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Simple Summary: In vitro embryo production (IVEP) is a technology that is widely used in the field
of reproductive biology. The first and most important step of IVEP is termed in vitro maturation or
IVM, in which the oocyte is allowed to mature in a synthetic medium under controlled laboratory
settings. The quality of in vitro matured oocytes is still low compared to that of those matured
inside an animal’s body. One of the key elements that was found to affect oocyte quality is the
accumulation of large amounts of reactive oxygen species (ROS) within oocytes during IVM. The
addition of antioxidants to oocyte IVM media is one of the most effective methods for preventing ROS
accumulation. In this article, we highlight the latest events showing how ROS harms mammalian
oocytes. We also discuss the possible impacts of antioxidant supplementation on the IVM rate and
oocyte quality.

Abstract: The in vitro embryo production (IVEP) technique is widely used in the field of reproductive
biology. In vitro maturation (IVM) is the first and most critical step of IVEP, during which, the oocyte
is matured in an artificial maturation medium under strict laboratory conditions. Despite all of the
progress in the field of IVEP, the quality of in vitro matured oocytes remains inferior to that of those
matured in vivo. The accumulation of substantial amounts of reactive oxygen species (ROS) within
oocytes during IVM has been regarded as one of the main factors altering oocyte quality. One of the
most promising approaches to overcome ROS accumulation within oocytes is the supplementation of
oocyte IVM medium with antioxidants. In this article, we discuss recent advancements depicting the
adverse effects of ROS on mammalian oocytes. We also discuss the potential use of antioxidants and
their effect on both oocyte quality and IVM rate.
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1. Introduction

The in vitro embryo production (IVEP) technique is frequently employed to overcome
problems associated with infertility in different mammalian species [1,2]. IVEP has been
identified as a key technique for the production of a large number of offspring from animals
with superior genetic traits [3].

The in vitro maturation (IVM) of oocytes is the first and most crucial phase in the
IVEP process, during which, oocytes gain the potential to sustain continued embryonic
development [4]. As a result, identifying the appropriate IVM environment is essential for
effective IVEP procedures [4].

The success of IVM is dependent on various factors including the quality of collected
oocytes and the setup of culture conditions [5]. Antioxidants supplied periodically from
fluids of the female reproductive organs act to minimize the damage induced by reactive
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oxygen species, ROS, natural by-products of oocyte metabolism [6]. One of the challenges
that oocytes face during IVM is oxidative stress caused by the increased generation of ROS
by oocytes in the IVM media [7]. Excessive ROS production could ultimately result in
oocyte death and embryonic loss [8,9].

Other forms of stress that oocytes may face include high ambient temperature [10],
increased mother age [11], and fertilization delays caused by the failure of the sperm
to reach and penetrate the oocyte membranes [12]. All these stress types represent a
potential risk for female infertility since they predispose oocytes to oxidative damage and
are associated with a series of physiological, metabolic, cellular, and molecular alterations
in the reproductive tract [13].

Antioxidant supplementation during IVM has been suggested to protect oocytes from
the injurious effects of oxidative stress via maintaining physiological levels of ROS [14,15].
In this article, current understandings of the sources of ROS during IVM of mammalian
oocytes, their deleterious effects on oocyte biology, and the promising role of exogenously
supplemented antioxidants are presented and discussed.

2. In Vitro Maturation of Mammalian Oocytes

Oocyte maturation involves a series of complex and diverse events of nuclear and
cytoplasmic modifications that provide oocytes the inherent potential to promote embryo
development and activate the embryonic genome [16]. Nuclear and cytoplasmic matura-
tions are two components of oocyte maturation [17]. Cumulus expansion is also regarded
as a sign of oocyte maturation [18].

Cytoplasmic maturation involves events related to the cytoplasmic capacitation of
the oocyte [19]. It entails the accumulation of mRNA, proteins, and substrates necessary
for fertilization and subsequent development [20]. Through the regulation of protein and
ATP synthesis as well as chromosome segregation, cell organelles including mitochondria,
endoplasmic reticulum (ER), and microtubules play key roles in both cytoplasmic and
nuclear maturation [16,21].

