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Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and has taken an
enormous toll on the worldwide quality of life and the global economy, in addition to the lives lost due to
coronavirus disease 2019 (COVID-19). Precautionary measures and timely identification of the infected
cases are essential to minimize the spread of SARS-CoV-2. Infection with this virus causes a spike in the
proinflammatory cytokines, resulting in immune system-mediated host tissue damage, thus leading to
mortality. Therefore, identifying mild, moderate, and severe cases is crucial to rendering appropriate care.
Recent research has focused on identifying laboratory techniques to predict the case severity and outcome
of COVID-19 cases. Low serum lymphocyte levels, low lymphocyte-to-C-reactive protein ratio, low platelet-
to-lymphocyte ratio, thrombocytopenia, and high neutrophil-lymphocyte ratio (NLR) have been observed in
critical infections. NLR might be a prognostic marker for disease severity. Severe cases can be triaged at
hospital admission for proper treatment planning and to reduce mortality. This review highlights the
potential role of NLR hematological assay in SARS-CoV-2 infection and the mechanism of neutrophilic-
induced host tissue damage.
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Introduction And Background
The beginning of the 20th century brought three new devastating coronaviruses that affected the entire
world. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, Middle East
respiratory syndrome-related coronavirus in 2012, and SARS-CoV-2 in 2019 led to influenza-like symptoms
in humans with severe fatal outcomes [1]. Reportedly originating from bats, the coronaviruses transmitted to
intermediate animal hosts [2]. With repeated replication, new variants emerged that were capable of
transmission to humans [3]. Transmission of coronavirus disease 2019 (COVID-19), the disease caused by
SARS-CoV-2, predominantly occurred in a nosocomial manner by droplet infection or close personal
contact. Initial clinical presentation was fever and dry cough that could progress to unilateral/bilateral
pneumonia, severe acute respiratory distress syndrome (ARDS), acute cardiac injury, renal failure, multiple
organ failure, and death [4]. Reverse transcriptase-polymerase chain reaction confirmed the diagnosis,
followed by high-resonance computed tomography (CT) of the chest. Various hematocytometric
investigations can reveal high neutrophils, low lymphocyte levels, and high platelet levels in SARS-CoV-2
infections. Cao et al. noted low serum lymphocyte levels in COVID-19 cases [5]. Low lymphocyte-to-C-
reactive protein ratio, low platelet-to-lymphocyte ratio, and thrombocytopenia have been observed in
critical SARS-CoV-2 infections [6,7]. Patients with severe COVID-19 cases had a higher neutrophil-
lymphocyte ratio (NLR) ratio than the milder cases, suggesting that NLR might be a prognostic marker for
assessing the disease severity [8]. Thus, severe cases could be identified at the time of hospital admission
and triaged for proper treatment planning and reduction in mortality.

Studies report cytokine storm and immune dysfunction in COVID-19 cases, with lower lymphocyte and
helper T cell counts [9]. There is a slow rise in lymphocytes during recovery [10]. Thus, lymphocytes have
limited use in evaluating COVID-19 severity. However, NLR consistently rises early in the disease course,
making it a valuable metric. Various preliminary studies have investigated the role of NLR in assessing the
severity of other diseases such as asthma [11,12]. This review highlights the potential role of NLR
hematological assay in SARS-CoV-2 infections to determine COVID-19 severity and the mechanism of
neutrophilic-induced host tissue damage [12].

Review
Neutrophils in health and disease
Earlier it was thought that neutrophils are a homogenous population with a short life cycle. Lately,
heterogeneous populations of neutrophils have been described in infections, autoimmune diseases, and
cancers [13]. Pro-neutrophils differentiate into lineage-committed precursors, immature and mature
neutrophils. Three distinct subsets of neutrophils have been identified (i.e., homeostatic, aged, and
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interferon-stimulated gene-related neutrophils) [14,15]. With the expression of C-X-C motif chemokine
receptor 2 (CXCR2), mature neutrophils migrate from the bone marrow into blood vessels [16]. Peak
neutrophil sequestration occurs at night following a circadian rhythm. With the upregulation of C-X-C motif
chemokine receptor 4 (CXCR4) chemokine expression, aged neutrophils migrate back to the spleen, bone
marrow, or liver, where they are phagocytosed [17].

