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Abstract: Gastrointestinal disease is the most common health concern that occurs due to environmen-
tal, infectious, immunological, psychological, and genetic stress. Among them, the most frequent
diseases are gastric ulcer (GU) and ulcerative colitis (UC). DSS-induced UC and ethanol-stimulated
GU models resemble the pathophysiology of human gastrointestinal disease. The current study was
designed to explore the anti-oxidation, anti-inflammation, anti-cell death properties of terazosin, an
α-adrenergic receptor antagonist, in vivo and in vitro. Our results indicate that terazosin dramatically
activates Pgk1, and upregulates glycose metabolism, evidenced by the enhanced ATP production
and higher LDH enzymatic activity. Also, terazosin significantly enhances p-AKT expression and
inhibits NF-κB p65 activation through abrogating the phosphorylation of IKBα, as well as lowers
Caspase-1 and GSDMD expression. The findings in this study demonstrate that terazosin exhibits
anti-inflammatory effects by downregulating NF-κB-GSDMD signal pathway, along with enhancing
glycolysis for gastrointestinal disease treatment. Meanwhile, we also find terazosin ameliorates
ethanol-induced gastric mucosal damage in mice. Collectively, as a clinical drug, terazosin should be
translated into therapeutics for gastrointestinal disease soon.
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1. Introduction

Gastrointestinal diseases, the most common trouble in tropical countries, refer to
diseases disturbing the gastrointestinal tract [1,2]. Common symptoms include vomiting
and nausea, abdominal discomfort, diarrhea, acid reflux, unintentional weight loss, fatigue,
swallowing difficulty, fever, black and bloody stool, gastrointestinal bleeding, and intestinal
obstruction [3]. Gastrointestinal diseases are classified into two types as functional and
structural. Some typical examples include dysphagia, gastric ulcer, peptic ulcer, gastropare-
sis, delayed gastric emptying, irritable bowel syndrome (IBS), and inflammatory bowel
disease (IBD).

Ulcerative Colitis (UC), one of the inflammatory bowel disease (IBD), is an immunity-
mediated chronic intestinal disorder and sometimes leads to life-threatening complica-
tions [4,5]. Until now, the etiology of UC has not been completely clarified. The occurrence
of UC is thought to be complex and multifactorial, maybe due to environmental, infectious,
immunological, psychological, and genetic factors [6]. Under unfavorable conditions these
factors induce the release of pro-inflammatory mediators, such as reactive oxygen species,
cytokines, and neutrophil infiltration, which are considered as markers in the pathogenesis
of colitis [7,8]. The common clinical manifestations of ulcerative colitis mainly include
abdominal pain, diarrhea, blood in the stool, fever, reduced appetite, and weight loss [9].
The clinical epidemiology investigation demonstrates that UC affects approximately 50%
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population in the United States, with an annual incidence of two to seven per 100,000 per-
sons [9] and the overall incidence of the disease has remained constant over the past five
decades [10]. The current clinical drugs, including 5-aminosalicylic acid, corticosteroids,
immunosuppressant, biological agents, and probiotics, alleviate the symptoms, whilst the
efficacy of these treatments are limited and compromised by side effects (nausea, vomiting,
myelosuppression, infection, and carcinogenesis) [11,12], so the research and development
of new agents remains an urgent requirement.

Recent studies strongly suggest that there is a close link between intestinal disease
and metabolic genes or metabolites. Pyruvate, an intermediate product from carbohydrate
metabolism, showed an anti-inflammatory effect in colitis [13]. Furthermore, short-chain
fatty acids and amino acids also modulate inflammation at colonic level [14,15]. In addition,
pyruvate kinase (PKM2, rate-limiting enzyme controlling the final step of glycolysis)
combined with NADPH oxidases Duox and Nox (two ROS-producing enzymes) also
hold a strong link with intestinal function and UC [16–18]. Accumulating evidences have
confirmed that cellular metabolism is critical for renovating intestinal barrier function and
IBD. For example, transketolase (TKT), a key player in the glycolysis and non-oxidative PPP
(Pentose Phosphate Pathway), maintains intestinal ATP production and inhibits apoptosis-
induced colitis in mice [18]. Moreover, reducing the glycolysis via 2-DG (2-deoxy-D-
glycose, glucose inhibitor) treatment markedly blocked pro-inflammatory macrophages
differentiation [19]. Beyond that, tiliroside, a flavonoid chemical compound, attenuates UC
via HIF-1α-mediated reprogramming of glycolysis pathway [12]. Thus, focusing on the
regulation of glucose metabolism in UC may provide new insights into clinical therapies.

Phosphoglycerate kinase 1 (Pgk1) is a key glycolytic enzyme in the creation of adeno-
sine triphosphate [20]. It catalyzes the reversible phosphotransferase reaction from 1,3-
bisphosphoglycerate (1,3-BPG) to MgADP, to generate 3-phosphoglycerate (3-PG) and
the first ATP in the glycolysis pathway [21]. Hence, it plays a vital role in cell energy
metabolism. Pgk1 deficiency has been characterized by chronic nonspherocytic hemolytic
anemia, neurological dysfunctions, and myopathy [22]. It has been reported that terazosin
(TZ) binds and activates Pgk1, thereby increasing ATP levels and curbing apoptosis [23].
The disrupted energy metabolism in IBD, combined with the fact that terazosin works as
an activator of Pgk1, motivated us to propose that terazosin may ameliorate the pathophys-
iology of UC via upregulating glycolysis.