The nuclear maturation of oocytes implies the resumption of meiosis and progression
to the metaphase II stage. The mammalian oocyte passes through two successive cell
divisions during its maturation process [22]. First, the oocyte is arrested at the diplotene
stage. At this stage, the oocyte appears to contain a large nucleus, the germinal vesicle
(GV). Germinal vesicle breakdown (GVBD) involves chromatin condensation and the
disintegration of the nuclear membrane [23]. Following GVBD, the oocyte resumes meiosis
and enters the metaphase I (MI) [24]. The first meiosis ends with the formation of a haploid
oocyte and the extrusion of the first polar body. The former is kept at metaphase II (MII)
until fertilization [25]. Inaccuracies of these meiotic events might prevent oocytes from
reaching their proper maturation [26].

The process of oocyte maturation is a complex process that requires coordinated
interactions between the oocyte and its surrounding cumulus cells as well as between
oocyte cytoplasmic and nuclear compartments [27]. For instance, mixing of the GV contents
during its breakdown with the cytoplasm has been assumed to activate critical aspects of
cytoplasmic maturation and subsequent developmental competence [28]. In certain species,
including equines and humans, the process of cytoplasmic maturation has been found to
be deficient in several aspects, especially those related to microtubule patterning and cell
division, with negative outcomes on rates of embryo formation [29,30]. Several approaches
have been investigated to improve IVM in the aforementioned species by creating suitable
conditions for better cytoplasmic maturation. In equines, the treatment of oocytes with
the meiosis-inhibiting factor Roscovitine for a period of time prior to IVM improved
microfilaments’ organization in matured oocytes [31]. Recently, co-culturing equine COCs
with granulosa cells from small follicles (<15 mm) has been found to significantly improve
the cytoplasmic maturation of oocytes on the basis of cortical granules’ distribution and
mitochondrial function [32].
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3. Normal Production and Elimination of Reactive Oxygen Species (ROS) by
Mammalian Oocytes

ROS are oxygen-containing molecules produced as a by-product of cellular respiration
and metabolism [33]. They primarily consist of superoxide anions (O2

−), hydrogen perox-
ide (H2O2), and hydroxyl radicals (OH) [33]. The oxidation of unsaturated fatty acids, also
known as lipid peroxidation, is one of the most severe outcomes of free radical attack. One
of the end products of lipid peroxidation is malondialdehyde (MDA). It can be used as a
cumulative marker of lipid peroxidation because it is a stable end product [34]. In oocytes,
MDA is thus regarded as an indicator of oxidative stress [35].

Physiological levels of ROS have been found to be beneficial to gamete function
and development [36]. However, the excessive production of ROS at levels that exceed
oocyte total antioxidant capacity could result in a state of oxidative stress (OS) [13]. OS
is characterized by a wide range of cellular destruction including DNA damage, arrested
growth and reduced oocyte quality [37].

Intracellular ROS are repeatedly removed by a group of intracellular antioxidants.
These antioxidants include an extensive set of cooperating enzymatic and non-enzymatic
factors [38]. These factors are abundantly present within the follicular fluid and act to
protect oocytes from harmful effects [39]. Superoxide dismutases (SODs), catalase (CAT)
and glutathione peroxidase (GPx) are examples of enzymatic antioxidants. SODs convert
O2

− into H2O2 via its mitochondrial, manganese-dependent superoxide dismutase (Mn-
SOD) and cytoplasmic, copper, zinc superoxide dismutase (Cu/ZnSOD), while CAT and
GPx mediate the breakdown of H2O2 into water and oxygen [40–42].

Non-enzymatic antioxidants include thiols [43], ascorbic acid, alpha-tocopherol [44,45],
melatonin [46], l-carnitine [47,48], and lycopene [49]. They prevent oxidative damage by
interrupting free radical chain reactions [14].

4. The Alteration in Oxidative Status of Mammalian Oocytes during Their IVM

The in vitro handling of gametes and embryos during ARTs is associated with the
production of large amounts of ROS that exceed the typical antioxidant capacity of the
cell [50]. Organelle failure, spindle abnormalities, DNA fragmentation, and apoptosis are
all among the detrimental effects of high ROS on IVM oocytes [50].

