded at 3 x 10*/well in 24-well plates and transiently
transfected with 150 ng of the reporter construct and 75 ng of pRL-TK vector (Promega,
Madison, WI, USA), an internal control for transfection efficiency, using FuGENE 6 transfec-
tion reagent (Roche Diagnostics, Basel, Switzerland). Twenty-four hours after transfection,
cells were incubated for 2 h in medium containing 0.2% FCS, followed by 16 h incubation
with 10 ng/mL TGF-[32 as a positive control, DMEM/F12 as a negative control or 300 pL
conditioned medium. Twenty-four hours after stimulation, the firefly and Renilla luciferase
activities were measured using the Dual-Luciferase Reporter Assay System (Promega,
Madison, WI, USA).

Nucleic acid purification, quantification, cDNA synthesis and RT-qPCR are described
elsewhere [13,14]. In line with basic MIQE guidelines for quantitative real-time PCR
analyses [97], NanoDrop (ThermoFisher, Waltham, MA, USA) analyses derived RNA
Integrity Numbers (RIN) of > 8.5, being indicative of good template integrity. Samples
with OD260/280 nm or OD260/230 nm ratios of the total RNAs outside 1.85-2.0 and
1.9-2.2, respectively, were excluded. Data were normalized to an index of three reference
genes which were pre-evaluated to be stably expressed across samples. Relative expression
was then calculated according to 2~2¢T method as reported earlier [94] and normalized
to day 0, where applicable. Most qPCR assays were adopted from the literature; Alk1,
Alk5 [98], COL2A1/Col2al, Collal, Col10a1, SOX9, NFAT5, ACAN /Acan, RUNX2, and an
index of three reference genes (GAPDH, UBC, HPRT1) that were stably expressed across
samples [21,94], Col9a1, Col11al [99], Id1 [94], and TGFBI [100]. For all primers E (%) = 93—
97% was reported, justifying a 2~ 4T approach. SMAD3 (NM_016769) specific primers
were adopted from PrimerBank (ID31543222a1).

4.6. Statistics

Statistical analysis was performed using SPSS 20 (IBM, Armonk, NY, USA) or Graph-
Pad Prism 6.0 (GraphPad Software, San Diego, CA, USA) and significance for ATDC5
experiments was determined by two-way ANOVA (with Bonferroni post hoc test) with
a D’Agostino—-Pearson omnibus normality test [21]. A univariate linear model analysis
was used for pharmacological experiments, followed by a post-hoc Bonferroni test [17].
Statistically significant differences of p < 0.05 are indicated.

5. Conclusions

Cartilage-specific physiological osmolarity increased the expression of key chondro-
genic markers SOX9, Acan, and Col2al. We identified a novel osmo-responsiveness of an
RGD-containing, collagen-associated, and TGF-p3-inducible protein TGFBI. To our knowl-
edge, this is the first report of the upregulated expression of minor collagens Col9a1 and
Col11al under physosmotic conditions. We postulate that this is indicative of ECM matura-
tion in response to physosmolarity. Interestingly, FK506 appeared to improve chondrocytic
marker expression in a rather calcineurin independent manner, by sequestering FKBP-12
and facilitating TGF-f3 superfamily signaling.

FK506 not only protects the collagenous ECM of articular cartilage, but may also
improve its quality through stimulating the TGF-{3 superfamily signaling-mediated expres-
sion of important crosslinking components. While cell type-dependent differences require
cautious interpretation, our results now better explain earlier seemingly contradictory
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findings and will potentially benefit future pharmacological interventions and cell-based
cartilage repair strategies.
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