In the present study, we assessed the protective effect of terazosin targeting Pgk1
against gastrointestinal disease and evaluated the underlying mechanism in vivo and
in vitro. Our results indicate for the first time that terazosin significantly activates Pgk1-
mediated protective defenses against gastrointestinal disease in an AKT- or Cas1/GSDMD-
related pyroptosis manner. The study may provide a new protective agent by enhancing
glycolysis for gastrointestinal disease and highlight Pgk1 as an attractive candidate target
to combat gastrointestinal disease.

2. Results
2.1. Effect of Terazosin on Cell Viability under H2O2- and 2-DG-Induced Stresses

The effect of terazosin on cell viability in Caco-2 cells was examined via MTT as-
say, and the results showed that treatment with terazosin (100 and 10 nM) for 24 h did
not show any cytotoxicity (Figure 1A). Further results demonstrated that the cells pre-
treated with different concentrations of terazosin along with H2O2 (500 µmol/L) challenge
exhibited better survival (Figure 1A). Hence, terazosin at 10 or 100 nM was chosen for fol-
lowing study. Above-mentioned results indicated that terazosin protects cells by resisting
oxidative stress.
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Figure 1. Effect of terazosin on H2O2- and 2-DG-induced Caco-2 cells. Cell viability was examined 
by MTT assay. (A) In-vitro effect of terazosin treatment on cell viability under H2O2 stress. (B) Effect 
of terazosin on cell viability under 2-DG stress. All data are represented as Mean ± SEM, ## p < 0.01 
and ### p < 0.001 when compared to the control group, ** p < 0.01 when compared to H2O2 or 2-DG 
group. 

Since terazosin increases glycolysis by activating Pgk1 [23], we asked whether en-
hanced glycolysis also contributes to boosted stress resistance of terazosin. Herein we 
tried 2-DG, an allosteric inhibitor of hexokinase, to deprive glucose metabolism in cells, 
and found treatment with terazosin (100 and 10 nM) obviously enhanced cell viability (p 
< 0.01, Figure 1B). The findings support that terazosin protects cells by activating glycoly-
sis. 
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Pgk1 is a key glycolytic enzyme that catalyzes the conversion of 1,3-biphosphoglycer-

ate to 3-phosphoglycerate to generate ATP in the aerobic glycolysis pathway [24]. In order 
to examine if terazosin influences glucose metabolism, the content of Pgk1 was deter-
mined under the oxidative and 2-DG pressures through Western blot analysis, as well as 
quantification of the levels of ATP and LDH in the cells with corresponding kits. As shown 
in Figure 2, we found terazosin-treated cells dramatically enhance the Pgk1 expression 
under oxidation or 2-DG pressure (p < 0.01, Figure 2). Moreover, the levels of ATP (Figure 
3A) and LDH (Figure 3B) in the H2O2-induced Caco-2 cells were determined to confirm 
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decreased ATP content (19.2475 ± 6.01 μmol/g protein, p < 0.05) and LDH enzyme activity 
(158.1395 ± 40.90 U/L, p < 0.01) in comparison with control, while terazosin-treatment re-
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p < 0.01) in the cells. All above-mentioned results further demonstrated that terazosin ac-
tivates glucose metabolism pathway and produces energy necessary for cells survival. 

Figure 1. Effect of terazosin on H2O2- and 2-DG-induced Caco-2 cells. Cell viability was examined
by MTT assay. (A) In-vitro effect of terazosin treatment on cell viability under H2O2 stress. (B) Effect
of terazosin on cell viability under 2-DG stress. All data are represented as Mean ± SEM, ## p < 0.01
and ### p < 0.001 when compared to the control group, ** p < 0.01 when compared to H2O2 or 2-DG
group.

Since terazosin increases glycolysis by activating Pgk1 [23], we asked whether en-
hanced glycolysis also contributes to boosted stress resistance of terazosin. Herein we tried
2-DG, an allosteric inhibitor of hexokinase, to deprive glucose metabolism in cells, and
found treatment with terazosin (100 and 10 nM) obviously enhanced cell viability (p < 0.01,
Figure 1B). The findings support that terazosin protects cells by activating glycolysis.

2.2. Terazosin Activates Glucose Metabolism

Pgk1 is a key glycolytic enzyme that catalyzes the conversion of 1,3-biphosphoglycerate
to 3-phosphoglycerate to generate ATP in the aerobic glycolysis pathway [24]. In order
to examine if terazosin influences glucose metabolism, the content of Pgk1 was deter-
mined under the oxidative and 2-DG pressures through Western blot analysis, as well
as quantification of the levels of ATP and LDH in the cells with corresponding kits. As
shown in Figure 2, we found terazosin-treated cells dramatically enhance the Pgk1 ex-
pression under oxidation or 2-DG pressure (p < 0.01, Figure 2). Moreover, the levels
of ATP (Figure 3A) and LDH (Figure 3B) in the H2O2-induced Caco-2 cells were deter-
mined to confirm whether terazosin activates glycolysis under oxidative stress. H2O2
stimulation markedly decreased ATP content (19.2475 ± 6.01 µmol/g protein, p < 0.05)
and LDH enzyme activity (158.1395 ± 40.90 U/L, p < 0.01) in comparison with control,
while terazosin-treatment restored ATP level (42.8696 ± 6.97 µmol/g protein) and LDH
activity (286.5116 ± 17.00 U/L, p < 0.01) in the cells. All above-mentioned results further
demonstrated that terazosin activates glucose metabolism pathway and produces energy
necessary for cells survival.