IVM involves the culture of cumulus–oocyte complexes (COCs) in a synthetic medium.
The media used for IVM usually contain fewer antioxidant enzymes than the in vivo milieu
of follicular and oviduct fluids provided by the mother [6]. During IVM, OS is caused by
an imbalance between ROS production and clearance induced by a shortage of maternal
antioxidants. Such an alteration causes oocyte maturation and subsequent embryonic
development to be disrupted [51].

The incubation of oocytes in high oxygen concentrations [52] and their exposure to
visible light [53], pollutants [54], and certain components of IVM [50] all promote ROS
generation during the in vitro maturation of mammalian oocytes. Increased ROS levels
disrupted maturation-promoting factors and triggered programmed cell death in oocytes
from several mammal species [9,55].

The lipids in the membranes of in vitro generated embryos are damaged by ROS [56].
Non-competent embryos had higher ROS levels than competent embryos, which was
linked to mitochondrial damage [57]. In bovines, the presence of free radicals during IVEP
reduced the blastocyst rate in a dose-dependent manner [58]. Even when the damage
was not fatal, it had a detrimental impact on cellular development, metabolic activity, and
embryo viability [59].

Oocytes are exposed to OS during IVEP not only as a result of their metabolic and
respiratory processes, but also as a result of external stimuli including oxygen tension
and light. The oxygen content in the oviduct and uterus is lower (2–8%) than that used
in in vitro research (about 20%) [60,61]. In cows [62], sheep [62], goats [63], pigs [64], and
mice [65], toxic impacts of atmospheric oxygen concentrations and beneficial impacts of
lower ones on the outcome of IVEP were reported [66].
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The normal development of oocytes occurs inside the female reproductive tract in
complete darkness. On the other hand, they are rapidly exposed to light during their
in vitro handling. This exposure has been shown to promote OS in embryos and somatic
cells by either increasing pro-oxidant production or blocking endogenous antioxidant
mechanisms [67]. One-cell hamster embryos exposed to 14,000 lux light for a brief time
period (30 s) revealed a considerable rise in H2O2 levels [67].

The redox status of oocytes and embryos was found to be affected by the amounts of
nutrients in the culture medium. Hashimoto, Minami [68] found that high glucose concen-
trations in the IVM medium hampered embryo development, which was accompanied with
high ROS and low glutathione concentrations. On the other hand, bovine COCs exposed to
50–100 mM H2O2 for one hour during IVM showed some improvement in their subsequent
development [69].

Several studies have been conducted on the role of cumulus cells in the redox status
of COCs. Spermatozoa incubated with intact COCs produced more ROS than sperma-
tozoa incubated with denuded oocytes [53]. The enhanced production of ROS in intact
COCs was observed to improve the sperm penetration of oocyte membranes. Tatemoto,
Sakurai [70] observed that after 44 h of culture under the hypoxanthine–xanthine oxidase
system, denuded oocytes had more DNA and apoptotic damages than intact COCs. Fur-
thermore, Luciano, Goudet [71] found that supplementing horse COCs with cysteamine
boosted GPx mRNA expression in cumulus cells but not in oocytes in vivo and in vitro.
Cetica, Pintos [72] also noted higher SODs, CAT, and GPx enzymatic levels in separated
cumulus cells of bovine COCs during IVM compared to denuded oocytes, which decreased
afterwards. In addition, removing cumulus cells before the in vitro maturation of bovine
oocytes resulted in reductions in their maturation, fertilization and embryo development
rates [73].

The role of reactive oxygen species (ROS) in the process of GVBD is controversial.
Tamura, Takasaki [74] showed that high levels of H2O2 impaired GVBD during human
oocyte maturation, which was reversed by melatonin. In swine oocytes, inhibiting SODs’
enzymatic activity resulted in a considerable decrease in meiotic development [75]. On the
other hand, Takami, Preston [76] reported that the addition of a number of cell-permeable
antioxidants to IVM medium for two hours blocked spontaneous GVBD in both intact
COCs and denuded oocytes in rats. These antioxidants included nordihydroguaiaretic acid,
2(3)-tert-butyl-4-hydroxyanisole, octyl gallate, ethoxyquin, 2,6-di-tert-butyl-hydroxymethyl
phenol, butylated hydroxytoluene, tert-butyl hydroquinone, propyl gallate, lauryl gallate,
and 2,4,5-trihydroxybutrophenone. Tarin [77] also showed no variations in IVM rates in
mouse oocytes when the oxidizing agent tertiary-butyl-hydroperoxide was added (tBH).

