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Abstract: Background: The minor allele of the single nucleotide polymorphism (SNP) rs2364723 of
NFE2L2, a gene encoding a master antioxidant transcription factor, has been associated with poor
cardiovascular outcomes and with complications of type 2 diabetes. We assessed the association
between rs2364723 of NFE2L2 and oxidative stress in children/adolescents with type 1 diabetes
(T1D). Methods: In 384 children/adolescents with T1D (age 15.7 ± 3.2 years, 207 males), we assessed
the oxidative stress by measuring the concentration of derivatives of reactive oxygen metabolites
(d-ROMs) and we genotyped the rs2364723 SNP by real time polymerase chain reaction. Results: The
concentration of d-ROMs was 372.8 ± 64.6 Carratelli units. The minor genotype (CC) of rs2364723 at
NFE2L2 was associated with higher concentration of derivatives of d-ROMs in the subgroup with
HbA1c ≥ 8% (B = 47.85, p for genotype ∗ HbA1c interaction = 0.019). Conclusions: The carriers of the
minor genotype of rs2364723 may have increased oxidative stress compared to their counterparts
with other genotypes, especially in case of poor glycemic control. This observation needs to be
replicated and confirmed in larger independent cohorts of youth with T1D.
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1. Introduction

Type 1 diabetes (T1D) is characterized by micro- and macrovascular morbidity and
mortality [1–5]. Oxidative stress, a well-known driver of inflammation/vascular damage
and an accelerator of T1D complications in animal models, is increased in youth with T1D.
Current and past glycemic control account for a limited portion of the interindividual
variability of the oxidative stress of patients [6,7]. Improving our knowledge of what
determines oxidative stress in T1D is of major importance since it would contribute to
reveal the bases of the so-called “residual risk”, i.e., the vascular risk not accounted for by
metabolic control and traditional risk factors. Therefore, novel knowledge about oxidative
stress in T1D would provide novel potential therapeutic targets beyond glycemic control.

Genetic variation in the antioxidant response and its interaction with the glycemic
control may explain part of the inter-individual variability of the oxidative stress of patients
with T1D. Nuclear factor erythroid 2-related factor 2 (NRF2), encoded by NFE2L2, triggers
a master first line response against oxidative stress because it enhances the transcription of
tens of genes involved in the oxides neutralization, in response to a plethora of environ-
mental or endogenous deviations in redox metabolism [8]. The suppression or activation
of the NFR2 pathway has proved to favor or to inhibit the development of complications in
animal models of T1D [6].

The genetic variation at NFE2L2 has been associated with vascular function (forearm
blood flow), autonomic function (heart rate variability), major vascular events and type
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2 diabetes complications in cohorts and case control sets of adults [9–13]. Especially, the mi-
nor allele of rs2364723, which is in complete linkage disequilibrium with the promoter SNP
rs35652124, known to impede the NFE2L2 transcriptional activity, has been consistently
associated with unfavorable outcomes [9–12,14,15]. We have previously observed that the
concentration of serum derivatives of reactive oxygen metabolites (d-ROMs) is increased
compared to healthy peers in a cohort of 412 children/adolescents with T1D [7]. Of these
412 patients, 384 were genotyped at the rs2364723 locus, and the minor genotype showed
increased d-ROMs without statistical significance [7]. We have subsequently hypothesized
that the genetic variation at NFE2L2 may influence the level of oxidative stress mainly
when oxidative stressors are increased and the NFE2L2-triggered antioxidant response is
required, like in the case of poor glycemic control. Therefore, we reanalyzed the variation
in oxidative stress in relation to the NFE2L2 rs2364723 genotype, assessing if genotype and
glycemic control interact in predicting the level of oxidative stress in children/adolescents
with T1D.

To the best of our knowledge, no study has tested the interaction between NFE2L2
locus variation and glucose control as predictor of oxidative stress in people with T1D.

The aim of this brief communication is to report the results of the post hoc analysis
we performed to assess if rs2364723 at the NFE2L2 locus and glycemic control interact in
predicting oxidative stress in our cohort of children/adolescents with T1D.

2. Materials and Methods

We studied 384 children/adolescents with T1D (age 3.6–23.5 years) followed up at
the Regional Center for Pediatric Diabetes of the University Hospital of Verona, Italy.
The inclusion/exclusion criteria and the detailed study protocol have been previously
reported [7]. All participants have had diabetes for at least two years and were out of
partial remission, defined as insulin dose-adjusted glycated hemoglobin A1c (HbA1c)
(HbA1c% + 4 × insulin dose (U/kg/day) ≤ 9%) [16].

HbA1c was measured with Cobas b101 (Roche, Switzerland) by immunoturbidimetric
assay. Derivatives of reactive oxygen metabolites (d-ROMs) concentration was measured
with a commercial kit (Diacron, Italy). The derivative species were measured with a spec-
trophotometer giving a broad absorbance peak at ~505 nm. The color intensity obtained
is directly proportional to the ROMs concentration in the sample. The measuring unit is
the Carratelli unit (U-Carr) (1 U-Carr = 0.08 mg H2O2/dL). The genotype of rs2364723
was determined using pre-designed TaqMan probes (Applied Biosystem, Waltham, MA,
USA), according to the manufacturers’ protocol, with QuantStudio TM 5 Real Time poly-
merase chain reaction (RT-PCR) (Applied Biosystem, Waltham, MA, USA. Assay identity:
C___351878_10).

The day of d-ROMs and HbA1c measurements, all patients had a physical examination
with the measurement of height and weight to determine the z-score of the body mass
index (z-BMI) according to the World Health Organization (WHO) charts, and to exclude
any acute illness [17].