2.3. Overexpression of Pgk1 in Caco-2 Cells

Next, cells were transfected with pcDNA3.1-Pgk1 or pcDNA3.1-EGFP, and the Pgk1
expression level was determined by Western blot. Transfection with pcDNA3.1-Pgk1
increased the expression of Pgk1 by nearly 264.15% relative to that of wild-type cells
(p < 0.001, Figure 3C). In addition, overexpression of Pgk1 significantly enhanced cell
viability under oxidative stress (p < 0.01, Figure 3D). The results indicated that Pgk1
overexpression directly prevented cell death due to oxidative stress.
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Figure 3. Effect of terazosin on glucose metabolism pathway. (A) The effect of terazosin (10 nM) on
the intracellular ATP level in the cell lysate of Caco-2 cells; n = 8 trials. (B) The effect of terazosin
(10 nM) on the LDH level in the cell medium of Caco-2 cells; n = 8 trials. (C) Relative expression of
Pgk1 in the transfected Caco-2 cells by Western blot analysis; β-actin was used as loading control;
n ≥ 3 trials. (D) Effect of Pgk1 expression on cell viability in the transfected Caco-2 cells by MTT
assay. All data are represented as Mean ± SEM, # p < 0.05, ## p < 0.01 and ### p < 0.001 as compared
to Control group, * p < 0.05, ** p < 0.01 and *** p < 0.01 as compared to H2O2 group.
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2.4. Terazosin Blocks H2O2-Induced Cell Pyroptosis

Given that UC is a chronic and idiopathic inflammatory disease, it causes immune
dysregulation and release of pro-inflammatory cytokines. Previous literature showed that
pyroptosis and inflammasomes are involved in various types of inflammatory diseases,
including colitis [25]. Hence, we focused on whether terazosin blocks cell pyroptosis
because of H2O2-stimulated injury. The results were shown in the Figure 4, H2O2 instigated
a significant (p < 0.05) increase in the expression of p-IKBα, NF-κB p65, Caspase-1 and
GSDMD, while the p-AKT expression decreased markedly in the cells compared to control.
The terazosin treatment reversed the changing trend of protein levels (p < 0.05), supporting
the conclusion that terazosin inhibits NF-κB-GSDMD axis-mediated pyroptosis.
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Figure 4. Terazosin inhibits cell apoptosis and pyroptosis in the Caco-2 cells. Terazosin influence on
the levels of proteins p-AKT (A), NF-κB p65 (B), p-IKBα (C), caspase-1 (D), and GSDMD (E) in Caco-2
cells were verified by Western blot analysis. All data are represented as Mean ± SEM, # p < 0.05 and
## p < 0.01 as compared to Control group, * p < 0.05 and ** p < 0.01 as compared to H2O2 group.

2.5. Terazosin Treatment Attenuates Development of Colitis in Mice

To further explore the influence of terazosin on UC, the UC mouse model was built
by feeding mice DSS. Clinical symptoms of UC including body weight loss, changed stool
consistency, and the blood stools were determined, along with the evaluation of the disease
activity index (DAI, UC disease severity). The results were shown in the Figure 5, mice
administrated with 4% DSS exhibited a significant body weight loss (p < 0.001, Figure 5A),
while the terazosin-treatment (4 mg/kg/day) group and SASP-treatment group (positive
control, 80 mg/kg/day) reversed the loss on day 8 of the experiment (p < 0.05, Figure 5A).
Moreover, we found terazosin as well as SASP markedly declined cumulative DAI scores
by restoring normal stool consistency and avoiding rectal bleeding upon DSS challenge
(p < 0.01, Figure 5B). Beyond that, the colon length is taken as a morphological parameter
for the degree of inflammation of DSS-induced colitis [26]. The colon length in DSS-
stimulated group was much (4.03 ± 0.18 cm, p < 0.001) shorter than that in the control
group (7.13 ± 0.29 cm, Figure 5D). The mice with terazosin or SASP treatment displayed a
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notable (p < 0.01) increase in colon length (5.46 ± 0.23 cm and 5.33 ± 0.22 cm, respectively).
Taken together, these results demonstrated that terazosin attenuates the signs of DSS-
stimulated colitis in mice.
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Figure 5. Terazosin (TZ) alleviated the clinical symptoms and representative photographs showing
colon tissues in DSS-induced ulcerative colitis mice. (A) Body weight changes; (B) Disease activity
index of mice treated with DSS and terazosin; (C,D) Changes of colon tissues in individual study
groups and in colon length. All data are represented as Mean ± SEM, ### p < 0.001 as compared to
the control group, ** p < 0.01 as compared to DSS group. SASP (salicylazosulfapyridine) was taken as
positive control.

