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ABSTRACT In this paper, thorough improvement of pulsemonitoring and analysis equipment with a headset
structure is presented. In order to study the most suitable infrared wavelength for the acquisition of the pulse
wave at the earlobe, Monte Carlo simulation was adapted. Both high frequency noise and baseline drift,
generated in the signal acquisition process, are considered. To further optimize the system design and improve
accuracy, for the sensor’s dimensional drift, the corresponding compensation was carried on in the software.
This paper introduced nonlinear quantization, especially in terms of very weak pulse signal, in the time
domain analysis process. A quick extraction method named table look-up combing with interpolation was
utilized to obtain frequency domain information whose processing speed can be increased by about 30 times
compared with fast Fourier transformation setting the sampling point as 300. The results demonstrated the
sensor’s excellent performance in pulse signal acquisition whose maximum residual is less than 0.004 mV.
The test on a random sample of 300 people indicates that the system had high correlation with reference,
validating the system accuracy is extremely high. Overall, this paper provides a practical pulse monitoring
and analysis system with high precision and processing speed that can be widely applied in the field of health
management or medical measurement.

INDEX TERMS Monte Carlo simulation, earlobe pulse, time - frequency analysis, non-linear quantification,
temperature compensation.

I. INTRODUCTION
Pulse wave becomes a hot spot of research nowadays for
the finding can show a significant pathway linking to car-
diovascular diseases [1]. The propagation characteristics of
pulse wave go hand in hand with the variety of the cardio-
vascular system parameters. For instance, the pulse wave
velocity (PWV) depending on period can be used to evaluate
the regional arterial stiffness [2], [3]. Pulse wave monitor-
ing, extraction and analysis have great significance for early
detection of health issue and clinical treatment. In theory,
the relationship between pulse wave and cardiovascular blood
flow dynamics is established which lays the foundation of
developing noninvasive and efficient medical instruments.
So far, a variety of instruments have been developed and

produced [4], [5]. In particular, with the prevalence of wear-
able devices, 24-hour health dynamic monitoring technol-
ogy is maturing. As an affordable, wearable physiological
measurement, wrist-type heart-rate tracker becomes one of
the most typical devices [6], [7]. But because of human
movement interference and constraints of sensor technology,
exact heart rate extraction from pulse wave during intensive
physical activities remains challenging, let alone other phys-
iological information.

As early as 2002, Jeon et al. have put forward a method
to collect the different wavelengths of the photoelectric vol-
ume pulse wave using five wavelengths of the LED array as
the light source. The calculation of hemoglobin concentra-
tion and wavelength selection was studied as well [8]. The
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pulse wave spectrum of finger transmission was obtained
by Yamakoshi et al. [9] using the high-speed acquisition
system of 900∼1700nm near-infrared spectroscopy. The
blood glucose prediction model established by partial least
squares regression (PLS) was used to predict the blood
glucose of 22 and the precision can reach 22.3 mg /
dL (1.23 mmol / L). Nitzan and Engelberg [10] proposed a
method of measuring arterial oxygen saturation through three
adjacent wavelengths, taking the effects of scattering into
account in principle. Besides that, it did not need correction,
but the method lacked of experimental validation. As a gen-
eral view, portability, multi-environment using, system accu-
racy and speed are still the obstacles to the development. High
frequency and motion artifacts are among the leading causes
of deviation in the progress of the acquisition of signals. The
back-end processing circuit face a certain challenge in the
aspect of processing speed and system accuracy. Our system
detection parameters are relatively limited, which is one of the
key points in our future research improvement. Of course, for
some special scenes, we hope to achieve non-touch human
health monitoring.

FIGURE 1. The theoretic framework of the developed design.

