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This  paper  offers  an  overview  of  important  veterinary  viral  diseases  of mammals  stemming  from  aberrant
immune response.  Diseases  reviewed  comprise  those  due  to  lentiviruses  of equine  infectious  anaemia,
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eywords:
eterinary viral immunodiseses,

visna/maedi  and  caprine  arthritis  encephalitis  and  feline  immunodeficiency.  Diseases  caused  by  viruses
of feline  infectious  peritonitis,  feline  leukaemia,  canine  distemper  and  aquatic  counterparts,  Aleutian
disease  and  malignant  catarrhal  fever.  We  also  consider  prospects  of  immunoprophylaxis  for  the diseases
and briefly  other  control  measures.  It should  be realised  that  the  outlook  for  effective  vaccines  for  many
of the  diseases  is  remote.  This  paper  describes  the  current  status  of  vaccine  research  and  the  difficulties
encountered  during  their  development.
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. Introduction

Viruses require living cells for their replication and survival.
irus infection of cells in vitro and in vivo may  interfere with nor-
al  cell function in a way that is useful to the infecting virus. The

nterfering effects are sometimes subtle and complex in an organ-
sm. Virus infection may  directly affect function of one or more
rgans leading to disease or may  result in disease due to immune-
athological mechanisms. Some of notable examples of the former
re those of reduced growth hormone production and growth
etardation in mice with persistent lymphocytic choriomeningi-
is virus (LCMV) infection of the posterior pituitary gland without
bvious evidence of cellular damage and the defect could be rec-
ified by growth hormone administration [1].  Another example is
hat of small rubella babies due reduced foetal growth attributed
o rubella virus induced production of mitotic inhibitor result-
ng in reduced cell division and cell numbers both in placenta
nd foetus without obvious pathology [2].  The complex nature of
ome viral infections is illustrated by the example of LCMV dis-
ase in immunocompetent and immunodeficient (lacking T cells
r radiation or cytostatic drugs immunosuppressed) mice [3] (and
eferences therein). There are likely to be other examples but in
his review we focus on pathogenesis of some important viral
iseases of companion animals and livestock involving pathology
aused by host’s dysfunctional and/or aberrant immune response,
eferred to here as viral immunodiseases. Viruses which signif-
cantly subvert the immune system will be considered here in
reater detail and those viruses that have a lesser adverse effect
n the immune system will be considered separately. Only some
xamples of the latter will be briefly mentioned under a separate
eading ‘Examples of some lesser immunosuppressive viruses’. We
lso cover the prospects of immunoprophylaxis against many of the
iseases. In this review we introduce the term ‘viral immunodis-
ases’ to describe viruses which adversely affect host’s immune
ystem.

The purpose of this article is to provide an overview of the
mportant diseases in animals impairing the immune systems and
escribe/highlight the underlying mechanisms of immune pathol-
gy. Moreover, we also attempt to review the current status of
accine development against these diseases and difficulties block-
ng vaccine development and mention alternative control measures
or some of the viral diseases.

. Retroviruses

Of the family Retroviridae, the members of the genus lentivirus
4] are extensively and intensively studied [5] and occur worldwide

4], affecting primates, companion and farm animals. Lentivirus
nfections are characterised by immune system dysfunction as a
onsequence of their tropism for cells of the immune system. Mem-
ers cause chronic, lifelong infections culminating in progressive
 . . . .  . . .  . . . . .  .  .  . .  .  . . . . .  . .  . . . . . . .  .  . . . .  . . .  .  . . .  . . .  .  .  . . . . .  .  .  .  .  .  . . . . . . . . . .  .  . .  .  . 1778

and degenerative diseases [5–8]. Lentiviruses have the unique
ability among retroviruses to replicate in non-dividing cells and
require activation and/or differentiation of the host cell for produc-
tive replication [4].  A further characteristic is virus persistence in
immune cells such as cells of macrophage lineage. The latter play an
important role in virus dissemination because they are present in
inflammatory exudates and secretions such as milk and colostrum.
Lentivirus infections result in primary disease due to the virus and
often a secondary disease caused by opportunistic pathogens that
proliferate unchecked as a result of loss of helper T lymphocyte
function [4]. Lentiviruses have been developed as efficient gene
delivery vectors. Recently, for instance a prototype human Chikun-
gunya virus lenti-viral vector vaccine was  shown to be highly
efficacious in laboratory animals and non-human primates [9].  A
common lentivirus characteristic is their tropism for cells of the
monocyte/macrophage lineage which are neither destroyed by the
replicating lentivirus nor by the infected host’s immune response.
The virus is able to hide inside the genome of these cells, without
expression of viral genes and hence the absence of viral antigen(s)
presentation by MHC-II molecules on the membrane of the cell. In
the present review we restrict our account to lentiviruses of the
ungulates and cats.

2.1. Equine infectious anaemia (EIA)

2.1.1. Disease
EIA is a chronic, relapsing virus disease of horses, first described

in France in 1843 and shown to have viral (EIAV) aetiology in 1904
[4,10].  Mules and donkeys are also susceptible to the virus. EIAV
is endemic in parts of the Americas including Canada, parts of
Europe, Russia, the Middle and Far East and parts of Africa. Virus is
transmitted mechanically by blood feeding mosquitoes and blood
sucking horse flies, deer flies, stable flies (Stomoxys spp.) and pos-
sibly midges [4,11,12]. EIAV transmission has also occurred due to
use of virus contaminated bloody syringes, needles and surgical
instruments and also via ingestion of milk and/or colostrum. EIAV
can cross placenta and infect developing foetus [13]. Horses world-
wide are affected by EIAV and infection in horses is characterised
by three phases namely acute, chronic and inapparent [14–17]. The
acute disease typically is manifest by 2 months after exposure.
The acute and chronic phases of EIA are defined by fever, jaun-
dice, haemolytic anaemia, a significant decrease in erythrocytes
and platelets count, immune complex glomerulonephritis, organ
inflammation oedema and high titre viraemia. The acute stage pro-
gresses to chronic stage characterised by recurrent episodes of
clinical signs and viraemia then to the inapparent carrier stage of
disease until death [14–17].  In the inapparent stage, clinical signs

are abscent. In the acute stage, main site of virus replication is
macrophages of liver and spleen whereas in asymptomatic animals
viral DNA and RNA are present in many tissues but at very low levels
indicative of immune control [18]. Horses with subclinical disease
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emain infective to others. The disease is less severe in donkeys and
ules.
In vivo, EIAV is primarily, if not exclusively, a macrophage-tropic

irus and once it is introduced into the circulation of susceptible
orses, virus infects and replicates in blood macrophages which dis-
eminate progeny virus to other mononuclear phagocytes in lymph
odes and organs such as spleen, lung, brain, liver, kidney estab-

ishing secondary foci of infection. Thus virus replicates in many
rgans/tissues but evokes an ineffective immune response (see
elow). Interestingly, infected macrophages are neither destroyed
y the replicating virus and nor by the emergent immune response
ut instead the shed virus and viral subcomponents complex
ith antibody and complexes become deposited on erythrocytes,

ascular endothelium and kidney glomeruli where they activate
omplement. The latter causes inflammation and haemolysis.

.1.2. Control
There is no known treatment that can eliminate EIAV from

he body. However vaccines against EIA have been developed
hich are able to control the spread of the virus [19,20]. In the

arly 1970s, Shen et al. developed an attenuated EIAV vaccine.
his vaccine strain, EIAV DLV120, was developed via a series of
n vitro passages of the EIAV pathogenic strain EIAV D510, which

as obtained through the in vivo passaging of a wild type strain,
IAV LN40, in donkeys [21,22]. EIAV DLV120 was used extensively
n China between 1975 and 1990 for the vaccination of 61 million
quines to control an EIA pandemic. This large-scale vaccination
uccessfully controlled the spread of EIA in China; the outbreak
t the time of vaccination had resulted in the deaths of 40 million
quines due to the disease or to slaughter [19] (and references
herein). The Chinese trial suggests that an EIAV attenuated
accine can induce immune protection and can be safely used
or vaccination [21–23].  Live attenuated vaccines against EIAV
re also in development outside of China but the experience
s different and difficult for us to explain. Much effort towards
IAV vaccine has been by Professor Montelaro’s group [24–26]. In
eneral development of an effective EIAV vaccine is hindered by
he relatively rapid and continuing sequential mutation of viral
lycoproteins (gp) 90 and 45 during persistent infection of a single
ost under selective immune pressure. The infected host produces
irus neutralising (VN) antibody to the original virus which does
ot effectively neutralise the variant virus strain. An outcome of
his is emergence of novel antigenic strains of virus which evade
he host’s immune surveillance and elimination; also the newly
mergent strains are only marginally neutralised by the host’s
ntibodies [26–30].  Interestingly, EIAV glycoproteins appear to be
table upon repeated passage in cell culture [30]. It is noteworthy
hat the internal EIAV proteins (p26, pp15, p9 and possibly p11),
nlike the glycoproteins do not undergo change upon in vivo
assage [30]. Thus viral glycoproteins’ antigenic drift appears as
laying a crucial role in establishment of EIAV persistence in vivo.
s for the protective mechanisms, clearance of EIAV viraemia is
ssociated with CTL response and not with neutralising antibody
ut the viral antigenic variants escape both CTL and neutralising
ntibody [31]. There is also a transient suppression of the lympho-
yte proliferative responses temporally associated with recurrent
pisodes of fever and viraemia [32]. The immune response to the
iral variant antigens result in the formation of antigen-antibody-
3 immune complexes, decrease in plasma C3 level, inflammation
nd deposition of the complexes in the kidneys and glomerulitis.
nterestingly, a similar mechanism of antigenic drift in vivo visna
irus infection was suggested [33,34]. EIAV antigenic drift in vivo,