2.6. Terazosin Suppresses Pro-Inflammatory Cytokines in DSS-Induced Colitis in Mice

To evaluate the impact of terazosin on pro-inflammatory response in the colon tissues
of DSS-induced mice, the amounts of inflammatory cytokines were quantified. The levels
of major inflammatory cytokines including IL-1β, IL-18, and TNF-α were higher in the DSS
group (259.34 ± 20.42 pg/mg tissue, 132.83 ± 16.00 pg/mg tissue, and 644.93 ± 66.38 pg/mL
10% tissue homogenate, respectively) than that in the control group (70.94 ± 14.91 pg/mg
tissue, 66.16 ± 14.10 pg/mg tissue, and 293.72 ± 51.03 pg/mL 10% tissue homogenate).
Terazosin markedly lowered the concentrations of IL-1β (62.83 ± 14.57 pg/mg tissue,
p < 0.001, Figure 6A), IL-18 (65.13 ± 12.11 pg/mg tissue, p < 0.01, Figure 6B), and TNF-
α (220.11 ± 35.48 pg/mL 10% tissue homogenate, p < 0.001, Figure 6C) under the DSS stress.
Thus, terazosin exerts an anti-colitis effects by inhibiting the release of pro-inflammatory
cytokines.
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2.7. Effects of Terazosin on SOD, MDA, Lactic Acid Amounts, and MPO Activity

As the main oxidative stress indexes, SOD and MDA play a vital role in the patho-
genesis of UC. Herein, the levels of SOD and MDA in both serum and colon tissues of
mice were evaluated with the related biochemical assay kits. The results were listed in
the Table 1. Accordingly, DSS induced a vital reduction of SOD while increase of MDA
content. For both serum and colon tissues, terazosin powerfully recovered the level of
SOD with DSS treatment, further indicating a good antioxidant activity of terazosin against
UC injury. In addition, we also determined the MPO activity, a reporter of neutrophil
infiltration. The levels of MPO markedly increased from 58.45 ± 8.51 to 99.75 ± 11.74 U/g
tissue or 56.89 ± 8.84 to 134.29 ± 13.24 U/L serum post DSS infusion. As expected, tera-
zosin reduced the activity of MPO (34.87 ± 13.42 U/g tissue and 76.11 ± 1.02 U/L serum,
respectively) by about two-fold relative to that of the DSS group. It was reported that
increased lactic acid level may modulate the diarrhea of UC [27]. The lactic acid level was
dramatically enhanced in the DSS group compared to that of the control, while the terazosin
significantly restored the level (p < 0.001, Table 1). Collectively, these results suggested that
terazosin ameliorates the state of oxidative stress, enhances the defense ability of intestinal
mucosa, and plays a protective and therapeutic role in UC mucosa.

2.8. Effect of Terazosin on Gastric Ulcer in Mice

Given that gastric ulcer and ulcerative colitis have similar pathological mechanism,
and GU is also a kind of gastrointestinal disease [1], we wondered if terazosin also benefits
GU in the same way. The ethanol-induced gastric ulcer model in mice was successfully
built to examine the potential role of terazosin in the disease. The results were shown in
Figure 7A, the ethanol alone group exerted severe gastric lesions, along with extensive visi-
ble hemorrhagic erosion resulting in high ulcer areas and high ulcer index when compared
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to the control. Pretreatment with 1 mg/kg/day terazosin or 80 mg/kg/day cimetidine
dramatically improved gastric mucosa damage degree and decreased the ulcer areas and
ulcer index compared to the control (p < 0.001, Figure 7B,C). Moreover, the ulcer inhibition
rate of terazosin (81.57%) was higher than that of cimetidine (69.91%) (Figure 7D). This
finding demonstrated that terazosin was effective in GU mice (1 mg/kg/day), and a lower
dose was enough for the treatment of GU relative to the treatment of UC (4 mg/kg/day).

Table 1. Effect of the oral treatment with terazosin on the lactic acid (LA), superoxide dismutase (SOD)
and malondialdehyde (MDA) levels, as well as myeloperoxidase (MPO) activity of DSS-induced
colitis in mice.

Colon Tissue Serum

Groups Dose Lactic Acid
(mmol/gprot) MPO(U/g) SOD

(U/mgprot)
MDA

(nmol/mgprot) MPO(U/L) SOD(U/mL) MDA
(nmol/mL)

Control - 0.04 ± 0.004 58.45 ± 8.51 83.57 ± 2.38 58.45 ± 8.51 56.89 ± 8.84 83.57 ± 2.38 3.07 ± 0.68
Control + TZ 4 mg/kg/day 0.04 ± 0.004 52.72 ± 10.42 81.95 ± 3.92 52.72 ± 10.42 48.45 ± 6.57 81.95 ± 3.92 0.52 ± 0.33

DSS - 0.13 ± 0.006
###

99.75 ± 11.74
###

69.44 ± 5.24
###

99.75 ± 11.74
##

134.29 ±
13.24 ### 69.44±5.24 # 39.26 ± 4.47

###

DSS + SASP 80
mg/kg/day

0.09 ± 0.009
***

18.26 ± 4.45
***

83.29 ± 3.52
***

18.26 ± 4.46
***

61.06 ± 6.37
*** 83.29 ± 3.52 * 6.86 ± 1.09

***
DSS + TZ 4 mg/kg/day 0.08 ± 0.006

***
34.87 ± 13.42

***
80.67 ± 3.81

***
34.88 ± 13.42

***
76.11 ± 1.02

** 80.67 ± 3.81 2.76 ± 1.34
***

The results are repressed as mean ± SEM (n ≥ 3). Statistical analyzes were performed using one-way analysis of
variance (ANOVA) followed by an LSD-t test. # p < 0.05, ## p < 0.01, ### p < 0.001 when compared with the Control
group; * p < 0.05, ** p < 0.01, *** p < 0.001 when compared with the DSS group; SASP: salicylazosulfapyridine.
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3. Discussion

This paper mainly introduced the effects of terazosin in acute gastrointestinal diseases,
including Gastric ulcer (GU) and Ulcerative colitis (UC). Our results demonstrated that ter-
azosin protects gastrointestinal disease through activating Pgk1-mediated defense system.
The study may provide a new protective agent by increasing glycolysis for gastrointesti-
nal disease and address Pgk1 as an attractive candidate target to combat gastrointestinal
disease.