During oocyte development, a high risk of aneuploidy or chromosomal abnormalities
has been reported, which becomes increasingly apparent during meiosis I [78]. Tarin [77]
reported that OS induced by tBH treatment resulted in abnormal-shaped meiotic spin-
dles associated with defects in the alignment of chromosomes. Tarin, Vendrell [79] also
observed a modest reduction in oocytes’ aneuploidy from mice who received antioxidant
supplementation.

Oocyte maturation is dependent on the proper assembly of the meiotic spindle. Several
studies have related changes in the morphology of the meiotic spindle to gamete origin
and culture circumstances during IVM [80–82]. During the IVM of mouse oocytes, Choi,
Banerjee [83] reported that OS induced by H2O2 addition caused time-dependent changes
in microtubule dynamics and chromosomal alignment. These changes were partially
corrected by vitamin C supplementation via alleviating the harmful effect of H2O2 on
chromosome alignment but not on microtubule alteration.
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5. Antioxidant Supplementation during IVM of Mammalian Oocytes to Counteract
ROS-Induced Damage

Currently, various antioxidant substances are being added during IVM to ensure a
balanced intracellular redox status and good oocyte quality [84,85]. Adding antioxidants,
such as thiols, polyphenolic compounds, melatonin, carotenoids, resveratrol, and vitamins
such as C and E, to the IVM medium has been proven in several trials to improve oocyte
quality and alleviate their damage induced by excessive ROS exposure [86,87]. Details of
these antioxidants are listed in Table 1.

Table 1. List, concentrations, and effects of antioxidants used to improve in vitro maturation of
oocytes in different animals.

Antioxidant Type Dose Species Maturation Rate
vs. (Control) References

Melatonin Hormone

4.3 × 10−8 M (10 ng/mL) porcine 84.6 (75.6) * [88]
10−9 M bovine 82.3 (65.7) * [89]

2.5 × 10−4 M buffalo 42.8 (33)ns [90]
10−7 M sheep 85.3 (75.3) * [91]
10−6 M mouse 85 (64) * [92]

Lycopene Carotenoid
2 × 10−7 M bovine 76 (66.3) * [93]
2 × 10−7 M mouse 89.9 (66.7) * [94]

Astaxanthin Carotenoid 2.5 × 10−6 M porcine 89.5 (87.1)ns [95]
Beta-Mercaptoethanol

(β-ME) Thiol
2 × 10−5 M buffalo 76.2 (66.7)ns [96]

10−5 M equine 55.6 (51.9)ns [97]
Cystamine Thiol 10−5 M mouse 80.1 (57.7) * [98]

Vitamin C Vitamin
2.5 × 10−4 M mouse 29.7 (70.3) * [99]

2.3 × 10−3 M (1 mg/mL) bovine ~80 (~80)ns [100]

Vitamin E Vitamin
2.3 × 10−3 M (1 mg/mL) bovine ~80 (~80)ns [100]

10−3 M porcine 72.2 (67.6)ns [101]
Selenium (SeMet) Trace element 2.5 × 10−8 M porcine 80.2 (67.6) * [101]

Vitamin E; Selenium
(SeMet)

Vitamin; trace
element 10−3 M; 2.5 × 10−8 M porcine 85.1 (67.6) * [101]

Resveratrol
Polyphenolic
compound

10−6 M bovine 93.4 (87.9) * [102]
5 × 10−6 M porcine 84.5 (72.6) * [103]

Quercetin
Polyphenolic
compound 10−5 M

mouse 86.6 (79.7) *
[104]human 92.3 (87.5)ns

L-Carnitine Amino acid
derivative

3.1 × 10−3 M (0.5 mg/mL) porcine 60.7 (56.4) * [47]
3.1 × 10−3 M (0.5 mg/mL) camel 74.7 (60.2) * [105]
3.7 × 10−3 M (0.6 mg/mL) canine 41.4 (23.4) * [106]

Retinoic acid
Vitamin A
metabolite

10−8 M goat 78.7 (65.1) * [107]
2 × 10−5 M camel 69.4 (52.9) * [108]

Coenzyme Q10 Coenzyme 10−5 M porcine 76.4 (66)ns [109]
5 × 10−5 M human 82.6 (63.0) * [110]

* Maturation rate significantly changed (p < 0.05); ns maturation rate non-significantly changed; SeMet,
Seleon-L-methionine.