In this work, a wireless high precision and processing
efficiency pulse instrument is designed which can match
from minus 18◦ to 41◦ above zero. Overall design contains
three parts: signal acquisition, pre-processing and informa-
tion extraction. Using Lambert-Beer theorem set as a start-
ing point [11], most photoelectricity pulse wave instruments
have a common disadvantage, which is the scattering effect
of human tissue and blood is ignored and only focuses on
absorption effect. Firstly, Monte Carlo method is used in the
acquisition part of the signal, aiming to screen out optimal test
wavelength. What has been shown in Fig.1(b) is the intensity
results extracted by single shot. Different optical adsorption
properties of different human tissue can be clearly identified,
with particular features of the plots explored using 630nm
as an example. The result is plotted in Fig.2(a). Dynamic

spectrum theory suggests that the light absorption of the
muscles, subcutaneous fat, intravenous and other static tissue
in earlobes as well as the basic absorption of the arteries all
keep constant, the only change in absorbance changes is in the
blood of the periodic pulsation part. When the arterial filling
reaches the highest and the blood vessels are filledwith blood,
the transmittance of the earlobe reaches the minimum (Imin).
In a similar way, when the arterial filling reaches the lowest,
the transmitted light will be up to the strongest (Imax) [12].
In addition, the result of pulsating arterial blood absorbing
light over time can be found clearly. In the second part,
an algorithm with a capability of filtering high frequency
noise and baseline drift at the same time has been stud-
ied which can extremely enhance the processing velocity
and a standard signal will be obtained in order to follow-
up use. Last but not least, for analyzing the models in
time and frequency domain, nonlinear quantization and table
look-up combining with interpolation has been put forward
respectively.

II. METHODS
A. PULSE WAVE ACQUISITION
The first step in pulse quantification and analysis is to acquire
the pulse wave signal via sensor system. The core task of the
pulse wave acquisition module is to acquire pulse wave with
sufficient quality and resolution, while the selected sensor
indicator significantly influences the properties, quality, reli-
ability and validity of a pulse analysis system. Issues having
to take into account for the design of a sensor system are
discussed in the following.

Pulse wave sensors based on infrared (IR) or red light
signals with a photo detector become the preferred choice
for non-invasive, portable and low-cost test [13]. The photo-
plethysmography (PPG) reflects blood movement in the ves-
sel through the amount of the backscattered light corresponds
with the variation of the blood volume which was first found
by Hertzman in 1938 [14]. Intense researches on the basis
of it can replace some methodology like the management
of vascular disease especially the invasive tests [15]. The
selection of source to detector as well as wavelength selection
which directly impact photoplethysmogram (PPG) is a cru-
cial step. Besides, propagation of the light through different
tissues is distinct. The relation absorbance of oxygenated
and deoxygenated hemoglobin decides the wavelength which
is selected for further study [16]. In terms of selection of
infrared wavelength of sensor, this work puts forward an
improved simulation method taking both the particularity of
organizational structure and the characteristics of the light
source into consideration.

Monte Carlo modelling of photon propagation has been
used to improve upon established models in respect of the
processing of circuit and operational accuracy. As is shown
in Fig.1, tissue can be divided into three parts: tissue without
blood including skin, fat and bones; venous blood; arterial
blood. Of the three, tissue without blood and venous blood
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FIGURE 2. Intensity of light exiting the tissue as a function of both source-to-detector separation and the depth reached by the photon for
the wavelength(630 nm). (a) Intensity of light exiting the tissue. (b) Intensity at different depth (c) Radio at the particular separation.

the intensity of the emitted light does not vary with the
incident light intensity. Through research, the depth reached
by the photon for the 660nmwavelength is shown in Fig.2(a).
In Fig.2(c), the signal-to-background ratio is shown, with
particular features using the depth from 2.6nm to 3.6nm as
an example. This can be used to determine which source-
to-detector separation is optimal for a particular probing
depth. The intensity results extracted by single shot is plotted
in Fig.2(b) while different optical adsorption properties of
different human tissue can be clearly identified at 630nm,
the probability distribution of reflection at 12.5 mm is plotted
in Fig.3.