All the parents/guardians of the participating children and adolescents and the partic-
ipants above 18 years of age signed an informed consent to participate in the study which
was approved by the Ethical Committee of the University Hospital of Verona.

According to their HbA1c, patients were divided into two groups: one under the
value of 8% and the other with a value ≥8%, with 8% representing the median of the
whole sample.

By general linear model, we determined if the rs2364723 genotype and the HbA1c cate-
gory interact in predicting the concentration of d-ROMs, independently of gender, age and
z-BMI. All the analyses were performed by IBM SPSS Statistics 24 package (IBM statistics).

3. Results

The concentration of d-ROMs was 372.8 ± 64.6 U-Carr. The rs2364723 genotypes were
distributed as follows: GG: 210, G/C:147, CC: 27 in the total sample, GG: 116, G/C:87, CC:
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15 in patients with HbA1c < 8% and GG: 94, G/C:60f, CC: 12 in patients with HbA1c ≥ 8%).
The genotypes were in Hardy–Weinberg equilibrium in the whole sample and in the HbA1c
categories separately and the genotype distribution did not differ according to the genotype
category (p = 0.76). Z-BMI (B = 11.29, p = 0.001) and being boys under 12 years of age (B for
age ∗ gender interaction = 41.32, p = 0.018) predicted d-ROMs concentration, as previously
reported [7]. The HbA1c category and rs2364723 were not associated with d-ROMs but
their interaction was associated (Table 1 and Figure 1). In fact, patients who carried the
rs2364723 CC genotype had a significantly higher concentration of d-ROMs compared to
GG/GC carriers, in the subgroup with HbA1c ≥ 8% (B = 47.85, p = 0.019) (Table 1 and
Figure 1).

Table 1. Characteristics of the study participants according to their HbA1c category, their genotype
at rs2364723.

HbA1c < 8% HbA1c ≥ 8%

P for HbA1c
Category

P for
Genotype

P for HbA1c
Categories +

Genotype

Genotype at rs2364723 Genotype at rs2364723

GG + GC
(n = 203) CC (n = 15) Total

(n = 218)
GG+GC
(n = 154) CC (n = 12) Total

(n = 166)

d-ROMs
(U-carr) 368.3 (63.5) 364.5 (43.6) 368.1 (62.1) 374.7 (65.7) 421.1 (64.9) 377.7 (66.5) 0.12 0.15 0.019

Age (years) 15.6 (3.7) 15.8 (3.1) 15.6 (3.7) 15.8 (3.1) 14.9 (4.0) 15.7 (3.2) 0.78 0.11 0.12

M/F 115/88 10/5 125/93 76/78 6/6 82/84 0.15 0.35 0.72

z-BMI 0.38 (1.0) 0.23 (0.7) 0.37 (0.9) 0.38 (0.9) 0.49 (0.9) 0.39 (0.9) 0.61 0.91 0.40

Disease
duration
(years)

8.2 (4.2) 8.1 (3.6) 8.2 (4.1) 8.4 (3.8) 8.0 (3.6) 8.4 (3.8) 0.27 0.76 0.89

HbA1c = Glycated A1c Hemoglobin; d-ROMs = derivatives of reactive oxygen metabolites; U-carr = Carratelli
unit; M/F = males/females; z-BMI = z-score of body mass index.
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4. Discussion and Conclusions

In our cohort of youth with T1D, the minor genotype of rs2364723 at the NFE2L2
locus increased the overall systemic oxidative stress by 47.85 U-carr, corresponding to
0.74 standard deviation among patients with poor glycemic control (HbA1c ≥ 8%). Despite
this large effect size, it may be argued that the described interaction is not very relevant
because the subgroup of patients with minor genotype and poor glycemic control included
only 12 patients, corresponding to the 3.1% of the whole cohort. However, if confirmed in
larger cohorts, the evidence of a deleterious effect of the minor genotype of rs2364723 on the
oxidative stress of patients with poor glycemic control would have a significant relevance,
especially in clinical contexts with a high prevalence of patients with poor glycemic control.
The CC genotype of rs2364723 has been previously associated with major cardiovascular
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events and reduced heart rate variability [9,13]. Similar to our results, the minor allele of
rs2364723 has been associated with the risk of complications in patients with type 2 diabetes
of both Chinese and European ancestry [11,12]. To the best of our knowledge, this is the
first study assessing the association between rs2364723 and any outcome in patients with
T1D. It is plausible that a redox challenging condition like poor glycemic control amplifies
the genetic inter-individual variability of any response induced by oxidative stress, like
NRF2 cascade. The observed interaction is a proof of concept that genetic variability may
significantly modulate the redox balance in patients with T1D, especially when glycemic
control is poor. This implies that genetics, probably besides lifestyle variables, contributes
to explain the slice of inter-patient variability in the oxidative stress that is not explained
by glycemic control. Several NRF2 inducing drugs have been developed in recent years
and have been tested with promising results in phase II and phase III trials against many
chronic diseases accompanied by oxidative stress and against the complications of type
2 diabetes [8]. One of these molecules, dimethyl fumarate, has been approved by the Food
and drug Administration for the treatment of multiple sclerosis and psoriasis [8]. As it
has been established that NRF2 delays the progression of T1D complications in animal
models, T1D is currently regarded as an ideal target for NFR2 enhancing therapies and it is
expected that the number of clinical trials employing NFR2 inducing molecules in patients
with T1D will rapidly multiply [6]. Once replicated in larger independent cohorts, the
result of the present study would highlight that the patients carrying the minor genotype
of rs2364723 represent a small subgroup that might mostly benefit from NFR2-inducing
drugs, especially during periods of poor glycemic control.
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