Thiols, or mercaptans, are organosulfur compounds similar to alcohols and phenols
but have a sulfur atom in place of the oxygen atom [111]. Glutathione is a tripeptide thiol
that naturally presents in either a reduced (GSH) or oxidized (GSSG) form [112]. It is made
up of three amino acids: cysteine, glycine, and glutamate. It is a powerful reducing agent
and also acts as a GPx electron donor. The presence of GSH in the oviductal fluid was
reported [113]. Adding 0.6 mM cysteine, non-essential sulfur-containing amino acid, to
bovine oocytes during IVM significantly increased embryo rates, regardless of exposure
time [114].

Other thiols such as β-mercaptoethanol (β-ME) or cysteamine were added to boost
intracellular GSH content and cell growth rates [115,116]. When these thiols were added
to IVM medium in cows [117], sheep [118], pigs [119], dogs [120], and mice [98], growth-
promoting effects were seen. Even at high oxygen concentrations, the addition of β-ME
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to the IVM medium was associated with increased embryo growth rates of mammalian
embryos [119,121].

Polyphenolic compounds are plant metabolites that showed strong antioxidant activi-
ties [122]. Luteolin is a polyphenolic compound that revealed a major role in protecting
several cell types against oxidative-stress-induced damage [123]. Luteolin improved the
quality of porcine oocytes incubated under oxidative stress conditions and enhanced their
subsequent embryonic development following IVF by alleviating oxidative damage to cell
organelles [124].

Melatonin is a hormone that is produced naturally by the pineal gland. Melatonin
receptors were found to be expressed in oocytes and cumulus cells of bovines [125,126]
and mice [127]. The supplementation of IVM medium of bovine oocytes with exogenous
melatonin significantly increased the rates of oocyte nuclear maturation, cleavage, and
blastocyst formation [125,126]. Melatonin addition to the IVM medium also increased
maturation and developmental competence in heat-stressed bovines [128] and pigs [129].

The supplementation of IVM medium with a mixture of 10 µM of alpha-tocopherol
and 250 µM of l-ascorbic acid resulted in a larger proportion of denuded porcine oocytes
progressing to the MII stage when compared with control groups [130]. A study by Choi,
Banerjee [83] also suggested a beneficial role of ascorbic acid in protecting MII mouse
oocytes from H2O2-induced damage.

Carotenoids are yellow- to red-colored naturally occurring pigments that are found
mostly in plants, algae, marine organisms, and certain bacteria [131]. Over 1100 carotenoids
have been reported [132]. They cannot be synthesized by mammals; thus, they must be
obtained from the diet [133].

Carotenoids include α-carotene, β-carotene, and lycopene [134]. Xanthophylls are oxy-
genated derivatives of carotenes and represent the most abundant type of carotenoids [135].
Examples of xanthophylls are lutein, astaxanthin, and canthaxanthin. Carotenoids that
contain one or more ketone groups are termed ketocarotenoids [136].

β-carotene supplementation to the IVM medium of mouse oocytes has been re-
ported to reduce ROS levels, decrease cell apoptosis, and improve the overall structure of
oocytes [137].

The supplementation of the IVM media of bovine and mouse oocytes with lycopene
at a concentration of 0.2 µM resulted in a significant increase in the IVM rate compared to
control oocytes, which was associated with reduced intracellular ROS levels and increased
mitochondrial activities of oocytes [49,94].

Several keto-carotenoids have been employed in IVM experimental protocols. Canthax-
anthin is a keto-carotenoid with significant antioxidant activity [138,139]. Canthaxanthin
supplementation during IVM increased porcine oocyte maturation and subsequent develop-
mental competence after parthenogenetic activation and somatic cell nuclear transfer [140].