eading to immunogenic and antigenic variation, is the limiting
actor against the development of broadly effective vaccines.
ttenuated vaccines become less protective against challenge
irus strains when they contain divergent gp90 protein [24–26].
 (2012) 1767– 1781 1769

Furthermore, EIAV vaccines may  enhance the severity of disease
[35]. The challenge EIAV virologists face is similar to influenza
virus vaccine development but it is in fact greater since the EIAV
drift occurs, albeit to a varying extent, in each infected host and the
virus continues to mutate under immune pressure. Recent studies
suggest that engineering of env immunogens that elicit a broader
and more effective recognition of variant env species, along with
an efficient presentation system that allows for a rapid evolution
of a protective response may  be desirable instead of a single shot
multivalent approach [26]. Clearly, EIAV vaccine is a challenge but
it is important that it is pursued. In absence of an effective vac-
cine, in endemic areas the risk of transmission may be reduced by
insect-proof stabling during summer and at risk periods along with
use of effective insecticides to control EIAV vectors. An important
and necessary measure to control EIA incidence is identification of
infected horses, apparently free of clinical signs and horses with
EIA, and their removal from virus-free herd. This would entail
regular monitoring of the herd for virus by the Coggins’ test. This
later having a rather low sensitivity is recently replaced in most
diagnostic institutes by a commercial ELISA test which identifies
infected horses much sooner then the Coggin’s test. Results of the
ELISA were confirmed by PCR even in Coggin’s negative horses [36].

2.2. Small ruminant lentiviruses

2.2.1. Disease
The visna/maedi virus (VMV) and the caprine arthritis

encephalitis virus (CAEV) were considered to be specific pathogens
of sheep and goats respectively. Over the last 10 years, phyloge-
netic reconstructions based on partial sequences of SRLV clearly
established that they are in fact part of a viral continuum [37].
The finding that these viruses frequently cross the species bar-
rier between sheep and goats and vice versa has led to review
the epidemiology of these and related viruses and their classifi-
cation as small ruminant lentiviruses (SRLV) [38–40].  SRLVs occur
worldwide [4,41].  Isolates are either neurotopic or pneumotopic
and cause chronic disease. Infected animals remain carriers. SRLV
infection in sheep and goats may  result in encephalitis, progressive
pneumonia, arthritis and mastitis [4,37,41]. SRLV transmission was
one of the topics discussed at the meeting of the 16 European coun-
tries’ collaborative meeting [4,37,40,41]. Conclusions then were:
virus spread via ingested colostrum/milk, virus aerosol, particularly
in ovine as their lungs are a major target organ [38,40,42,43]. Ver-
tical intrauterine infection is also possible but uncommon [44,45]
and virus contaminated needles have been also a cause of trans-
mission.

VMV and CAEV share the same target organs. Only about 30%
of SRLV infected animals develop disease. However, lungs and
brain are the major targets of VMV  [4,46] while joints being the
main target of CAEV [4];  mammary gland is similarly affected by
the two  SRLVs. Since SRLVs do not infect lymphocytes, immun-
odeficiency and immunosuppression is not a significant feature
in SRLV disease [38,47–49].  An important determinant in SRLV
pathogenesis is virus tropism for monocytes, macrophages and
dendrictic cells [49,50]. Monocytes harbouring SRLV provirus in
their genomes show little or no viral transcription. Such latently
infected cells are refractory to host’s immune attack and being
mobile disseminate the virus to target organs [51–53] This has
been referred to as the ‘Trojan horse’ hypothesis. However the
mechanism of immune evasion by SRLVs remains obscure. At the
level of viral antibodies, responses to infection by CAEV and VMV
or EIAV are different. Goats with persistent CAEV infection pro-

duce antibodies to all viral proteins but virus is intrinsically poor
inducer of virus neutralising (VN) antibodies which are of low
affinity and avidity [4] (and references therein). The sialic acids
of CAEVglycoprotein were considered as the cause of reduced
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vidity of binding between virus and the VN antibody [4].  In
ontrast, hosts infected by VMV  or EIAV produce VN and other
ntibodies which efficiently bind infecting virus but result in emer-
ence of variant viral mutants during the persistent infection and
he variants escape neutralisation and elimination but instead get
psonised by the antibodies and infect further macrophages by the
c receptor binding. Non-neutralising CAEV antibodies opsonise
irus which infects further macrophages via Fc receptor binding [4]
nd infection persists. The importance of these antibody-mediated
nhancement of macrophage infection in CAEV and VMV  diseases
re best ascertained when cell mediated immune responses are
ore clearly understood. After infection with VMV, sheep mount an

ntiviral immune response (both antibody and T cell) but viral repli-
ation and dissemination still occur. An explanation put forward for
his defect in VMV  immune response has been the induction CD8+

 lymphocytes in a defective maturation state as also observed in
-cell-tropic lentiviruses [54]. The defective phenotype of CD8+ T
ymphocytes in VMV  infection involves expression of MHC class
I DR and DQ molecules but not interlukin-2 receptor (IL-2R) and
ence lacks lymphoproliferative and cytolytic activities [54]. CD4+

 lymphocytes in VMV  infected hosts also appear to be defective
nd exert a negative influence in the favour of the host. This con-
lusion was based on the finding of significantly reduced count of
MV-infected monocytes in sheep depleted of CD4+ T cells [55].
aturation of latently infected monocytes to macrophages in tar-

et organs activates productive virus replication [4,50].  This occurs
n selective population of macrophages in different tissues [4]. The
iral LTR is inactive in monocytes and becomes activated following
ifferentiation of these cells to macrophages. It has been sug-
ested that SRLV infection may  modulate the assessory fuctions of
nfected macrophages and induce cytokine production when acti-
ated into a productive cycle of infection [37]. The efficiency with
hich this happens may  be breed, species or even virus dependent

see below). Viral LTR contains enhancer/promoter and regulatory
equences required for trans-activation of virus transcription by
acrophage produced factors and is an essential determinant of the

ropism and expression of SRLV disease pathogenesis [4,37] (and
eferences therein). In VMV, the trigger involves cellular factors
inding to LTR enhancer sequence AP-1 while in CAEV, LTR activa-
ion may  involve interaction of TNF alpha and interferon gamma
ith the U3 region of the viral LTR [4,37,50,56–60].  The host’s

enetic factors may  regulate the extent of viral gene expression in
issue macrophages and thus the disease. Icelandic sheep are much

ore susceptible to central nervous system (CNS) visna virus dis-
ase than are British sheep while the Border Leicester sheep in the
SA and the Texel sheep in Holland seem more susceptible to maedi

orm of disease [4].  The disease episodes occur in bouts. The latter
nd associated inflammation occurs at intervals of 6 months to 2
ears and infected organs become chronically inflamed. In visna
nflammation results in demyelination with sub acute meningitis
nd chronic paresis. In maedi, lung septa become infiltrated by
ymphocytes, macrophages and smooth muscle becomes hyper-
rophic, dyspnoea results followed by death [61]. SRLVs interact
ith but do not infect T cells, infected animals remain immuno-

ompetent thoughout the infection and there is no T-cell depletion
nd immunodeficiency and virus persists despite virus- specific B
nd T cell immune responses. CAEV causes encephalitis of kids and
hronic polyarthritis of adults. The latter is from fluid and lympho-
yte exudation into the joint capsule [61].