Being a part of innate immunity, neutrophils function as the first line of defense. Abnormalities in immune
regulation can lead to extensive host tissue damage by these granulocytes. They phagocytose bacteria and
kill them by fusing with cytoplasmic granules (i.e., oxidative burst). The cytoplasmic granules contain
proteases, defensins, antimicrobial peptides, and reactive oxygen species. The chemokine expression of C-X-
C motif chemokine ligand (CXCL) 1, 2, and 8 guides neutrophils' migration and activation. Other
inflammatory components such as complement 5a and activated platelets cause the localization of
neutrophils and the formation of neutrophil extracellular traps (NETs) [17]. NETs are web-like structures of
deoxyribonucleic acid (DNA) and proteins expelled from the neutrophil that ensnare pathogens. The
neutrophil platelet aggregation leads to a cascade of events, from the formation of fibrin mesh to trapping
the pathogens and NET-induced killing in associated areas [18].

Neutrophils and thrombi formation
Increased vascular permeability leads to proteinaceous exudates in alveolar spaces and pulmonary edema in
severe inflammation. Proteinase 3 disrupts the tight junctions, and neutrophil seepage occurs through
endothelial cells. Mechanisms of NET formation are not fully understood. Some potentially important
enzymes involved in forming these extracellular traps are neutrophil elastase, peptidyl arginine deiminases
(PAD), and gasdermin D [19]. PADs are essential in the formation of NETs as they are expressed in
granulocytes and mediate histone citrullination. Thus, chromatin decondensation takes place and
chromosomal DNA is expulsed with various antimicrobial peptides triggering the NET formation. Excessive
exaggeration of these traps can trigger a cascade of inflammatory events that cause collateral damage to the
host, formation of microthrombi, irreversible lung damage, and cardiac and renal tissues, apart from having
beneficial effects [20]. Lung, heart, and kidney tissue are targeted by SARS-CoV-2 and play an important role
in COVID-19 mortality [21].

NET disrupts the granules, releasing histones (present in NET chromatin) and granule proteins such as
myeloperoxidase, neutrophil elastase, and proteinase, denoting the epithelial lining and causes platelet
aggregation and thrombosis [22]. Elevated levels of extracellular histones have been found in the
extracellular lavage and plasma of ARDS patients. The toxicity of naked histones has been shown in various
studies [23]. Zuo et al. detected elevated NET breakdown products in the serum of severe COVID-19 patients
[24]. Histones also act as ligands for toll-like receptors on platelets and activate them [25]. The interaction of
histones and platelet phospholipids activates the coagulation pathway [26].

NET has been associated with thrombi formation in the arterial-venous system with potentially fatal
outcomes. Thus, when NETs circulate at high levels, a significant source of enzymatic activities can
exaggerate the small-vessel occlusion. The activation of platelets can lead to enhanced NET formation by
neutrophils in a vicious cycle during the patient's clinical deterioration leading to ARDS. Also, neutrophils
can phagocytose antithrombin III and tissue factor pathway inhibitors [27]. Animal studies demonstrated
that DNAase I dissolves the NET and reduces the thrombosis, improving the perfusion of the cardiac and
renal vasculature. Therefore, NET can be a potential target in COVID-19 therapeutics (Figure 1) [28,29].
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FIGURE 1: NET and COVID -19 disease
Image reproduced from: Java A, Apicelli AJ, Liszewski MK, Coler-Reilly A, Atkinson JP, Kim AH, Kulkarni HS. The
complement system in COVID-19: friend and foe? JCI Insight. 2020 Aug 6;5(15):e140711. doi:
10.1172/jci.insight.140711.