Astaxanthin is another keto-carotenoid with potent antioxidant properties. Astaxan-
thin supplementation during IVM improved the maturation, fertilization, and development
of pig oocytes [141].

6. Heat Stress and ROS Production by Mammalian Oocytes
6.1. Effect of Heat Stress on Oocyte ROS Production

Global warming is the steady rise in the Earth’s average temperature caused by
increased rates of emissions of greenhouse gases, which trap heat and warm the Earth [142].
The rising global temperature exposes animals to stressful environmental circumstances,
particularly in the summer, resulting in a reduction in domestic animal fertility due to an
increase in body temperature exceeding physiological limitations, a condition known as
heat stress [143].

Heat stress represents a potential risk for female infertility since it causes a series of
physiological, metabolic, cellular, and molecular alterations in the reproductive tract [144].
Among the alterations induced by heat stress in different body tissues is the oxidative
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damage of intracellular components which results in structural and functional changes and
causes apoptosis [145].

Heat stress has been reported to alter oocyte nuclear and cytoskeletal architecture and
delay early embryonic development [146]. Heat stress stimulates excessive production
of free radicals within maturing oocytes [38]. In cattle, the increased generation of free
radicals within the oocyte following heat stress is associated with meiotic arrest, poor oocyte
quality, and a lower rate of embryo development [147,148]. Moreover, the incubation of
buffalo oocytes under heat stress condition led to an increase in the levels of ROS, lipid
peroxide, and nitric oxide [149]. Additionally, mouse oocyte cytoplasmic maturation is
more susceptible to thermal stress than nuclear maturation [150]. Furthermore, it was found
that autophagy induction in pig oocytes is increased under heat stress conditions [151].

Several studies have shown that the process of oocyte maturation is disturbed at high
temperatures [150,152–154]. The impact of elevated temperature on oocytes and embryos
has been linked to a parallel increase in ROS production and a decrease in antioxidant
defense enzyme activity [155–158]. In mouse oocytes and embryos, heat stress caused a
decrease in the glutathione content and a rise in the H2O2 levels [156]. Culturing oocytes
at high temperature during IVM has been also found to augment ROS production in
bovines [159] and porcine [160].

It has been established that oocytes and embryos are the primary targets of the dam-
aging effects of heat stress [161,162]. The cellular damage induced by heat stress involves
diverse cellular organelles. Heat shock during the IVM of bovine oocytes has been re-
ported to disturb spindle formation [163], mitochondrial function [164], microtubule and
microfilament organization [165], and cortical granule distribution [166].

Breakdown of the germinal vesicle and expulsion of the first polar body are two
significant characteristics of oocyte maturation [167]. Reduced rates of polar body extrusion
and germinal vesicle breakdown were seen in oocytes matured at an elevated temperature
(41.5 ◦C) for 22 h compared to oocytes matured at an optimum condition (38.5 ◦C) for the
same time period in porcine [129,160], cattle [153,168] and buffalos [169]. On the other hand,
heat stress (41 ◦C) increased the nuclear maturation kinetics of porcine oocytes, resulting in
a larger proportion of MII oocytes after 16–18 h of IVM, according to Tseng, Tang [170].

6.2. Use of Antioxidants to Counteract ROS-Induced Damage of Heat-Stressed Oocytes

The possible involvement of antioxidant supplements in combating the negative
effects of heat stress on oocyte developmental competence and IVEP is a subject of investi-
gation [171]. The addition of retinol to the IVM medium of bovine oocytes prevented heat-
induced reductions in oocyte maturation and improved the rate of blastocyst yield [172].
In mice, the administration of the antioxidant epigallocatechin gallate decreased the delete-
rious effects of maternal hyperthermia on follicle-enclosed oocytes via the suppression of
ROS generation [173].

Porcine oocytes supplemented with 2 µM of resveratrol during their IVM under heat
stress conditions revealed higher rates of polar body formation compared to heat-stressed
oocytes with no resveratrol added [174].

The treatment of bovine COCs with astaxanthin at concentrations of 12.5 and 25 nM
rescued the developmental competence of heat-shocked oocytes via enhancing SOD activity
and decreasing ROS levels [175].