.2.2. Control
Work towards SRLV vaccine(s) has been ongoing in several
aboratories since the 1980s but results have been somewhat disap-
ointing. Various approaches have been tried including attenuated
iral vaccines [62], vector vaccines [41]. Recombinant plasmid DNA
ncoding viral env with and without plasmids encoding cytokines
 (2012) 1767– 1781

[63,64]. A proviral CAEV DNA vaccine lacking tat gene when given
to goats initiated a persistent infection but conferred significant
protection against challenge infection [65]. SRLV vaccines have
occasionally caused increased viraemia and more severe disease
[66–68]. The reason(s) for vaccine failure, poor efficacy and the
increased disease in some instances remain obscure. An explana-
tion may  be stimulation defective T cell responses by the vaccines as
suggested to occur during virus infection [54,55].  We  believe under-
standing and countering the defective T cell responses in SRLV
infections is important and it may  lead eventually to effective vac-
cines. The only possible prophylactic measure is to raise new herds
with virus-free animals and following validated management and
containment protocols along with regular serological viral antibody
testing [41]. However only a proportion of sero-positive animals
develop the disease but all sero-positive animals including clin-
ically unaffected animals are killed. This is done because infected
animals without clinical signs are still a potential source of infection
for naive animals.

2.3. Feline immunodeficiency virus (FIV)

2.3.1. Disease
FIV was  first isolated in 1986 from a group of cats in California

[69] and virus can be isolated from blood, serum, plasma, cere-
brospinal fluid and saliva of infected cats [70,71]. Since the initial
recognition nearly two and half decades ago, FIV is now recognised
as an endemic pathogen in domestic cats worldwide [72]. Addi-
tionally, there is serological evidence of FIV infection of wild felids
such as snow leopards, lions, tigers, jaguars and bobcats. Preva-
lence varies from 1% to up to 44% depending on the health status of
the cat population in a region. Well kept household cats tend to be
less prone to FIV infection as their interaction with stray cats is low
and also the density of cats in a household is generally low. Sick cats
tend to have higher prevalence of FIV [73]. Commonly FIV transmis-
sion is via virus shed in saliva, occurring between biting cats. Free
ranging male cats that co-habit and interact aggressively with oth-
ers are most commonly infected and form a source of FIV. Sexual
contact does not appear to be a significant mode of virus trans-
mission although the virus may  be shed in semen; transmission
via colostrum and milk can occur as well and also importantly FIV
can be vertically transmitted in chronically infected cats [74]. FIV
infection in cats has three stages, just like HIV infection in humans
[75]. The initial acute stage is characterised by fever, swollen lymph
nodes, oral, respiratory, eye and intestinal clinical signs which
may  be recurrent or chronic in occurrence [70]. This stage is also
characterised by rapidly increasing viral loads, weight loss, lym-
phoadenopathy and neutropoenia. The initial burst of viraemia is
associated with infection of CD4+ and CD8+ T lymphocytes [76,77]
and a marked decline of CD4+ lymphocytes in circulation. At this
stage virus is found throughout the lymphoid tissues, replicating in
thymus, regional lymph nodes and mucosa-associated lymphoid
tissues [77,78].  Virus may  also be shed in saliva, milk/colostrum
and vaginal secretions. Viraemic cats also respond by producing VN
antibodies and cytotoxic T cells [79,80]. FIV preferentially infects
CD4+CD25+ T cells expressing cell surface co-receptor CXCR4 and
also transcription factors required for FIV replication; infection
of these cells activates their immunosuppressive activity and the
cells loose their effector functions and develop immunodeficiency
[81,82]. The emergence of the viral immune response corresponds
with a sharp decline in viraemia which defines the end of the acute
infection. In the second latent stage, often lasting for years, the
immune system is slowly destroyed leading to immunodeficiency

followed by the third AIDS-like stage when affected cats may  suf-
fer weight loss, anaemia, leucopoenia in combination with thymic
depletion, progressively declining CD4+ T cell numbers and rapidly
increasing viral loads.
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.3.2. Control
Although FIV is a cause of significant disease in domestic cats

orldwide, immunoprophylaxis against FIV disease is limited.
o our knowledge, only one vaccine company offers a vaccine,
pproved in spring 2002 but its uptake may  be limited while others
re reportedly in development [83]. The licensed vaccine is a dual
ubtype inactivated whole virus preparation consisting of subtype

 and subtype D virus strains and has been shown to induce pro-
ective immunity against challenge with various homologous and
eterologous (other subtypes) strains at various times after the last
accination [84–88].  Although these studies, carried out by the vac-
ine manufacturer, demonstrated significant differences between
accinated and control groups, the vaccine can however not pro-
ect all vaccinated cats from presence of proviral DNA in peripheral
lood mononuclear cells (PBMC’s) or from decreased CD4/CD8
atios when challenged with a heterologous strain 12 months after
accination [88]. However there have been other studies reporting
o protection against more distantly related strains [89] or high
hallenge inocula [90]. Some FIV vaccines may  increase the sever-
ty of infection as was the case with a FIV envelope DNA vaccine
91]. The protocols for the measurement of efficacy between stud-
es have varied; a uniform scheme is desirable and one such scheme
as been described [88]. Hence caution is necessary in compar-

ng studies. Like its human counterpart namely HIV, FIV presents a
ormidable challenge for vaccine development despite a vigorous
ost immune response to the virus. Firstly since there are many
ariants of the virus endemic in different parts of the world and
econdly since the emergence of mutated variants due to immune
ressure/selection in individual infections appears to be the main
bstacles against development of an effective vaccine that would
rotect against all emergent variants. Despite this difficulty efforts
ave been made for an effective vaccine [83,92–95].  At best these

nvestigations were only partially protective despite induction of
oth cellular and humoral responses. An important point to con-
ider here is that the challenge dose and the vaccine administration
oute mimic  the field situation in the assessment of vaccine effi-
acy. Under natural conditions, the infection dose is most likely to
e low. In support of this consideration, laboratory studies with an

nactivated whole virus vaccine demonstrated lack of heterologous
fficacy whereas field studies demonstrated efficacy in a two-year
bservation period [87,96]. This vaccine is only available in the USA,
ustralia and New Zealand. Vaccination of sero-positive cats is con-

roversial and the risk-benefit analysis should be made on a case by
ase basis [73]. In other parts of the world where no vaccine is avail-
ble, hygienic measures and regular serological testing should be
erformed to monitor viral incidence and prevalence. Sero-positive
ats should be isolated and cats coming into a population should
e quarantined [see 73 for more detailed recommendation]. Treat-
ent of FIV infected cats with human anti HIV drugs like AZT or
MD3100 was found to be effective (see [73] for details).

.4. Feline leukaemia virus (FeLV)

.4.1. Disease
Members in the genus Gammaretrovirus (subfamily Orthoretro-

irinae) are mainly associated with neoplastic diseases and are not a
ause of significant immune-mediated pathology. However Feline
eukaemia virus (FeLV) is an exception in that, since it causes B
nd T cell tumours and also a number of immune response medi-
ted diseases. FeLV infection of cats may  result in immune complex
lomerulonephritis, autoimmune haemolytic anaemia, thrombo-
ytopenia and chronic progressive polyarthritis [97,98]. FeLV is
 leading killer of cats and its prevalence is significantly influ-
nced by the cat population density, being high in multiple-cat
ouseholds but low in individually kept cats [99] and susceptibil-

ty of cats to FeLV infection decreases with cat’s age. Currently four
 (2012) 1767– 1781 1771

subgroups (A, B, C, and AC) exist based on virus envelope and virus
neutralisation tests [99,100]. Cats become infected through close
contact with other cats and ingestion of virus containing saliva dur-
ing mutual grooming. Virus replicates in the oropharynx and then
spreads via the agency of leukocyte-associated viraemia to most tis-
sues of the body notably the bone marrow (B cells, monocytes and
macrophages), thymus (T cells), salivary gland and reproductive
organs [97–99,101].  In 30–40% of infected cats, primary orophar-
ynx replication adequately stimulates host’s immune system and
the cats develop viral neutralising antibodies and cellular immu-
nity which often leads to virus clearance [99]. Some 30–40% of
infected cats however fail to mount an adequate protective immune
response [99]. In the latter cats, virus localises to bone marrow
where it replicates unabated in the cells of the immune system
resulting in chronic viraemia and further virus dissemination to
other tissues including the salivary gland. The chronically infected
cats produce viral antibodies that do not aid in virus clearance but
instead contribute towards pathology and the antibodies have been
referred to as pathogenic antibodies. The chronically infected cats
may  develop various tumours of lymphoid cells while some also
develop immunopathologic diseases and generalised immunosup-
pression. The latter stems from lysis of lymphoid cells including
macrophages in various lymphoid organs namely thymus, spleen,
and bone marrow while surviving lymphoid cells become dysfunc-
tional. Such affected cats however also produce antibodies to viral
antigens (gp70, P15E, P27, P15, and P10) which are continuously
produced along with whole virions and feline oncornavirus cell
membrane antigen (FOCMA) in tumour bearing cats [98]. The viral
antibodies bind respective antigens and form small and medium-
sized nephrotoxic circulating immune complexes [102–105]. This
is a continuous process over a long period depleting circulat-
ing complement and consequently adversely affecting beneficial
antiviral complement requiring functions of immune cytolysis
and cytotoxicity. More persistently infected cats die of chronic
immunosuppressive diseases than due to FeLV tumours.