The equation used for Monte Carlo simulation gives as:

R(αi) =
1

2 sin2(αi + αt )
+

tan2(αi − αt )
tan2(αi + αt )

(1)

and the flow of the simulation process is shown below:

B. PULSE WAVE PRE-PROCESSING
To recognize the inflection points and easier interpretation of
the original pulse wave, Takazawa et al. [17] introduced the
first and the second derivative of the pulse signals, as shown
in Fig.3. Furthermore, the second derivative is closely related
to a selection of standard pulse wave which is the very
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FIGURE 3. Monte Carlo modeling. (a) The flow of the simulation process. (b) Probability distribution of reflection
at 12.5 mm.
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foundation of further treatment. As the human pulse signal
is relatively weak, different diversities of additive artifact
inevitably generate, unfortunately affect the extraction of
features [18]. Among the noise, high frequency noise which is
the main influence factors is mostly caused by the instrument
thermal noise and electromagnetic interference in the signal
acquisition process [19]. Another main noise that influence
the data processing is the baseline drift, especially occurs in
the first started testing, which may lead to consequences like
detect the peak value incorrectly. The main reason for the
baseline drift is that the physical activity of testers, such as
breathing and coughing, is low frequency noise. The original
signal can just be able to discern while the first and the second
derivative of the pulse signals is completely distorted. That is
to say, the original pulse comes with a lot of noise need to
be cleaned which will result in the serious distortion after
the first and the second derivatives that affect subsequent
processing. Therefore, filtering the high frequency noise and
removing the baseline drift are both indispensable in the pre-
processing.

1) ADD WHITE NOISE TO THE ORIGINAL SIGNAL
The original signal is defined as X (t). First of all, white noise
is added into it which is given as:

X ′(t) = X (t)+ ciNi(t) (2)

where ci is the amplitude of white noise. Then the empirical
mode decomposition is applied in the signal decomposition.
Repeat the above operation z times, where z generally opts
for 100∼200. The signal can be represented as:

X ′(t) =
n∑
i=1

IMFi + rn(t) (3)

where i is an integer greater than or equal to 1 but equal
to or less than n, rn(t) indicates the remainder. IMF1 ∼ IMFn
are all the intrinsic mode function components from the
decomposition. A sequence is given after space reconstruc-
tion (4), as shown at the bottom of the next page.

The parameter a in the sequence falls inside the range of
1 ≤ a ≤ N − (α − 1)λ. α indicates the embedded dimension
while λ represents time delay.

2) CALCULATE THE PERMUTATION VALUE FOR EACH
INTRINSIC MODE FUNCTION COMPONENT AND SELECT THE
THRESHOLD
Permutation entropy is a method to detecting the randomness
of time series and dynamic mutations. The vectors from
IMFi(a) are sorted in ascending order, then all the com-
ponents from the decomposition obtains a set of symbolic
sequences Sgn(j) = {β1, β2, · · · , βn}, where j is an integer
from 1 to a while a is less than or equal to α!. The permutation
entropy of the intrinsic mode function component from the
decomposition can be given as:

PEi(α) = −
a∑
j=1

Pj lnPj (5)

Pj expresses the probability of the occurrence of each sym-
bol whose value equals 1/α decides that PEi(α) secures the
maximum value ln (α!). After standardizing, the permutation
entropy of the intrinsic mode function component from the
decomposition PEi = PEi(α)/ ln (α!) is finally obtained.
Another essential parameter needed to be defined is the

threshold of the permutation entropy that is used to distin-
guish out high frequency noise {IMF1, IMF2, · · · IMFp}(p ∈
Integer, 1 ≤ p ≤ n) and baseline drift components
{IMFh, IMFh+1, · · · IMFp}(h ∈ Integer, 1 ≤ p ≤ n).

3) GET THE STANDARD PULSE WAVE
Reconstructing signal is the last step of denoise processing,
but the first step of further processing. The reconstructed
signal is represented as the expression when baseline is given

as B =
n∑

k=h
IMFk+rn(t):

R(t) =
h∑
l=p

IMFl + line(B(m)) (6)

where k is an integer between h and n, line(B(m)) is the
baseline after tanking the average of B. m is the number of
sampling points and l is an integer in the range of m and n.

C. PULSE INFORMATION EXTRACTION
Sampling frequency f in the periodicity range of a human
photovoltage pulse wave is between 0.3 and 2s, the number of
sampling points in a human photovoltage pulse wave period is
0.3f ∼ 2f . Then the second sample sequence R(t) is sampled
by {Ct ′} == {R1,Rτ ,R2τ ,R3τ . . .}, where τ = 0.3f /100.
The filter window size is set at 70 points, the third sequence
Qt ′′ will get.