Melatonin has been shown to overcome the negative influences of heat stress on
oocytes and preimplantation embryos [174,176–178]. Melatonin treatment upsurged SOD
enzyme levels in heat-shocked mouse oocytes [156]. Melatonin addition at a 1 µM concen-
tration decreased ROS levels of maturing bovine oocytes [179].

Coenzyme Q10 supplementation to IVM media improved mitochondrial properties
and alleviated the effects of thermal stress on bovine oocytes’ developmental compe-
tence [180].
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7. Maternal Aging and ROS Production by Mammalian Oocytes
7.1. Effect of Maternal Aging on Oocyte ROS Production

The aging of female mammals is widely established to be associated with decreased
fertility [11]. The ovary is much more sensitive to the effects of aging than any other
body tissue, and reproductive success has been shown to be inversely associated with
age [181]. Ovarian senescence progressively reduces both follicle quantity and oocyte
quality, resulting in a steady decrease in fertility which ends ultimately with sterility [182].
Mammalian oocytes display higher ROS levels with age, and thus, reproductive aging can
be linked to the cumulative oxidative damage of oocytes [183–185].

Oxidative stress is one of the key processes underpinning aging. It arises as a result of
the slow buildup of damage caused by free radicals created during normal metabolism [186].
The oocytes of most animals initiate meiosis in the fetal ovary. However, they enter a
prolonged period of rest at the dictyate stage of the first meiotic prophase (prophase I)
from fetal life until puberty. The duration of this period ranges from weeks in mice to
months and years in domestic animals [182]. During this prolonged rest, physiological
levels of generated ROS contribute to oocyte maturation within the follicle [187]. However,
the cyclic production of these damaging agents negatively affects oocyte quality and may
lead to an increased risk of ovarian pathologies, especially under circumstances of reduced
antioxidant status [187].

Lipid metabolism is a powerful source of energy, and its relevance during oocyte
maturation is becoming more apparent [188]. Lipid peroxidation is a hallmark of oxidative
stress, which is known to increase as oocytes age [189]. Oocytes from aged mice were
found to display significantly higher levels of lipid peroxides compared to those from adult
mice [190].

7.2. Use of Antioxidants to Counteract ROS-Induced Damage of Maternally Aged Oocytes

In maternally aged oocytes, the disrupted balance between oxidant production and
elimination leads to the development of oxidative stress [191]. The use of exogenous antiox-
idants is thus thought to antagonize the effects of maternal aging on oocytes via reducing
oxidative stress. The oral administration of vitamins C and E reduced the negative effects
of aging on ovarian reserve (number of both ovarian and ovulated oocytes) and oocyte
quality (chromosomal aberrations and apoptotic changes) in a mouse model [192]. Mela-
tonin and coenzyme Q10 exerted anti-aging effects on mouse oocytes through modulating
mitochondrial activity and ROS levels during reproductive aging [193–195].

8. Postovulatory Aging and ROS Production by Mammalian Oocytes
8.1. Effect of Postovulatory Aging on Oocyte ROS Production

Ovulation is a complex process involving the rupture of the dominant ovarian follicle
and the release of oocytes into the uterine tube [196]. The oocytes of domestic mammals
are ovulated during the metaphase of the second meiotic (MII) division and stay in this
state until fertilization [197]. Fertilization occurs when male and female gametes fuse
within 10 h of ovulation in most domestic animals [198]; however, it can take up to 15 h
in mice [199]. If an oocyte waits for a prolonged time without being fertilized by a viable
sperm after ovulation, it will go through a series of deteriorating changes known as oocyte
postovulatory aging [200].

The postovulatory aging of oocytes involves cellular and molecular alterations that
reduce the developmental competence of oocytes [12]. The structural integrity of numerous
oocyte components, including the zona pellucida, mitochondria, and meiotic spindle, has
been shown to be adversely affected by postovulatory aging [201,202]. Furthermore, pos-
tovulatory aging has been linked to biochemical changes in oocytes, including an increase
in the formation of ROS in mouse oocytes [203,204]. In postovulatory-aged mouse oocytes,
a considerable increase in ROS levels has been linked to cell membrane disruption and
DNA damage [205]. Increased ROS generation has been shown to lower intracellular ATP
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levels in aged bovine oocytes [206], decrease the glutathione (GSH)/glutathione disulfide
(GSSG) ratio, and expedite oocyte fragmentation in mouse and pig oocytes [207,208].