2.4.2. Control
The observation that cats can recover naturally from FeLV

infection led to development of subunit (envelop P45, gp 70,
gp70+FOCMA), live canary pox-vectored and killed FeLV vaccines
(see Table 2, [95]). Although FeLV is considered a non-core part of
cat vaccines, in most circumstances FeLV immunisation should be
part of the routine vaccination programme for pet cats. It should
be realised that current FeLV vaccines are not fully protective in all
vaccinated cats as vaccine efficacy is expressed as the preventable
fraction of a vaccinated group compared to the controls [106–109].
Nevertheless, the protection they provide in the protected vacci-
nated groups is good against this potentially life threatening disease
[99], especially in view of the risk of infection for an individually
kept cat. There is an ongoing effort to develop improved vaccines,
target being prevention of viraemia, latent bone marrow infection
and formation of various tumours. A variety of approaches towards
improved immunoprophylaxis have been undertaken with variable
success [95]. Hygiene measures, preventing exposure of susceptible
young cats to excreta of potentially FeLV infected cats, prevention
of grooming and limiting cat population size, can also contribute to
reducing the spread of the disease.

3. Parvoviruses

3.1. Disease
The family Parvoviridae includes important pathogens of cats,
dogs, pigs, mink and geese. Virus neutralisation test distinguishes
member species. Members have been the cause of disease and
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eaths extending to other species such as racoons and pandas.
arvovirus pathology and disease stems from viral tropism for
apidly dividing cells of the enteric epithelium in the crypts of
leum, bone marrow and foetus. Virus transmission and infection
s frequently via fomites since the members are extremely resis-
ant to environmental inactivation. Primary virus replication may
e in the mucosa of the buccal cavity. Primary replication is fol-

owed by viraemia and dissemination of progeny virus to target
rgans and then a second round of replication in target organs
ncluding in rapidly dividing enteric epithelium crypts and virus
eing shed in faeces which forms an important source of virus
ransmission. Parvovirus-mediated dysfunction of the immune sys-
em is not a significant contributor to disease due to cat, dog, pig,
nd goose parvoviruses. In cat secondary virus replication in bone
arrow, lymph nodes and spleen may  result in transient leuco-

ytosis followed by a marked leucopoenia and anaemia while in
nfected dog leucopoenia may  result. Of interest for the present
eview is an economically important common disease due to a par-
ovirus causing chronic infection and disease in farm raised minks,
rst recognised in 1956 in minks homozygous for the Aleutian
blue) gene and hence the name Aleutian disease (AD). It was sub-
equently found that other genetic types of mink could develop
D but infection of non-Aleutian mink is not uniformly persis-

ent [110–112]. The causative parvovirus (ADV) also infects other
ustelids particularly skunks and ferrets; in pet ferrets AD is an

merging disease and the virus appears to have adapted to the
pecies and a strain of virus (the ADV-F) is only pathogenic in
errets. In Aleutian mink and pet ferrets ADV usually causes per-
istent progressive immune complex disease [113]. Infection of
ewborn mink kits results in acute disease characterised by virus
eplication in type II pneumocytes in the lung. The replication is
ermissive and cytopathic, leading to fulminant interstitial pneu-
onia and fatal respiratory distress [114]. In adult mink, following

rimary infection progeny virus is disseminated by macrophages to
iver, spleen, bone marrow and other lymphoid organs [115]. Here
econdary virus replication cycles take place in B or pre-B lympho-
ytes [116–119].  This results in an uncontrolled polyclonal B and
lasma cell proliferation in lymphoid and non-lymphoid tissues fol-

owed by a dramatic plasma cell lysis, hypergammaglobulinaemia,
nd immune complex (IC) disease. Virus replication occurs in the
ymph node macrophages and is restricted to virus DNA replica-
ion, RNA transcription, protein synthesis and low level of progeny
irus production [114]. A considerable proportion (up to 80%) of
he globulin in diseased mink is against viral structural and non-
tructural proteins [120]. Antibody binding to virus facilitates the
ntry of the complex into macrophages via antibody binding to cel-
ular Fc-receptors [121] and this mode of entry has been referred
o as antibody enhancement of disease [114]. This mechanism and
he role of enhancing antibodies in conjunction with macrophages
nd the Fc receptor has been known since the early 1980s par-
icularly with dengue haemorrhagic fever and the dengue shock
yndrome due to dengue virus and other viruses [122,123].  This
nhancement effect is demonstrable in vitro with sub-neutralising
oncentrations of homotypic and hetrotypic antibodies [122] and
ntibody is known to modulate antigens and may  have a role in
iral persistence [123]. Macrophages are the target cells for persis-
ent ADV infection via antibody binding to the Fc receptors and may
herefore play a role in the genesis of the immune disorder [124].
n other viral infections ligation of Fc receptors leads to the produc-
ion of IL10 [125,126] a cytokine which has a role in suppressing
nterferon gamma production. Interferons are responsible for the
ntiviral state of cells. IL10 promotes both the induction of antibody

esponses and the suppression of cytotoxic T-cells [126]. Therefore
hese IL-10-mediated events may  have a role in the pathogeni-
is of ADV [114]. Continuous formation of IC eventually results in
lomerulonephritis, necrotising arteritis and iridocyclitis. ADV is
 (2012) 1767– 1781

transmitted horizontally and vertically and disease takes several
months to develop [127].

3.2. Control

At the present time we are not aware of a commercial ADV
vaccine. There may  be a justification on commercial basis for a vac-
cine since AD is an economically important disease [111] but it
would appear that the task is a major challenge. Hence attempts
towards a vaccine were unsuccessful, at best conferring partial
protection [128] but vaccines employing ADV capsid proteins VP1
and 2 worsen the disease while vaccine based on non-structural
NS1 gene only induced partial protection from disease [129]. A
possible reason for ADV’s whole capsid’s failure to elicit a pro-
tective response may  lie in the fact that the capsid has epitopes
that have activities for both virus neutralisation and virus infectiv-
ity enhancement [124]. Consequently removal of the enhancement
sequences could aid in performance of the neutralisation response
and hence the antiviral effect. This may  be somewhat simplistic
since the capsid gene is suspected of having epitopes involved in
disease [124]. Effective capsid based vaccines are for instance avail-
able against another mink parvovirus, Mink enteritis virus, which
is not defective and closely related to Feline panluecopenia virus.
As is the case for all parvoviruses ADV can persist for a long time in
infected premises causing continuous outbreaks of disease. Strict
hygiene measures and containment and disease monitoring pro-
tocols of the stock animals and strict export /import policy should
help in reducing the risk of infection.

4. Paramyxoviruses

4.1. Disease

Members of the family Paramyxoviridae cause a wide range of
diseases including Newcastle disease, distemper, rinderpest, and
respiratory diseases of varying severity. Members evoke a good
immune response and vaccination against their diseases has been
largely successful. Pathology and disease due to adverse immune
response is not a significant feature in infections by most paramyx-
oviruses except in some cases of infection by some morbilliviruses.
Until 1988 the genus Morbillivirus comprised Measles virus (MV),
Canine distemper virus (CDV), Rinderpest virus (RPV) and Peste-
des-petitis ruminants virus (PPRV). Between 1988 and 1990 aquatic
morbilliviruses emerged and were found to be responsible for
a mass die-off and/or severe disease in harbour seals (Phocine
distemper virus, PDV), porpoises and striped dolphins (Cetacean
morbillivirus, CMV) in coastal waters of Northern and Mediter-
ranean Europe [130]. Minor PDV outbreaks have also occurred
in USA and Canadian Atlantic coastal waters. CDV, MV,  PDV, and
CMV, in addition to respiratory pneumonic and gastrointestinal
lesions, also cause central nervous system (CNS) lesions. The main
mode of CDV and MV  transmission is via oro-nasal route which is
also likely to be the mode of transmission of the aquatic counter-
parts (PDV, PMV, and DMV). As in CDV, the important determinant
in pathogenesis and disease by these viruses is their tropism for
leukocytes and immune cells in general [131–133]. As in CDV, the
lymphotropism is likely to be mediated via viral H protein bind-
ing to signalling lymphocyte activation molecule (SLAM) [134] or
equivalent. The expression of SLAM appears to be up regulated in
response to CDV infection. SLAM is also expressed on antigen pre-
senting cells and infection of these cells has been hypothesized