Qt ′′ =
1
20

∑
k ′=19
k ′=0 Cx ′+k ′ (7)

where k ′ is an integer; Ct ′+k ′ represents the sequence sample
value of the x ′ + k term.
Under circumstance of testing calmly, human pulse wave

shows certain periodicity. In other words, the information
content of it is just simple repetition that will result in both
hardware and software waste. The ongoing study is based on
a single cycle of the pulse signal. When the adjacent periodic
error is not more than 98% and the cycle repeats more than
five times, the last cycle is selected as the standard signal.

The second derivative of the sequence R(t) is used in order
to select the starting and ending points which are two extreme
points on it. Define these two points as p1 and p2, then
search the minimum value according to the sampling range
defined before, the truncation range is ultimately ascertained.
As is expected, truncated sequence f (n′) can be obtained
(see Fig. 4).

Since the pulse wave is a nonlinear signal, a great deal
signal rich in information is weak to detect but important
in the analysis process. In order to address the current chal-
lenge, non-uniform quantification is suggested whose core is
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FIGURE 4. (a) Standard pulse wave; (b) Primary differential pulse wave;
(c) Quadratic differential pulse wave.

enlarge the wake part of pulse wave and compress the large
part. To visually view the process, Fig. 5 is plotted as below.
The quantification function is given as:

y =


Ax

1+ lnA
, 0 ≤ x ≤

1
A

1+ ln(Ax)
1+ lnA

1
A
≤ x ≤ 1

(8)

The meaning of parameter A is compressibility factor,
directly affecting the compression effect. An additional
impact is that the signal-noise ratio of the small signal can
be significantly improved by this way.

After above-mentioned pre-processing of the original sig-
nal, a truncated sequence f (n′) including N sampling points is
finally got. A newmethod named table look-up combing with
interpolation (TLI) whose key steps are table look-up and
interpolation has been introduced to reduce both computation
time and register space.

T(n′) = sin(
2× (n′%N )π

N
)

T(n′+75) = cos(
2× (n′%N )π

N
) (9)

FIGURE 5. Pulse wave through non-uniform quantization.

The pulse wave function is substantially the result of interpo-
lation from the truncated sequence f (n′), named V (x).

V (x) = [f (b′)− f (a′)] ∗ [
N
x
(l − 1)+ 1− a′]+ f (a′) (10)

where l is the length of sequence f (n′), a′ =
⌊N
x (l − 1)+ 1

⌋
,

b′ =
⌈N
x (l − 1)+ 1

⌉
, bc mea-ns rounding down and de

means rounding up. f (a′) and f (b′) are both interpolation
signals.

P2k = (
1
π

∫ l

0
f(n′) sin

2πkx
l

)2 + (
1
π

∫ l

0
f(n′) cos

2πkx
l

)2

(11)

where k is the power of harmonic component. Through table
look-up, power components extract quickly.

P2k = (
1
kπ

N∑
x=1

V(x)(T(k(x−1)+75) − T(kx+75)))2

+ (
1
kπ

N∑
x=1

V(x)(Tkx − Tkx−k ))2 (12)

III. RESULTS
A. STANDARD WAVEFORM OUTPUT
As shown in Fig.6, (a) is the original wave with high fre-
quency and baseline drift, which cannot be used for fur-
ther processing. After the signal processing, as described


IMFi(1) = {IMFi(1), IMFi(1+ λ), · · · , IMFi(1+ (α − 1)λ)}
IMFi(a) = {IMFi(a), IMFi(a+ λ), · · · , IMFi(a+ (α − 1)λ)}

...

IMFi(N − (α − 1)λ) = {IMFi(N − (α − 1)λ), IMFi(N − (α − 2)λ), · · · , IMFi(N )λ)}

 (4)
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FIGURE 6. Spectrum plot of pulse wave.