Gastrointestinal disease includes a group of diseases, with the most common ones
being GU and UC. The primary organs affected in patients range from the esophagus,
stomach, small intestine, large intestine, colon, and rectum, and the accessory organs of
digestion, the liver, gallbladder, and pancreas [1]. Gastric ulcer (GU) is a localized area
of erosion in the stomach lining, which resulted in abdominal pain, possible bleeding,
and other gastrointestinal symptoms [28]. Excessive drinking, irregular eating, long-term
mental tension, and long-term use of non-steroidal anti-inflammatory drugs (NSAIDs, such
as aspirin), glucocorticoids, clopidogrel, and other exogenous factors are related to the
emergence of gastric ulcer, as well as the promotion of gastric mucosal injury [29,30]. The
occurrence of gastric ulcer is mostly due to the destruction of mucosal defense and repairing
functions [31]. Ulcerative colitis (UC) acts as a kind of chronic inflammatory bowel diseases,
the major clinical manifestations include diarrhea, abdominal pain of discomfort, and
stool blood [9]. Currently, conventional medicines of UC are mainly anti-inflammatory
drugs, anti-TNF-α antibody, infliximab, adalimumab, certolizumab, and natalizumabare
therapy, while the treatment of UC exhibits strong side effects past a long-term use of these
agents [32]. In a word, the major problem of the current therapeutic drugs against GU
and UC is the limited efficacy, along with unfavorable adverse events [33,34]. Hence, an
inexpensive, effective, and safe novel cell death inhibitor is on demand to bridge the gap.

Among various chemically induced gastrointestinal disease models, dextran sulfate
sodium (DSS)-induced ulcerative colitis [35,36] and ethanol-stimulated gastric ulcer [37,38]
in mice are widely used as pre-clinical gastrointestinal disease models since they exert
similar manifestations to that of human gastrointestinal diseases. In our work, terazosin
not only reversed clinical symptoms of ulcerative colitis, including weight loss, DAI score
soaring, and colon length shortening (Figure 5), but also significantly ameliorated ulcer
area and index, as well as increased the ulcer inhibition rate of the gastric ulcer model
(Figure 7). Inflammatory response plays a vital role in the pathological process of UC
and GU. Oat β-glucan was shown to prevent DSS-induced colitis by downregulating the
levels of TNF-α, IL-1β, IL-6, and iNOS [39]. Meanwhile, chrysin activated peroxisome
proliferator activated receptor-γ (PPAR-γ) and lowered the expression of pro-inflammatory
marker genes, including TNF-α, IL-6, and CCL3, to fight indomethacin-induced gastric
ulcer [40]. In the present study, we clarified that terazosin improved the health of mice
and blocked inflammation in the colon tissues of DSS-induced UC (Figure 6) and gastric
tissue of ethanol-stimulated GU in mice (Figure S1). Since MPO works as an index of
neutrophil infiltration [41], terazosin treatment minimized infiltration of lymphocytes in
the DSS-induced UC model and ethanol-stimulated GU model (Tables 1 and S1). All results
discussed demonstrated that terazosin successfully ameliorated gastrointestinal disease
inflammation in mice.

Oxidative stress plays an important role in the UC and GU [42,43]. Reactive oxygen
species (ROS) and reactive nitrogen species (RNS) are kept balance under normal conditions.
In the presence of hydrogen peroxide (H2O2), an excessive generation of the reactive species
would trigger an inappropriate mucosal immune response [44]. Previous studies showed
that various oxidation related factors take part in the pathogenesis of gastrointestinal
disease. MDA is the most important products of membrane lipid peroxidation, and its level
can be taken as an indirect index of cumulative lipid peroxidation [45]. It is also reported
that Kangfuxin treatment decreased plasma and gastric MDA levels, while increased SOD
level in ethanol-induced GU mice [43]. Our results indicated that terazosin downregulates
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MDA level and upregulates the level of SOD, exhibiting protective effect against oxidative
stress in UC and GU mice (Tables 1 and S1).