to be associated with impaired antigen presentation [135]. CDV
causes a systemic disease in dogs involving several organs often
after aerosol infection and primary replication in the upper res-
piratory tract or tonsil or both associated with primary pyrexia
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136,137].  Uptake of virus by macrophages leads to infection of
ymphocytes and macrophages and dissemination throughout the
ody. The leucotropism induces a leucopoenia and lymphadenitis
nd secondary pyrexia. Leucopoenia is a consequence of lysis of
ymphocytes, mainly of the CD4+ T cells in blood, tonsils, thymus,
pleen, lymph nodes, mucosal lymphoid tissues and macrophages.
nother consequence of leucotropism is viraemia and progeny
irus dissemination to intestines, CNS and other tissues and there
s a widespread and rapid generalisation of virus infection within
he body of the host if unchecked by the host’s immune response;
n some cases the immune response halts the virus spread and
liminates foci of infection and the lesions heal. Transmission of
irus to: (i) bronchial, conjunctival and nasal epithelia and lung
acrophages causes nasal and ocular discharges concurrent with

ronchopneumonia and (ii) intestinal epithelium lymphoid tissues
ives rise to vomiting and diarrhoea [136,137].  The mechanism of
DV transmission to CNS is poorly understood but two  modes are
onsidered likely. One route is leukocyte-associated haematoge-
ous spread via the choroid plexus and cerebral blood vessels and
he second via the olfactory nerve [138]. The CNS infection gives rise
o inco-ordination, muscle tremors, myelitis, ataxia and seizures
nd other symptoms [139]. Relevant to present account is the
esions and disease due to deleterious immune response in infec-
ions by CDV and other animal morbilliviruses. Such lesions occur,
lbeit at low incidence, in CDV [140] and aquatic morbilliviruses
130] but the pathogenesis is intensively investigated as models
owards a better understanding of multiple sclerosis (MS) [130].
n some dogs with acute distemper, immunosuppression occurs
nd such dogs are lymphopoenic, have minimal or no viral neutral-
sing antibodies and cell mediated activity; such dogs are poorly
esponsive to other antigenic stimuli [141]. Immunosuppression
s suggested to arise from virus-mediated and virus-independent
estruction of lymphocytes as well as impaired output of infected
nd uninfected lymphoid cells [133]. Perhaps of greater interest is
he tissue damage in chronic CDV demyelinating encephalomyeli-
is [137]. A brief description of CNS organisation at this juncture

ay  aid description of CDV CNS lesions. The CNS consists of neu-
ones in the cortex/grey matter with their myelin-wrapped axons
raversing the white matter made up of four types of CNS-function
upportive neuroglial cells (ependymal cells, oligodendrocytes,
icroglia, and astrocytes). Oligodendrocytes form and maintain
yelin sheaths, ependymal cells line the ventricles and their beat-

ng cilia circulate cerebrospinal fluid (CSF), microglia cells function
s CNS macrophages while astrocytes provide nutrients, energy
nd electrolyte balance. Further details on CNS organisation can be
ound elsewhere [130]. The CDV demyelinating encephalomyelitis
s a biphasic process consisting of an initial acute phase virus-

ediated pathology [130,133,139] followed by chronic process
ediated by immune response. The mechanisms leading to the CNS

DV lesions are complex and poorly understood [130,133,137,139].
he target cells for CDV in the brain white matter are astrocytes
nd microglia while oligodendrocytes appear to be rarely infected
ut only non-productively [139]. A common view at present for
he acute phase CDV pathology is that the white matter infec-
ion leads to metabolic oligodendroglial changes culminating in
emyelination [130]. As for the chronic phase demyelination, at

east three mechanisms have been proposed [130,133].  A first the-
ry suggests destruction of oliodendrocytes via bystander effect
esulting from stimulation of microglia (CNS macrophages) by anti
iral antibodies binding to virus infected cells in close proximity.
he second theory proposes virus stimulated anti myelin anti-
odies as the cause of myelin destruction [130,142,143].  Thirdly,

irus persistence and recurrent immune response and reaction
ave been suggested as a contributory factor in chronic phase
emyelination [137] CNS lesions including myelin destruction has
lso been in infections by the aquatic morbilliviruses but the
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available literature is somewhat limited [see 130]. Although CDV
and MV  CNS lesions have been a subject of intensive investi-
gations, the causative pathogenesis mechanisms are not clearly
understood and currently there is no general consensus as to the
mechanism(s).

4.2. Control

CDV is a cause of fatal disease in many species of carnivores.
CDV related viruses have been identified in seal, dolphins, whales
and porpoises [144,145].  Currently available live CDV vaccines are
suitable for immunising domestic dogs and mink [95]. A CDV  vac-
cine based on Onderstepoort strain is safe and efficacious in lions
[146]. In a first pilot study, the same vaccine seemed effective in
otters and seals (MSD Animal Health, unpublished). Other com-
panies also offer CDV vaccines [95]. However, the live vaccine
safety concern and the global CDV distribution involving a wide
variety of susceptible species, require new safe and effective vac-
cines for the protection of wild as well as domestic species along
with CDV eradication. Most CDV vaccines contain live attenuated
virus strain and the vaccine is given parenterally. The choice of
live as opposed to a killed vaccine is probably because the strain
is leucotropic and vaccine virus undergoes several rounds of repli-
cation in leukocytes without causing overt disease. An outcome
of this is a rapid stimulation of immunity starting with a small
amount of virus possibly of the order of 5–5.5 log10 median tis-
sue culture infectious dose per vaccine dose. For a killed vaccine
several thousand fold more virus would be required to stimulate
immunity with the help of an adjuvant and after booster vaccina-
tion.

5. Herpesviruses

5.1. Disease caused malignant catarrhal fever (MCF) virus

MCF  is a fatal lymphoproliferative disease of cattle and other
ungulates namely deer, bison and pigs caused by alcelaphine her-
pesvirus 1 (AlHV-1) and ovine herpesvirus 2 (OvHV-2) [147–150].
Other less characterised MCF  gammaherpesviruses include hippo-
tragine herpesvirus 1 [151]), virus from white-tailed deer [152],
caprine herpesvirus 2 (CapHV-2 [153–155]).  An intriguing fea-
ture of MCF  is that in the natural reservoir hosts, wildebeest
for AlHV-1 and sheep for OvHV-2, respective viruses cause inap-
parent infection without disease and hosts shed virus in nasal
mucus, tears and possibly other sites and form the source of
virus transmission between individuals of reservoir hosts and from
reservoir hosts to secondary susceptible hosts (cattle, bison and
deer [156–159]).  The secondary species are regarded as dead-end
hosts as they apparently do not transmit virus to other suscepti-
ble secondary hosts [160]. Experimentally, transmission is possible
with nasal mucus containing AlHV-1 [161] or OvHV-2 genome
copies [162,163].  However exceptions have been recorded as was
the case for deer [164]. The reservoir carrier hosts of MCF  appear to
govern the prevalence of MCF  viruses. AlHV-1 is a particular prob-
lem where wildebeests are found namely Eastern and Southern
Africa [156,160,165,166].  In a marked contrast, the sheep MCF  virus
(OvHV-2) since its first recognition in Europe has been the cause of
MCF  worldwide wherever sheep and cattle or bison or deer are
present [160].

As for the pathogenesis of MCF  in secondary host species
due to AlHV-1, OvHV-2 and possibly other MCF viruses such

as Hippotragine herpesvirus-1 (HipHV-1), the mechanism induc-
ing mainly T cell hyperplasia and necrotic lesions is not fully
understood [160,167–169].  MCF  lesions are characterised by accu-
mulation of mainly CD8+ T lymphocytes in various organs, often
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ssociated with tissue necrosis [156,160,169].  The latter is sug-
ested to arise from indiscriminate activity of MHC-unrestricted
ytotoxic T/natural killer cells. Studies have been in cattle but
ostly in rabbits [156,166–171].  Based on earlier findings of the

aucity of virus infected cells [172,173] led to the suggestion
hat MCF  necrotic lesions resulted from auto-immune response
nvolving uninfected cytotoxic cells [167,168].  Subsequent in situ
CR study of vascular brain lesions in MCF  affected cattle bison
ecorded a higher incidence of OvHV-2 infected CD8+ lympho-
ytes [169]. Preliminary unpublished in situ hybridisation analysis
f various tissues from OvHV-2 infected rabbits also found viral
ene sequences in many more lymphocytes [160]. These recent
ndings raise the possibility that the MCF  lesions arise from the
irect action of virus infected, dysregulated cytotoxic T cells. The

nvading CD8+ T lymphocytes in vascular lesions of American bison
ith experimental sheep-associated (SA-MCF) caused by OvHV-2
ave been further defined [174]. This lymphocyte immunotyping
tudy predominantly found CD8+/perforin+/wc− �/� and not CD8+
/� cells. However the cytokine profiles of the invading T lympho-
ytes remains to be defined [174]. These authors concluded that
he predominant CD8+ T lymphocytes invading vascular lesions of
ison with SA-MCF are cytotoxic MHC-unrestricted lymphocytes
f innate immune system and that MCF  is essentially a disease
f immune dysregulation. A new model for the pathogenesis of
ildebeest-MCF in rabbits experimentally infected with AlHV-1
as proposed and it relies on the proliferation of dysregulated CD8

 cell as a result of their latent infection by the virus [175,176].  Still
ore work is needed, particularly definition of the phenotype of

D8+ T lymphocytes in MCF  lesions in secondary hosts (cattle, bison
nd deer) with AlHV-1 and OvHV-2. Importantly, we  are nowhere
lose to understanding the mechanism causing T cell hyperplasia
n MCF.