FIGURE 7. Pulse wave output. (a) Original wave with high frequency and
baseline drift. (b) Preprocessed wave used for further processing.

in the part of pre-processing, standard waveform is plotted
in Fig.6 (b). A residual analysis is used to identify predic-
tors of the system accuracy through the extracted standard
pulse signals after sampling and pre-progressing, the result
of which is represented in Fig.7. As expected, maximum
residual is less than 0.004mV.

B. MONITORING HEART RATE AND OXYGEN SATURATION
OF DIFFERENT AGES REPEATEDLY
A typical single-cycle pulse wave is illustrated includ-
ing abundant parameters [20]. On one hand, time domain
analysis has the advantages on comprehending and inter-
preting straightly. On the other hand, time domain sig-
nals are however that occasionally, some components of
pulse wave are weak and illegible, which cause a loss
of information. Only when joint time-frequency analysis
is taken, exact credibility will get. Besides, non-uniform
quantification further increases the precision. In order
to test the accuracy and efficiency of the system, test
samples from different age classes has been selected
randomly.

FIGURE 8. Residual analysis.

First, heart rate and oxygen saturation parameters have
been tested and the results have been plotted as Fig.8. Testers
are divided into three groups on the basis of age, each group
of 30 people:

� Group ‘‘A’’: age from 10 to 35
� Group ‘‘B’’: age from 36 to 60
� Group ‘‘C’’: age from 60 to 80

The signal was collected in the tests’ earlobe when they
were in a calm state. The instrument acquires no imposed
conditions on the test environment because the temperature
compensation has been taken into account in the design pro-
cess. To minimize the influence of accidental errors in the
test, the test samples all tested three times.

Heart rate (HR) monitoring using photoplethysmogra-
phy (PPG) has become a necessary feature in the wearable
devices whose precision has been further optimized in this
system.

HR =
60fs
NT

(13)

where fs means the sampling frequency and NT means the
number of pulses in a single cycle.

Under normal conditions, heart rate is between 50 to 90 and
it goes down slightly but not obviously with age. As expected,
doing exercises is another factor affecting the heart rate. For
example, supposing your resting heart rate begins to increase,
you may exercise too hard or for too long.

Beyond that, oxygen saturation is also a parameter that
must think over which is one of the important physiological
parameters that characterizes human health.

Blood oxygen saturation test has been not only used to
learn the health of the human cardiovascular and respiratory
system, but also widely used in surgical anesthesia, patient
first aid and neonatal care [21], [22]. Whether oxygen satu-
ration is too low or drops rapidly will cause health threats,
largely among the elderly. The system offers a reliable, non-
invasive, convenient way for continuous monitoring of it.
It can be seen from Fig.8(b) oxygen saturation is generally
above 92%.
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FIGURE 9. Basic parameter test results(Heart Rate and Oxygen
Saturation). (a)The result of Heart Rate. (b)The result of Oxygen
Saturation.

C. CARDIAC OUTPUT AND CARDIAC INDEX MEASURED
DURING REST
In the previous pulse instrument design, it was shown that
detecting the heart rate and oxygen saturation is possible.
Whereas the information contained in pulse wave is much
more than this, cardiac output as well as cardiac index are
also included in this system. In order to accurately study the
reliability of the system, sample size increased to 300. The
300 volunteers, aged 9 to 82, are in different health condition.
The median age of them is 42.7.

CO =
17
K 2 (Ps − Pd ) (14)

where Ps is systolic pressure, Pd is diastolic pressure, and
K is given by K = Pm−Pd

Ps−Pd
, Pm average pulse pressure.

CI =
CO
BSA

(15)

where BSA is body surface area.
A series of two experiments for each test has been taken to

limit the defected error and suppress the accidental error. The
measurement results are shown in Fig.9.

FIGURE 10. Expanding parameter test results(Cardiac Output and Cardiac
Index). (a)The result of Cardiac Output. (a)The result of Cardiac Index.

Both cardiac output and cardiac index show a weakening
trend with age (see Fig. 10). Cardiac output is key charac-
teristics of the pumping force of the heart and cardiac index
is closely bound up with it. In case both cardiac output or
cardiac index are beyond normal values, it may mean that
myocardial contractility is too high and you are suffering
from high blood pressure. If continues, over time, oxygen
consumption will increase and in serious cases it can cause
myocardial damage and ultimately threaten the life. On the
contrary, too low cardiac output and cardiac index can be the
precursor for low blood pressure.