Normally, there is a balance between the generation and removal of ROS. A growing
body of research implies that the buildup of ROS in postovulatory-aged oocytes is pro-
gressively rising with time [209,210]. ROS accumulation is likely to be higher in in vitro
matured oocytes than in in vivo matured ones due to laboratory conditions such as light
exposure, high oxygen tension, and a lack of antioxidants derived from the surround-
ing ovarian and tubal microenvironments [8,211]. It was thought that the depletion of
intracellular antioxidant defense system supplies in oocytes, such as glutathione, would
exacerbate the oxidative damage caused by ROS buildup [212,213]. Consequently, incor-
porating antioxidant-rich compounds in programs used for both the in vivo and in vitro
maturation of domestic mammal oocytes might reduce oxidative damage inflicted by
postovulatory aging [202].

8.2. Use of Antioxidants to Counteract ROS-Induced Damage of Postovulatory Aged Oocytes

A number of studies have analyzed the effect of antioxidant supplementation on oocyte
postovulatory aging in vitro. L-ascorbic acid and 6-methoxy-2,5,7,8 tetramethylchlormane-
2-carboxylic acid (trolox/vitamin E) were shown to be ineffective in preventing oocyte
fragmentation during postovulatory aging [214]. The reducing agent dithiothreitol (mda),
on the other hand, increased oocyte quality, which resulted in higher rates of fertilization
and blastocyst development [214]. Despite its protective effect on aging oocytes, the
practical use of DTT is limited by its DNA damaging properties [215]. In vitro aged mouse
oocytes treated with melatonin revealed a reduced rate of fragmented oocytes together with
a decrease in ROS concentrations compared to counterparts aged without melatonin [210].

Mouse oocytes that were allowed to age in the presence of 200 nM lycopene showed
significantly less fragmentation and degeneration, lower concentrations of H2O2 and MDA,
and higher concentrations of TAC, GSH, and SOD than those aged without lycopene [216].

9. Conclusions

In vitro maturation (IVM) constitutes the basic foundation for several assisted repro-
ductive techniques including IVEP. Subsequently, the successful practice of IVM holds
great promise for the better conduction of these techniques. The disconnection of oocytes
from their surrounding in vivo microenvironment during IVM makes them prone to very
minor damaging insults. Additionally, the in vitro handling of oocytes during IVM exposes
them to supraphysiological levels of stress that could result in their damage. Therefore, the
success of an IVM protocol remains a great challenge to reproductive biologists.

The buildup of large amounts of ROS during IVM constitutes a startup point for
oxidative stress that might increase the risk of IVEP failure. Among the several laboratory
factors that contribute to ROS accumulation within maturing oocytes and IVM media are
increased light intensities, high ambient temperatures, and the increased partial pressure
of oxygen (PO2). Other factors include maternal senescence, oocyte aging caused by
fertilization delays, and inadequate nutrients provided by IVM media (Figure 1). The latter
factor is inevitable, as several components of the in vivo milieu cannot be simulated under
standard laboratory conditions, e.g., blood circulation and signaling molecules.

The lack of sufficient antioxidant protection for oocytes that is usually achieved by their
natural intrafollicular habitat highlights the importance of antioxidant supplementation
during IVM. Although the selection of antioxidant(s) to be added during the IVM of
mammalian oocytes is a subject of rigorous investigation, generally, these substances are
tested and applied at very small doses to achieve physiological levels similar to those
found in mammalian biological fluids. As the follicular fluid represents the ideal site for
oocyte development, future studies should be aimed at surveying and using species-specific
follicular fluid resident factors to help in suppressing ROS activity during IVM. In addition
to these factors, the testing of natural antioxidants with previously uncharacterized effects
on oocytes and/or the combinatorial use of antioxidants with well-characterized effects on
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oocytes will definitely help to maximize the success rate of the IVM of mammalian oocytes.
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