Neutrophils and the cytokine storm
The severity of clinical conditions in COVID-19 cases has been repeatedly linked to cytokine storms. There
is an increase in serum levels of interleukin (IL) 1β, IL-2, IL-6, IL-7, IL-8, IL-10, and IL-17 [30]. Also, serum
levels of macrophage inflammatory protein 1α, tumor necrosis factor-α, interferon (IFN) γ, IFN-γ-inducible
protein 10, and granulocyte colony-stimulating factor and monocyte chemoattractant protein 1 (MCP1) are
elevated [31].

The neutrophilic NET formation, in turn, induces macrophages to increase the expression of IL-1β [31,32].
Thus, uncontrolled inflammatory reactions are achieved by continuous mutual induction of macrophages
and neutrophils. Lachowicz-Scroggins et al. established an association between neutrophils and IL-1β in
severe asthma patients, in whom COVID-19 can lead to progressive worsening of respiration
decompensation and abnormal immune responses [33].

IL-8 can also induce neutrophils to release IL-6 receptor (R) α. Another potential target in COVID-19
therapeutics can be IL-6 induced by IL-1β (Figure 2) [34]. Calabrese and Rose-John demonstrated classic and
trans-signaling mechanisms for IL-6. IL-6 interacts with IL-6Rα, and gp130 (a cytokine receptor) showed
improved lung function in asthma patients with decreased plasma levels of IL-6Rα [35].
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FIGURE 2: Netrophils and cytokine storm
Image reproduced from: Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, Rajagopal S, Pai AR,
Kutty S. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic
Approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020 Jul 10;11:1648. doi:
10.3389/fimmu.2020.01648.

Lymphopenia in SARS-CoV-2
The progression of the course of the disease leads to lymphopenia. The SARS-CoV-2 virus targets T
lymphocytes, which is significant for a patient with critical conditions. CD8+ subsets of T cells show a
marked decrease in the sera of patients admitted to the intensive care unit (ICU). Several studies have
reported a close association between cytokine storm and reduction in levels of T cells [36,37]. Higher serum
IL-6 levels have been associated with lower T lymphocytes and disease severity. Pathogenesis of
lymphopenia in COVID-19 can be attributed to the inflammatory cytokine storm. A correlation has been
observed between serum level of pro-inflammatory cytokines such as TNF-α and IL-6 and lymphopenia.
Autopsy studies have noted severe lymphocyte destruction correlating with increased serum levels of IL-6 as
well as Fas-FasL interactions. Studies reported impaired cytotoxic activity of natural killer (NK) cells and T
cells significantly correlated with serum IL-6 levels [36]. Tocilizumab (an IL-6 receptor antagonist) showed
promising results with significantly increased circulating lymphocytes [37]. Another mechanism can be T
cell exhaustion in SARS-COV infections. Programmed cell death protein 1, T cell immunoglobulin, and
mucin domain 3 are the markers of T cell exhaustion. These markers' increased cell surface expression was
observed in CD+4 and CD+8 T cells in SARS-CoV-2 infections. Another suggested mechanism could be
interference with T cell expansion. Decreased expression of CD107 and IFN-γ (T cell activation markers) was
correlated to the severity of the disease, independently to several regulatory T cells. Downregulation of
genes (MAP22K7, SOS1) associated with activation of T cell and function has been suggested in some
studies. After recovery, gene expression returned to normal levels [38].

NLR as a prognostic tool
An immediate assessment of high-risk patients is needed after diagnosing SARS-CoV-2 infection. SARS-
CoV-2 leads to an exaggerated immune response and significant damage to the host tissue by a cytokine
storm. The rise in serum IL-1B, IFN-γ, IP10, and MCP1 has been reported. The decrease in CD+4 cells and
CD+8 cells, and increased proinflammatory cytokines lead to even more significant lymphopenia. This
correlates with severe clinical manifestation, immunosuppression, and NLR increase. Earlier studies have
used NLR as a prognostic marker in diseases such as solid tumors, and lung, cardiovascular, and kidney
diseases. Therefore, NLR can be used effectively as a simple, cost-effective systemic inflammatory marker in
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laboratory investigations [39].