.2. Control

The fact that reservoir hosts and the secondary ruminant species
evelop antibody responses to MCF  viruses [177,178] is indica-
ive of immune recognition and therefore raises the possibility
f immunoprophylaxis. Experimental live and killed AlHV-1 vac-
ines have been investigated in cattle or rabbits since early 1950s
179–184]. Findings from these studies were mixed compris-
ng no protection, short-lived protection, partial protection and
mbiguous results. No firm conclusion could be reached from
hese studies as to best formulation and vaccination/challenge
egimes. We  believe that MCF  vaccine should aim to protect sec-
ndary hosts (cattle, bison and deer) from oro-nasal infection. A
romising AlHV-1 vaccine study in cattle (OvHV-2 sero-negative)
as reported recently [185]. The study analysed different vac-

ine formulations (live or killed with different adjuvants) and
ifferent challenge routes (intranasal or intravenous). The pre-
itrated intranasal challenge inoculum was uniformly pathogenic
nd was significantly resisted by 9 of 10 calves twice vaccinated
our weeks apart with live virus in Freund’s adjuvant; killed virus
n the adjuvant was unprotective. An important issue the study
id not investigate was the vaccine’s performance in calves with
aternal viral antibodies. We  suggest this, despite MCF  being a

poradic disease with cattle generally dieing within a short period
f infection, to simply ascertain if vaccine takes in calves in face
f maternal antibodies. There will be some calves with mater-
al MCFV antibodies and we maintain that it is important to
sk if such animals are protected following intramuscular vac-

ination. A carefully planned and executed field trial is likely
o address the efficacy to a natural challenge in calves without

aternal antibodies and also calves with maternal viral antibod-
es.
 (2012) 1767– 1781

6. Coronaviruses

6.1. Disease induced by feline infectious peritonitis virus

Feline coronaviruses (FCoV) occur as two serotypes with dif-
ferent serological and biological characteristics [186]. Most FCoVs
cause mild enteric disease but could give rise to highly pathogenic
variants in individual infections causing peritonitis (FIP). Both
serotypes of FCoV mutate to virulent FIP virus (FIPV) variants. Their
relative prevalence in nature of FCoV varies but serotype I FIPV and
FCoV strains are dominant in the field [187]. FCoVs are transmit-
ted via the faecal-oral route and virus’s site of primary replication
is gut enterocytes [188,189] from where the progeny virus dis-
seminates to internal organs via monocyte-associated viraemia.
Although FCoVs occur commonly the incidence of FIP disease is
relatively low, rarely exceeding 5% of FCoV infected cats [188,189].
FIP is a progressive debilitating disease. A characteristic feature of
FIP is widespread occurrence of pyogranulomatous lesions in lungs,
liver, spleen, omentum and brain. Other features of FIP involve a
marked T-cell depletion, particularly in end-stage FIP [190] and
hypergammaglobulinemia [191]; B-cell leucopoenia is also a fea-
ture in FIP [192]. The T-cell depletion is apparently not the result of
virus infection since T-cells appear not to support virus replication
[190]. Other important determinants in FIP pathogenesis seems to
be (i) spread inside infected cat of mutant progeny FIPV by acti-
vated macrophages and monocytes [193] and (ii) types of viral S
protein neutralising antibodies at suboptimal concentration which
opsonise the virus and enhance its infectivity for target cells via
FC receptor mediated attachment [194–196].  There is also comple-
ment activation with resultant platelet aggregation, intravascular
coagulation, necrotising lesions and exudation of fluid into the
abdomen and thoracic cavity in the so-called wet form of FIP. Wet
FIP is most common in kittens under one year of age and the inci-
dence declines by 5 year of age when dry form is more common.
While there is no protective immunity in wet  FIP, the dry form
is a result of partial immunological protection [196,197].  Some
of the pathogenic features of FIP, notably the T-cell lymphopoe-
nia, multiphasic disease course and virus persistence were seen
in severe acute respiratory syndrome (SARS) corona virus cases.
Both these diseases are an enigma possibly stemming from virus-
induced immune dysregulation.

6.2. Control

Many attempts have been made to develop an FIP vaccine, most
of which failed, with antibody-dependent enhancement of infec-
tion observed experimentally and resulting in more vaccinated
than control cats developing FIP [195]. Currently, there is only one
live temperature sensitive vaccine based on subtype II FcoV rather
than on subtype I [198] licensed in some countries [199,200] but
its efficacy has been a subject of debate [201,202].  A live attenuated
oro-nasal experimental vaccine derived by site directed mutagene-
sis of a lethal FIPV strain to remove group specific gene cluster 3abc
proved innocuous and efficacious [203]. Thus the outlook is promis-
ing for FIP disease should the 3abc deletion mutant or equivalent
be licensed.

7. Examples of some lesser immunosuppressive viruses

Some viruses, to a varying degree, modulate the host’s immune
system for their own advantage; immunosuppression, often tran-

sient, is one consequence of an infection for instance. Upon gaining
entry into host’s body, viruses encounter dendritic cells (DCs)
which are permissive to infection by some viruses and in some
cases the encounter subverts normal DC function. The latter are
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 heterogeneous collection of leukocytes broadly falling into two
roups: conventional DC (cDC) and plasmacytoid DC (pDC, natu-
al interferon producing cells) and are omnipresent in the body (in
ost organs, tissues and skin). DCs recognise and process invading

athogens and present their processed antigens to B and T lym-
hocytes and are therefore central to development of an effective

mmune response. The subversion of the normal immune response
y viruses via action on DC is not known for many viruses as the field

s quite new because dendritic cell markers of the various species
re being characterised and antisera/reagents to them being raised
ut some examples exist [204]. Classical swine fever virus (CSFV),

 pestivirus of pig, infects and replicates in pig DC cells when viral
pro protein inhibits dsRNA induced type I interferon synthesis

205]. This modulation of DC function and its possible role in CSFV
eucopoenia and haemorrhagic immunopathology see review by

cCullough and others [204]. These authors also describe infec-
ion of pDC cells of pigs by porcine circovirus 2 and the resultant
mmunosuppressive effect.

.1. African swine fever (ASF)

ASF is a highly contagious acute haemorrhagic disease of domes-
ic pigs and also European wild boar (Sus scrofa)  caused by a large
ouble stranded DNA virus, an only member of Asfarviridae family
ASFV). Since the original description of ASF in Kenya in 1921 [206],
he disease has been recorded in most African countries south of the
ahara and has spread to Portugal, Spain, Sardinia, the Caribbean
Cuba, Dominic Republic and Haiti), Brazil, west African countries
nd Madagascar). ASF has now moved into northern Asia and Russia
nd threatens China. This is an important extension of the disease.
ield isolates range in virulence for the domestic pig from highly,
oderately virulent to avirulent [207]. However in natural reser-

oir hosts namely warthogs (Phacochoerus aethiopicus), bush pigs
Potamochoerus porcus)  and the soft ticks (Ornithodorus moubata)
SFV is not pathogenic but causes persistent infection with suffi-
iently high viraemia to allow vector bite transmission. Virulent
nd haemorrhagic domestic pig isolates are apathogenic in reser-
oir hosts. Domestic pigs primarily acquire ASFV via the bite of
nfected tick [208]. Other modes of ASFV transmission may  also
ccur. An example is that of after a meal of infectious warthog tis-
ues or whole infectious ticks [209]. Experimental oral infection
ith attenuated ASFV suspension was also recorded [210].