Apart from ROS and oxidative stress, cellular ATP level is also an important determi-
nant for intestinal epithelial apoptosis [18]. Glucose is a major source of ATP and can be
metabolized by both glycolysis and PPP pathway. Among them, glycolysis converts glucose
to pyruvate and lactic acid with a series of enzymes in the cytoplasm [12]. Accordingly, here
in our study, terazosin treatment enhanced the levels of ATP and LDH in the H2O2-induced
Caco-2 cells (Figure 3A,B) and ethanol-stimulated GES-1 cells (Figure S2A,B). Simultane-
ously, the terazosin-treated group could decrease the lactic acid levels in the colon tissue
(Table 1) and gastric tissue (Table S1), further indicating that terazosin protects gastroin-
testinal disease through activating glycolysis. Pgk1 acts as a key glycolytic enzyme in the
creation of adenosine triphosphate [20]. It catalyzes the reversible phosphotransferase reac-
tion from 1,3-bisphosphoglycerate (1,3-BPG) to MgADP, to generate 3-phosphoglycerate
(3-PG) and the first ATP in the glycolysis pathway [21], by doing so it plays a vital role
in cell energy metabolism, that motivated us to suppose Pgk1 centers in the pathogen-
esis of the gastrointestinal disease. To investigate whether targeting Pgk1 display any
effect on gastrointestinal diseases, we hypothesized that gain-function of Pgk1 influences
the pressure resistance of intestinal epithelial cells. In the work, we transfected Caco-2
cells with the plasmid pcDNA3.1-Pgk1, with the pcDNA3.1-EGFP as the control. Upon
H2O2 stimulation, cells overexpressing Pgk1 exhibited dramatic reduction of cell death
(Figure 3D). The data above demonstrate that terazosin targets Pgk1 to activate glycolysis
for treating gastrointestinal diseases.

In order to further explore the detailed mechanism of terazosin regulation on NF-κB-
GSDMD axis-mediated pyroptosis, p-AKT, p-IKBα, NF-κB p65, Caspase-1, and GSDMD
were detected by Western blotting. Pyroptosis, a highly inflammatory form of lytic pro-
grammed cell death, with initiation via activation of caspase family, including caspase-1,
caspase-4, caspase-5, and caspase-11, can be triggered by various diseases, such as ul-
cerative colitis [46]. As a critical nuclear transcription factor, NF-κB not only regulates
pro-inflammatory genes (TNF- α, IL-1β, and IL-6) [47], but also controls the transcription
of gasdermin D (GSDMD), which was identified by 2 independent screening approaches as
a key effector of pyroptosis [48–50]. In most cells, NF-κB is present as a latent, inactive, and
IκB-bound complex in the cytoplasm, and phorylation of IκB (IκBα and p100) is essential for
NF-κB activation [51]. IκBβ is also targeted for phosphorylation on Ser19 and Ser23 through
binding to the IKK complex (the core element of NF-κB cascade) [51]. The activity of NF-κB
is primarily regulated by interaction with inhibitory IKB proteins, and its inactivation can
alleviate the severity of UC [26,52]. Here, we observed that terazosin treatment significantly
increased the phosphorylation of IκBα and subsequent translocation NF-κB p65 into the nu-
cleus (p < 0.05, Figure 4). Meanwhile, we also found terazosin obviously blocked the release
of IL-1β and IL-18, as well as attenuated pyroptosis in DSS-induced UC mice (p < 0.001 and
p < 0.01, Figure 6). Reports indicated that the production of IL-1β and IL-18 depends on the
Caspase-1 activity, our results confirmed terazosin treatment markedly inhibited Caspase-1
and GSDMD expression in H2O2-induced Caco-2 cells (p < 0.05, Figure 4). We also exam-
ined that the enhancement of p-AKT could reduce the expression of pyroptosis-related
protein and alleviate UC injury, just consistent with previous report [53]. The findings
show that terazosin protects UC by suppressing NF-κB-GSDMD axis-mediated pyroptosis
through activating Pgk1, the new signaling pathway was illustrated in Figure 8.
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Figure 8. Schematic presentation illustrating the possible pathways of UC induction and targets of
ulcer protection by terazosin. Terazosin activates Pgk1, followed by stimulation of Akt signaling,
finally downregulates Caspase-1 to block pyroptosis.

Aside from terazosin, we discovered other α-adrenergic blockers including alfuzosine
and prazosin exert similar potency against ulcerative colitis and gastric ulcer in mice. The
results were shown in the Figures S3 and S4, alfuzosine (2 mg/kg/day) and prazosin
(5 mg/kg/day) ameliorated clinical symptoms of ulcerative colitis, including Disease
Activity Index score and colon length shortening, but also dramatically attenuated ulcer
area and index, as well as increased ulcer inhibition rate (77.35 and 77.37%, respectively) of
gastric ulcer model. Meantime, we performed an in vitro assay and found prazosin and
alfuzosine strongly enhanced Pgk1 activity in other work. Combining with the empirical
results, we supposed alfuzosine, prazosin and terazosin target Pgk1 to enhance glycolysis
to block cell death in ulcerative colitis and gastric ulcer.

In summary, this research for the first time demonstrates clearly that terazosin exerts
anti-oxidative, anti-inflammatory and anti-cell death effects on gastrointestinal disease
in vivo and in vitro through blocking the pro-inflammatory cytokines, which are involved
in the NF-κB-GSDMD axis-mediated pyroptosis pathways. Also, we find terazosin targets
Pgk1 to benefit gastrointestinal disease by activating glycolysis, that may revolutionize
the future therapy of the gastrointestinal diseases. Terazosin is a medication used in the
management and treatment of benign prostatic hyperplasia and essential hypertension, an
approved drug in the clinic with well-established pharmacokinetic and safety profiles in
humans. These findings here would accelerate its potential development and repurposing
as a new clinical drug. Combination with other clinical drugs would produce synergetic
effect by targeting multiple targets.