Ma et al. suggested that NLR can significantly differentiate severe disease from mild disease [40]. Wang et al.
assessed the accuracy and sensitivity of NLR in detecting the severe cases at the time of hospital admission
in a meta-analysis. They included 5,570 COVID-19 cases, including 1,607 severe cases. The sensitivity and
specificity of NLR were 0.82 and 0.77, respectively. They concluded that NLR could accurately distinguish
severe cases of COVID-19 from less severe cases [41]. NLR is a simple, cost-effective hematological tool. In
another meta-analysis, NLR was reported to predict severe SARS-CoV-2 infections with accuracy [42].
Heterogeneity in the studies should be included to eliminate geographical and ethnic bias. Also, in most
studies, the median patient age was 60 to 70 years. With age, the thymus function declines to approximately
one-tenth of a younger adult, with progressive decline in the humoral and cellular immunity. Older patients
are at a higher risk of severe infections and mortality than younger patients [43]. Singh et al. analyzed 201
laboratory-confirmed cases of SARS-CoV-2 and divided them into severe and non-severe groups based on
clinical manifestation, shortness of breath, and oxygen saturation <93% with a ratio of arterial oxygen
partial pressure to fractional inspired oxygen of ≤300 mmHg. NLR on day 1 and day 3 was 7.36 and 7.73,
respectively, compared to NLR of 10.8 and 9.11 in the severe group. The overall sensitivity and specificity of
NLR on day 1 were 60% and 55%, respectively. The disease progression and mortality rate was 4.4 times
higher in the severe group than in the control group. NLR is a time-sensitive variable, and values are
dynamic [44]. This supports another study that reported NLR was an independent inflammatory risk factor
for mortality during hospitalization. NLR can accurately help identify severe cases early and allow timely
intervention to reduce fatality. The results also reinforce the association between NLR and etiopathogenesis
of SARS-CoV-2 [45]. Another study associated age and NLR to predict poor clinical outcomes and observed
that patients ( aged 50 or older) with NLR > 3.13 developed severe symptoms, while patients( aged 50 or
older) with NLR < 3 and young patients showed better clinical outcomes than those admitted to the ICU. In a
retrospective study of 74 laboratory-confirmed SARS-CoV-2 infections in Italy, improved clinical outcomes
were predicted in the younger age group with NLR < 3. Severe clinical outcomes were observed in older
patients with NLR > 4 [46]. Metacentric studies with large sample sizes should be conducted to eliminate
potential biases.

Neutrophilia and lymphocytopenia are hallmarks of acute infection. Fox et al. noted neutrophil infiltration
in the alveolar space, pulmonary capillaries, inflammation of mucosa with abundant neutrophils, and fibrin
deposition in capillaries [47]. Barnes et al. proposed NETs as a potential mechanism for neutrophil-mediated
damage [48]. Also, mechanical ventilation is required in severe COVID-19 with potential complications, as
mechanical ventilation can itself cause alveolar damage [49]. Yildiz et al. noted NETs in mice models
requiring mechanical ventilation [50].

Treatment strategies
Currently, the epidemic requires various combined drug therapeutics for severe COVID-19 cases and
reduction of inflammation in every aspect of the inflammatory cycle and host response. Drugs targeting the
neutrophilic egress and localization may reduce the clinical complications of alveolar damage and ARDS in
COVID-19 cases. Earlier studies evaluated the role of Vitamin C infusion with limited benefits in the influx
of granulocytes, activation, and NET formation. Clinical trials observed in vitro suppression of NET release
by small peptides such as P140 [51]. Regulation of chaperone-mediated autophagy and macroautophagy by
P140 has decreased inflammation in autoimmune disorders [52].