ASFV and poxviruses replicate in cell cytoplasm and are exam-
les of DNA viruses that do not require the host RNA polymerase
o transcribe their genes. An advantage this replication strategy
estows to the viruses is an ability to interfere with host cell gene
ranscription without affecting their own. An important deter-

inant in ASFV pathogenesis is its tropism for macrophages in
omestic pigs, warthogs and bush pigs. In domestic pigs the char-
cteristic lesions are haemorrhages, leucopoenia and apoptosis of
ymphocytes in lymphoid tissues. In a study in domestic pigs, ini-
ial virus replication was detected in spleen and then in other
rgans [211]. Based on this study, it is likely that in natural infec-
ion following a bite, virus initially infects macrophages which
hen localise in lymphoid organs and progeny virus initiates sec-
ndary foci of infection. Another noteworthy observation is the
ccurrence of haemorrhages in lymphoid organs without obvious
nfection of endothelial cells; thus cause of ASFV haemorrhages
emains unestablished [211]. Our understanding of ASFV infection
n the reservoir hosts is limited and may  differ from the patho-
enesis in domestic pigs. In the former spleen appears to be the
ain site of virus replication while other lymphoid organs are

inimally affected [212]. A significant difference in ASFV patho-

enesis between domestic pigs and wild reservoir pigs is the
assive apoptotic destruction of lymphocytes in the former but

timulation in the reservoir hosts. It is generally accepted that a
 (2012) 1767– 1781 1775

better understanding of lymphoid cell apoptosis and its regula-
tion is required to aid planning of prophylactic control of ASF.
ASFV modulates signalling pathways in infected macrophages, thus
interfering with the expression of many immunomodulatory genes.
For a detailed account and associated literature we direct inter-
ested readers to the review by Dixon and others [213]. The evasive
mechanisms used by ASFV are complex and not fully understood
[213]. ASFV A238L, a potent immunosuppressive protein, is consid-
ered to inhibit two key signalling pathways namely NFkB activation
and calcineurin phosphatase in infected macrophages. This single
protein may  therefore inhibit transcription of many immunomodu-
latory genes and pathways and thus interfere with initiation of both
the innate and the adaptive immune responses. It is now gener-
ally accepted that the massive apoptosis of B and T lymphocytes in
domestic pig infection by hot ASFV isolates, is not due to virus infec-
tion of lymphocytes and it is a result of some unknown by-stander
mechanism generated by macrophages [211,213,214].  There are
other viral proteins that modulate macrophage function in order to
evade host defences [213].

At present there is no vaccine for ASF. Observations of a pro-
tective immune response support the view that a vaccine is
possible. These observations are: (i) the resistance of natural reser-
voir porcine hosts, (ii) domestic pigs subsequent to attenuated
ASFV infection resist virulent ASFV challenge [215–217] and (iii)
experimental subunit vaccine studies [218,219].  ASFV vaccine stud-
ies have focused on the identification of the protective immune
response of the pig; ASFV neutralising antibodies to viral structural
proteins P30, P54, and P72 were not protective [220] but a previ-
ous study with P30 and P54 recorded protection [219].  An in vivo
CD8+ T lymphocyte depletion study in out bred pigs concluded that
secondary viral antibodies did not contribute towards protection
against virulent challenge [217]. Instead, these authors recorded a
significant protective role for CD8+ T lymphocytes but the subset
of the cytotoxic T cell remains to be identified [217].

7.2. Bovine viral diarrhoea virus (BVDV)

BVDV in genus Pestivirus within the family Flaviviridae is a com-
mon  acute infection of cattle with a high prevalence (60–80%)
globally but infection in cattle is generally inapparant, transient
signs being pyrexia and a leucopoenia 3–7 days post infection.
Other pestiviruses are classical swine fever virus, border disease
virus and a forth distinct species, BVDV-2 [221]. BVDV-1 species
has at least 5 serologically distinct subspecies, 1a-1e which appears
to vary in their geographical prevalence. The BVDV-2 viruses are
largely restricted to the USA with some European isolations. The
original description of BVDV disease was of transmissible profuse
diarrhoea in adult cattle [222]. Although in most instances BVDV
infection of barren adult cattle is mild and inapparant, cases of
severe fatal disease have been described [223,224].  BVDV isolates
occur as two  distinct biotypes, non-cytopathic (NCPV) and cyto-
pathic (CPV), if their growth in cell cultures results in death (CPV)
or no death (NCPV) of infected virus producing cells. In nature, NCPV
biotype predominates (mainly in persistently infected calves and
adult cattle) and thereafter gives rise to CPV biotype through a vari-
ety of spontaneous mutations (insertion of host protein sequences,
duplication of viral genes or point mutations). The latter results in
cleavage of non-structural NS2-3 protein and expression of NS3.

The important aspect of BVDV infection of cattle, both epidemi-
ologically and from the prospective of reproductive loss, is virus’s
ability to cross the placenta and infect the foetus. BVDV rarely
infects the foetuses of sero-positive cattle. In acutely or persis-

tently (see below) infected sero-negative cattle, virus invades the
placentome replicating in the trophoblast damaging it and may
cause placentitis. Then virus crosses to the foetus. How the latter
occurs is unclear but ingestion of maternal cellular debris by foetal
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rophoblast is a likely mechanism. An outcome of foetal infection is
bortion which may  occur as early as 10 days to several months
fter infection although NCPV viraemia is established 1–2 days
ollowing in-contact natural infection [225]. About up to 30% of
oetuses are aborted while the majority of surviving foetuses go
o full term and are born persistently infected (PI) with lifelong
iraemia. Foetal infection is by NCPV; experimental in utero infec-
ion with CPV does not cause abortion or PI calves. Most foetuses
orn of PI dams are also PI and this near 100% vertical transmis-
ion from dam to foetus is the main mode of BVDV survival in the
eld. Thus PI calves and adult cattle readily infect susceptible cat-
le upon close contact via virus aerosol. This in sero-negative cattle
esults in infection of the upper respiratory tract (URT) and associ-
ted lymphoid tissues followed by leukocyte and serum viraemia
hile transmission to sero-positive cattle is limited to URT with no

r transient leukocyte viraemia [225]. The other important clinical
onsequence of BVDV is mucosal disease (MD). This fatal condition
f cattle, first described in 1953, is characterised by severe erosive
esions of the oral and intestinal mucosa [226] was not attributed
o BVDV at its first recognition. It was several decades before the
etiology of MD  was identified as due to BVDV and the causative
D pathogenesis established. The generally accepted premise lead-

ng to MD  lesion is transplacentally infected PI calves with lifelong
ersistent NCPV viraemia upon super infection by a ‘homologous’
PV develops MD  [227]. Another clinical effect of BVDV infection is
ransient leucopoenia and immunosuppression which may  allow
nfection by other bovine pathogens.

Acute BVDV infections are always accompanied by immune sup-
ression due, at least in part, to the death of immune cells within

ymph nodes and gut-associated lymphoid tissue and reduction of
umbers of circulating white blood cells. The suppression of the

mmune system leaves infected animals vulnerable to secondary
nfections [228]. A number of studies have demonstrated a syn-
rgistic role of BVDV in bovine respiratory disease by increasing
athogenicity of both viral and bacterial concomitant infection;
his has been attributed to immunosuppressive effects of BVDV
n the host [229]. There is evidence that cattle with persistent
nd primary postnatal infections with BVDV undergo immuno-
uppression, which increases the susceptibility of these animals to
econdary infection [230].

However the economic impact of BVDV immunosuppression
nd co-infection by other bovine viruses and bacteria is not fully
ssessed. Also the mechanism causing lymphocyte death and leu-
opoenia due to NCPV biotype of BVDV has to our knowledge not
een reported but that hypothesized for CSFV may  also apply to
VDV [204]. This aside, BVDV is an important bovine pathogen pri-
arily due to the reproductive loss to the cattle industry and hence

here is much interest and the need for vaccines against BVDV dis-
ases, particularly prevention of transplacental infection. Vaccines
re available and work is ongoing towards better vaccines, a subject
ecently reviewed by us [231,232].

.3. Bovine leukaemia virus (BLV)

BLV in genus Deltaretrovirus of family Retroviridae causes per-
istent infection of cattle worldwide; currently 7 virus strains
envelope gene genotypes) are prevalent and sheep are also sus-
eptible to the virus. BLV transmission in cattle occurs horizontally
ia contact, insect bite (mechanically), blood transfusion, contam-
nated needles; virus is shed in milk and colostrum but we  are not
ware if they are a source of transmission or not. BLV infection of
attle results in asymptomatic carrier state (in about 60% of cat-

le), a benign polyclonal proliferation of circulating lymphocytes
nown as persistent lymphocytosis (PL, in about 30% of cattle) or
atal, monoclonal lymphoid neoplasia known as enzootic bovine
eukosis (EBL, in about 5% of cattle). Irrespective of clinical outcome,
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the virus exists as provirus (integrated but not transcribed) in the
genome of lymphocytes [233]. Infected cattle mount a high-titered
antibody response against viral structural proteins and antibody
tests have been a common means of BLV detection which is now
increasingly backed up with virus gene PCR tests. With respect to
effect on the host’s immune function, BLV, unlike other mammalian
retroviruses, appears to have a minimal effect. However some BLV
virologists have concluded that BLV infection in cattle and sheep
does not result in a significant immunosuppresion [234,235].