4. Materials and Methods
4.1. Reagents and Chemicals

Terazosin (TZ, purity ≥ 98%) and Dextran Sulfate sodium (DSS, MW~40kDa) were
purchased from Aladdin Biotechnology Co., Ltd.(Shanghai, China); 3-(4,5-Dimethyl-2-
thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and dimethylsulfoxide (DMSO)
were from Solarbio Life Science (Beijing, China); Primary rabbit antibodies against Pgk1,
caspase-1, GSDMD, p-AKT (T450), and β-actin were purchased from BOSTER Biological
Technology Co., Ltd. (Beijing, China); Antibodies against NF-κB p65 (3033) and p-IKBα
(5209) were purchased from Cell Signaling Technology (Beverly, MA, USA).
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4.2. Cell Lines and Cell Culture

Human colorectal adenocarcinoma Caco-2 cell was obtained from Procell Life Science
& Technology (Wuhan, China), that has been widely used as an in vitro model of the
intestinal epithelium [54]. Caco-2 cells were cultured in RPMI 1640 medium supplemented
with 10% fetal bovine serum and 1% antibiotic-antimycotic solution (Tips Biological Co.,
Ltd. Shanghai, China), which were maintained at 37 ◦C in a humidified 5% CO2 atmosphere
(Biobase Co., Ltd, Jinan, China).

4.3. Cytotoxicity and Viability Assay

Cell viability was performed according to the MTT reduction assay method. Caco-2
cells were seeded in a 96-well plate at a density of 1 × 104 cells per well. Twelve hours (h)
post-seeding, cells were pretreated with 100 and 10 nmol/L terazosin (prepared in medium
and filter-sterilized with a 0.22-µm filter), and then the complete medium containing H2O2
(500 µM) or 2-DG (glucose metabolism inhibitor, 100 µM) was replaced for 24 h. Then,
50 µL of MTT solution (2 mg/mL, dissolved in PBS buffer) was added to each well and
incubated for 4 h at 37 ◦C in a humidified incubator with 5% CO2 atmosphere. Finally, the
media in the cells were removed and 100 µL of DMSO was added to dissolve formazan,
along with incubation for 10 min at room temperature. The absorbance of each well at
405 nm was examined by a Microplate Reader (DeTie Experimental Equipment Co., Ltd.
Nanjing, China).

4.4. Quantification of Released LDH and Intracellular ATP in Caco-2 Cells

Caco-2 cells were seeded at a destiny of 1 × 105 cells per well into a 24-well plate,
followed by treatment with 10 nmol/L terazosin for 24 h. Then the cells were challenged
with 500 µmol/L H2O2 for 24 h. After incubation, the medium was collected and applied
for LDH assay (Nanjing Jiancheng, Nanjing, China). Finally, the ATP concentrations in cells
were measured at 636 nm by Ultraviolet spectrophotometer.

4.5. Transfection of Plasmids

Pgk1 expression vector, pcDNA3.1-Pgk1 was constructed by cloning full-length wild-
type human Pgk1 coding sequence into pcDNA3.1. The other plasmid pcDNA 3.1-EGFP
was taken as a control in this work. Transient transfection with LipofectamineTM 8000
reagent (Beyotime, Shanghai, China) was carried out according to the manufacturer’s
instructions. Briefly, 5 × 105 cells per well were seeded in a 6-well plate one day prior to
transfection. The following day cells reached 70–80% confluence. To each well, a mixture of
2.5 µg of DNA, 125 µL of medium without FBS, and 4 µL of LipofectamineTM 8000 was
added and incubated at 37 ◦C and 5% CO2. Finally, the stably transfected Caco-2 cells
clones were selected with 0.2 mg/mL G418 antibiotics among 3 weeks.

4.6. Western Blot

Caco-2 cells were seeded in 10-cm2 culture dish at a density of 1 × 106 cells per well
and then treated with terazosin, as well as H2O2 for indicated times. After that, the cells
were washed with ice-cold PBS three times and extracted for total protein using RIPA
buffer containing 1% PMSF. An equal amount of protein (20 µg) was resolved by 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
onto a 0.22-µm polyvinylidene fluoride (PVDF) membrane. And then the membrane
was blocked with 5% skimmed milk for 2 h at the room temperature and incubated with
primary antibodies overnight at 4 ◦C, including anti-Pgk1 (1:1000 dilution in 5% non-fat
milk); anti-p-AKT (1:1000); anti-NF-κB p65 (1:500); anti-p-IKBα (1:400); anti-caspase-1
(1:500) and anti-GSDMD (1:500). Finally, the secondary antibody marked by horseradish
peroxidase (1:2000) was incubated for 1 h at room temperature and exposed to enhanced
chemiluminescence reagents. β-actin was taken as a loading control in the experiments.
The signals were captured and the intensity of the bands was quantified by ImageJ.
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4.7. Experimental Animals

Male C57BL/6N mice weighing 18~22 g were obtained from Lanzhou veterinary
research institute, Chinese academy of agriculture science (SCXK-2020-0002, Gansu, China).
A total of 50 mice were housed under controlled conditions (25 ± 1 ◦C, 45–50% humidity,
and 12 h light/dark) and allowed ad libitum and water, as well as adaptation to the
environment for 5 days before the experiments. All animal experiments were approved by
Animal Ethics Committee of Lanzhou University (SYXK (Gan) 2018-0002 and the date of
approval is 10 December 2019).