Important chemokine signaling of neutrophils’ migration and the release of NET in the CXCL8/CXCR2 axis
are under exploration [53]. Therefore, the CXCL8/CXCR2 axis antagonists have been evaluated in clinical
trials of various respiratory distress conditions in influenza, eczema, and chronic obstructive pulmonary
disease (COPD). Preclinical and clinical studies have tested the safety of AZD 5069 (a selective CXCR2
antagonist) [54] and SCH527123 [55] in COPD and asthma. The drug effectively blocked neutrophil egress
and subsequent inflammatory activities in COPD patients. Other similar studies noted reduced neutrophilia
with the use of danirixin (a CXCR2 inhibitor) [56,57] and navarixin (MK-7123/SCH 527123) [58] in phase 2
clinical trials in influenza and COPD cases. MS-986253 (a CXCL8 blocking antibody) is under investigation in
COVID-19 patients [59].

Clinical trials have evaluated the potential role of sivelestat sodium (neutrophil elastase inhibitors) in
patients with COPD and acute lung injury [60]. Sivelestat has been used with oseltamivir effectively in swine
flu patients [61]. Elastase, a protease, degrades the proteins present in the alveolar basement membrane
(e.g., elastin, collagen, and fibronectin) and aggravates alveolitis [62]. Additional lung tissue damage occurs
by proteolytic priming of the viral glycoproteins, enabling membrane fusion in the host. Apart from the
proteolytic effect, elastase has an important prothrombotic and proinflammatory role in the pulmonary
vasculature [63].

Animal models of myeloproliferative tumors have evaluated the efficacy of peptidyl arginine deiminase IV
(PAD4) inhibitors in reducing NET pathologies [64]. Some PAD4 inhibitors are Cl-amidine, YW-56, and
GSK484. PAD4 converts arginine to citrulline in histones and promotes chromatin unwinding and NET
release [65].
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Recombinant DNase 1 can dissolve the NETs and provide some therapeutic benefits in combined therapeutic
regimes [66]. The degradation products thus generated may also have proinflammatory activity [67], possibly
mitigating inflammation spread and more significant tissue damage. Thus, further studies are required to
evaluate the potential role of DNAse in severe SARS-CoV-2 infections.

Metoprolol is a β1 blocker shown to suppress NET-associated damage in the gall bladder. It also inhibits
neutrophilic migration, reduces platelet aggregation and inflammation, and reduces infarct size in
myocardial infarction cases [68]. Blocking the IL-1b/IL-1R interaction using anakinra (an IL-1R inhibitor)
has shown promising results in initial clinical trials [69], reducing COVID-19 severity.

The C5a-C5aR1 interaction is another potential target [70]. The C5a molecule binds to the C5aR1 receptor
and regulates neutrophilic activation and recruitment. The serum levels of these complement receptors are
directly proportional to COVID-19 severity [71]. Vlaar et al. noted that the administration of IFX-1
(vilobelimab), a monoclonal antibody against C5a, and Solris (eculizumab), a C5 blocking antibody, shows
adequate efficacy in the management of moderate and severe COVID-19 cases [72].

Corticosteroids have an anti-inflammatory effect and can improve lung tissue injury and ARDS. Systemic
steroids administered to manage SARS-CoV-2 infections reduced neutrophil burst and recruitment at
inflamed sites [73]. The immune regulation by corticosteroids is advisable but controversial since
corticosteroid treatment could delay the clearance of SARS-CoV-2 in respiratory secretion or serum due to
its immunosuppressive action [74]. Glucocorticoids have been effectively used in the treatment of SARS. In
patients with COVID-19 and ARDS, methylprednisolone minimizes the risk of mortality. Li and Ma
investigated the role of methylprednisolone in ARDS cases and found an increased risk of death [75].

Conclusions
NLR is an inflammatory marker and a proven diagnostic predictor of outcome and case severity in non-mild
SARS-CoV-2 infections. With its wide availability, NLR assays can quickly assess a patient's condition and
help the clinician alter treatments accordingly. Early stratification helps screen critically ill patients, as the
higher the NLR value, the greater the need for support and care. Future studies should be conducted in
different geographical settings to correlate outcomes with NLR and age, gender, hemodynamic variable, and
comorbid conditions.
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