IV. DISCUSSION
Due to the characteristics of the photoelectric sensor, themea-
surement accuracy is affected by the temperature, resulting
heavily but unallowable skew especially in the measurement
of high precision. In order to improve the accuracy further,
accurate and effective compensation is urgently needed. The
hardware compensation is small and the accuracy is so low
that cannot meet the reality requirement while a flexible,
high precision and relatively low-cost compensation mode
which is completely depend on the software. Further stud-
ies conclusively showed the photoelectric sensor performs
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TABLE 1. Temperature Drift of the Sensor at Different Temperature

TABLE 2. The meaning of parameters A1 A2 A3 A4 A5 and system operation time analysis.

differently under different environmental conditions. Based
on this feature, the subsection process goes forward. The
test environment is divided into cold test (−18◦∼1◦), nor-
mal test (2◦∼21◦) and warm test(22◦∼41◦) which is shown
in Tab.1.

Fig.11 shows the temperature drift values for all subjects
from each test when plotted against their corresponding tem-
perature value. In the first place, all the drift points for the cold
test are below 0.0117 V. Points for the normal test are more
scattered over a wider range of 0.0079 – 0.0337 V relative to
cold test. For thewarm test, all the points lie between a highest
range of 0.0131 – 0.0562 V. Least-squares fitting results in a
low, relatively flat fit to cold and warm test, a steeper gradient
to normal test.

Pervious researches mostly focus on fast Fourier trans-
form. Further improvement based on the Goertzel algorithm
comes forward as a pulse wave signal concentrates in low
frequency. By contrast, table look-up combingwith interpola-
tion (TLI) presented in this design saves register space as well
as reduce processing time prominently. The calculation for
the time cost of fast Fourier transformation (FFT) and table
look-up combing with interpolation (TLI) has been listed as
follows:

timeFFT = A1(p1p2)2 + A4 ×
p1
2

log2(p1p2)

+A5 × p1 log2(p1p2)

timeTLI = 2N × p2 × (A3 + 4A2 + 3A4 + 4A5) (16)
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FIGURE 11. The temperature drift values.

Tab.2 clearly demonstrates the meaning of parameters
A1 A2 A3 A4 A5. In order to intuitively test the advantages of
the instrument, the processing time when N equals 300 was
tested. The processing time of table look-up combing with
interpolation (TLI) is 0.19s while fast Fourier transforma-
tion (FFT) needs 5.31s. Table look-up combing with inter-
polation (TLI) increases processing speed by thirty times,
as anticipated, enhance the efficiency of the system.

V. CONCLUSION
This paper has presented a non-invasive, high precision
and processing speed, multi-parameter pulse analysis system
based on the signals collected from the earlobe. It is obvious
that the sensitivity of the system is strongly dependent on
the sensor of the sampling circuit. Therefore, in the acqui-
sition part of the proposed system, Monte Carlo simulation is
utilized. Nonetheless, the sensor has an inherent drawback
that cannot be eliminated through the production process
improvement. The solution to this problem is calibrating the
temperature drift in the different using condition and then car-
rying on temperature compensation by programming. Aiming
to minimize the influence of kinds of noise, the method which
can reduce both high frequency noise and baseline drift has
been come up in pre-processing section. When the process-
ing steps mentioned above are done, standard pulse wave
that will be used to extract health information is obtained.
The standard pulse wave is well matched to the simulation
results. For the purpose of realizing the processing speed
enhancement and reducing the complexity and cost of the
hardware circuit, non-linear quantification and looking up
table combining with interpolation (TLI) has been presented.
In the end part, system test on a random sample of 300 people
has been carried out which shows that the testing parameters
of this system are extremely accurate. The processing speed
is obviously higher than using Fourier algorithm. Through
the study, a system which has great advantages in that it
can be widely used in practical engineering whether health
management instruments or medical measurement device.
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