4.8. Experimental Design

Experimental ulcerative colitis in mice was established by feeding the animals with
4% DSS in drinking water for 7 consecutive days [41]. All mice were randomly divided
into five groups (10 animals for each group) as follows: control group (animals were fed
with normal drinking water); control + TZ (animals were administered terazosin at a dose
4 mg/kg/day through intraperitoneal injection and fed normal drinking water from day 1
to day 7); DSS group (animals were fed 4% DSS in drinking water from day 1 to day 7) as
disease model; DSS + SASP group (80 mg/kg/day of salazosulfapyridine by oral gavage
with 4% DSS in drinking water from day 1 to day 7) as positive control; DSS + TZ group
(4 mg/kg/day terazosin was administrated through intraperitoneal injection with 4% DSS
in drinking water from day 1 to day 7). On the 8th day, the colon tissues from all animals
were isolated for length measurement. The serum and the colon tissues were collected and
stored at −80 ◦C for further biochemical analysis.

4.9. Assessment of Disease Activity Index

The clinical assessment of disease index was carried out as previously described [55].
Body weight loss, stool consistency, and fecal bleeding were assessed to evaluate the disease
severity and a scoring system was assigned to each disease symptom to calculate the disease
activity index (DAI). The detailed steps are as follows: the DAI was assessed as the sum of
the body weight loss (scored as: 0, none; 1, 1~5%; 2, 6~10%; 3, 11~15%; 4, over 15%), the
stool consistency (scored as: 0, well-formed pellets; 2, loose stools; 4, diarrhea), and the
fecal bleeding (scored as: 0, negative fecal occult blood test; 2, positive fecal occult blood
test; 4, gross bleeding).

4.10. Measurement of Oxidative Stress Indexes in Serum and Colon Tissue

SOD and MDA have been considered as biological markers of oxidative stress [56],
and both were evaluated with biochemical kits following the manufacturer’s instructions
(Nanjing Jiancheng, Nanjing, China). Briefly, the serum was obtained from the blood
plasma and the 10% tissue homogenate was provided from colon tissue post centrifugation
for estimation of antioxidant enzymes.

4.11. Myeloperoxidase Activity Assay in Serum and Colon Tissue

Myeloperoxidase (MPO) acts as a marker of neutrophil infiltration, and its activity
was determined as described in published literature [41]. Colon tissue was homogenized
with ice-cold 0.9% saline containing 1% protease inhibitor cocktail to obtain 10% tissue
homogenates, and that was centrifuged at 12,000 g for 20 min at 4 ◦C for the measurement
of MPO activity with the MPO assay kit (Nanjing Jiancheng, Nanjing, China).

4.12. Measurement of L-LA in Serum and Colon Tissue

Lactic acid acts as a metabolite of anaerobic oxidation of glucose, and its amount
reflects the state of tissue oxygen supply and metabolism.

4.13. Determination of Cytokines in Colon Tissue

The concentrations of TNF-α, IL-1β, and IL-18 in colon tissue homogenates were
detected with mouse specific ELISA kits (Elabscience, Wuhan, China).
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4.14. Ethanol-Induced Gastric Ulcer

Replication of alcoholic gastric ulcer model in mice: forty male KM mice, 3 months of
age, were purchased from the experimental animal center of Lanzhou veterinary research
institute, Chinese academy of agricultural sciences (Lanzhou, China), and adapted to the
environments for 7 days before the experiment. Food and drinking water were supplied ad
libitum. The animals were randomly divided into the four groups with 10 per group. Prior
to the experiment, all animals were fasted for 24 h with free access to water. Group 1 (vehicle
control) and group 2 (ulcer group) were administered with 0.9% saline (1 mL/100 g); group
3 (positive control) was fed with 80 mg/kg/day cimetidine orally; group 4 was orally
administered with the 1 mg/kg/day terazosin. Post 2 h, group 1 mice were infused with
0.9% saline (1 mL/100 g), and group 2–4 mice were given the ethanol (1 mL/100 g) for
2 h according to the method of previous report with small modifications [57]. Finally, the
serum and the stomachs were obtained and stored at −80 ◦C for further analysis.

To evaluate the stomach injury, the mice were sacrificed and the stomachs were
taken out slowly, after rinsing with 0.9% saline, the gastric mucosal ulcer were ready for
observation [58]. Firstly, the ulcer areas (mm2) were calculated with the transverse and
longitudinal diameters of the ulcer, as shown in formula 1. Then, the ulcer inhibition rate
(%) was counted by formula 2. Accordingly, the mean value of the sum of ulcer points in
each group was taken as the ulcer index (0 for healing, 1 for superficial mucosal erosion, 2
for deep ulcer or transmural necrosis, and 3 for perforation or penetrating ulcer).

Ulcer area (mm2) = maximum length diameter of ulcer × maximum width

diameter perpendicular to the maximum length diameter
(1)

Inhibition%= [(UA control-UA treated)/UA control] × 100 (2)

4.15. Statistical Analysis

The statistical analysis was conducted with SPSS 25.0 statistical software. All of the
data were presented as mean ± SEM, unless stated otherwise. Student’s t-test and one-way
ANOVA were applied for statistical analysis involving two- or multiple-experimental-group
comparisons, respectively. P < 0.05 was considered as statistically significance.
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