8. Final comments

A noteworthy feature in the pathogenesis of the selected viral
immunodiseases described here is the variation in the tropism of
the viruses for the immune cell types and the mechanisms viruses
use to suppress and/or subvert host’s immune antiviral response.
Examples for instance involve disruption of normal effector func-
tion of macrophages, B lymphocytes, CD4+ T lymphocyte, CD8+ T
lymphocytes and dendritic cells. In almost all of the diseases the
immunity disruptive mechanisms are not fully understood.

8.1. Tropism for cells of monocyte/macrophage lineage

EIAV, SRLV, FIPV, ADV and ASFV infect and persist in cells of
monocyte/macrophage lineage; in domestic pig, ASFV causes an
acute infection but virus persists subclinically in the natural reser-
voir hosts namely bush pigs, warthogs and ticks. Interestingly, the
latter namely acute disease in the secondary host but persistent,
subclinical infection in the reservoir hosts is also the case for T
lymphocyte-tropic MCF  viruses. In all five viral diseases there is
virus- mediated immune evasion via disruption of macrophage
function possibly involving different mechanisms In four (EIAV,
SRLV, FIPV and ADV) infection is chronic despite a strong humoral
and cellular immune response. The two SRLVs elicit significantly
different antibody responses [4] (and references therein). CAEV is
intrinsically poor inducer of VN antibodies and goats with persis-
tent CAEV infection produce antibodies to all viral proteins but non-
neutralising whereas VMV  induces VN antibodies which give rise to
mutant viral strains during the persistent infection [4] (and refer-
ences therein). The viral long terminal repeat (LTR) region contain
sequences for transcription initiation and mRNA capping sequences
important in the regulation and control of viral mRNA synthesis.
For VMV  at least, the trigger involves cellular factors binding to
AP-1 promoter while in CAEV, LTR activation may  involve inter-
action of TNF alpha and interferon gamma  with the U3 region of
the viral LTR [4,37,50,56–60].  In VMV  CD4+ T cells are required
to establish infection in macrophages but not in dendretic cells
[55]. The LTRs have been shown to be important in determin-
ing cell tropism and pathogenic phenotype of EIAV and the virus
acquires env and LTR mutations during persistent infection in vivo
[12,236,237]. Sheep’s dendretic cells become productively infected
following subcutaneous plus intradermal inoculation with VMV
[49]. The role of dendretic cells in SRLV disease remains poorly
investigated due to the lack of markers for ovine dendritic cell
[49]. This would seem to be an important shortcoming in view
of their central role in antigen presentation and the initiation of
the immune response. Modulation of dendretic cell by viruses is
at an early stage of investigation because of the lack of mark-
ers and reagents for dendritic cells generally. We  however expect
increased interest and progress in the understanding of disease
pathogenesis as markers for dendritic cells are identified for the
various species and antibodies raised against them. The switching

over of latent to productive cycle of SRLV infection in monocyte-
macrophage is analogous to the situation in HIV/SIV infection of T
lymphocytes namely latently infected lymphocytes must be acti-
vated by cellular factors to induce productive virus infection [238].
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ntibody-mediated enhancement infection of macrophages via Fc
eceptor binding has also been recorded for HIV [239]. In contrast
o the lentiviruses, ASFV modulates signalling pathways in infected

acrophages of domestic pigs through the agency of immunosup-
ressive proteins [213].

.2. Viral immune complex disease and pathogenic antibodies

In EIAV, VMV, ADV and FIPV there is, as a consequence of the per-
istent monocyte and macrophage infection, the emergence of viral
ariants which the immune response fails to clear [4] (and 26–30
EIAV) and 33–34(SRLV)). In visna/maedi SRLV disease induction
f CD8+ T lymphocytes in a defective maturation state (expressing
HC  class II DR and DQ molecules but not interleukin-2 receptors)

nd hence lack lymphoproliferative and cytolytic activities as also
bserved in infections by primate T lymphocyte- tropic viruses (HIV
nd SIV) [54] merits further investigation; CD4+ T lymphocytes in
RLV infected hosts also appear to be defective [55]. In monoctye,
RLV infection is latent in that there is no virus transcription and
he infected monocyte is neither killed by the virus nor by the host’s
mmune response. SRLVs do not infect T cells and there is no T cell
epletion and immunodeficiency. The strong immune responses in
oth persistent FIPV and ADV diseases are also defective in that

nfection is not cleared but instead antibody opsonises the virus
nd the complexes (IC) bind to uninfected monocyte/macrophages
ia the cellular Fc receptor and initiate replication adding to the
irus burden of the host. In all four viral infections there is chronic
ntigenic stimulation and an ineffective immune response by the
ost. This ongoing scenario results in deposition of IC in various
issues, inflammation and activation of complement. For SRLVs an
mportant distinction is the lack of VN antibodies in persistent CAEV
nfection of goats whereas sheep with persistent VMV  infection
roduce VN antibodies and result in emergence of mutant viruses
ot efficiently removed by the prevalent VN antibodies. Not with-
tanding this difference, in both cases infectious virus is opsonised
o be taken up by and infecting further macrophages via the Fc
eceptor binding. Ineffective antibodies and IC formation is also a
eature in chronic infection of cats by FeLV which infect B and T lym-
hocyte as well as monocytes/macrophages and virus also causes
ther immune pathology. In all cases there is widespread inflam-
ation in many tissues along with exudation of fluid. In chronically

eLV infected cats, viral antibodies, the so-called pathogenic anti-
odies, do not aid virus clearance but instead contribute towards
athology.

.3. Virus dessimination

The progeny virus produced by infected macrophages is the
ain mode of virus dessimination to target tissues in infections

y EIAV, SRLVs, FIPV, ADV and AFSV; dendritic cells in VMV  may
lso be important.

Viral tropism for both the macrophage and lymphocyte is
mportant in diseases due to CDV and FeLV. This is with
espect to establishing the infection following the oro-nasal expo-
ure, primary replication in the respiratory tract including the
acrophages, then infection of lymphocytes followed by virus dis-

emination to target tissues by mobile infected macrophages and
ymphocytes. CDV infection of dogs often results in multi-organ
iseases including the brain but relevant for the present account

s the myelin destruction in the brain (see Section 8.5 below). In
eLV disease, effects of infection of bone marrow macrophages
nd B lymphocytes, thymus T cells, in chronically infected cats is

mmunosuppression, immunodeficiency, dysfunctional lymphoid
ells resulting in abnormal humoral, cellular and phagocytic immu-
ity; viral antibodies in such cats do not aid in virus clearance
ut instead contribute towards pathology and have therefore been
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called pathogenic antibodies and are a cause of nephrotoxic IC
lesions, complement activation and depletion.

8.4. Lymphocyte-tropic viruses

The lymphocyte-tropic viruses causing immune pathology
include FIV, BLV, BVDV and MCFV. The pathology due to FIV and
the disease pathogenesis is similar to other T cell tropic lentiviruses
(HIV/AIDS and SIV). In vivo, FIV infects CD4+ and CD8+ lymphocytes
causing a persistent infection, leucopoenia (depletion of CD4+ and
CD8+ T lymphocytes) and immunodeficiency due to disrupted T cell
effector functions but mechanisms involved remain to be fully elu-
cidated. The mechanisms causing transient immunosuppression
and lymphocyte killing and leucopoenia (decrease in numbers of
T and B lymphocytes and neutrophils) in BVDV infection of cat-
tle have to our knowledge not been reported and it is possible that
BVDV, like the related CSFV [204] infects and replicates in dendritic
cell and causes leucopoenia [204]. BLV infection of lymphocytes
may  result in a carrier state or neoplasia or persistent lymphocyto-
sis. Upon infection there is an immune response to BLV structural
proteins. However the opinion is divided regarding the effect of BLV
infection on host’s immune response. The MCF  viruses of AlHV-1
and OvHV-2 cause subclinical, persistent infection in the natural
reservoir hosts, wildebeest and sheep respectively but trigger a
severe and generally a fatal lymphoproliferative systemic disease
in secondary hosts such as cattle, bison, pigs and various species
of deer [147–153,160].  In the secondary hosts the immunotype
of T lymphocyte that infiltrate the lesions (lymphoproliferation,
lymphocytic vasculitis and mucosal ulceration) still remains unde-
fined. The most recent immunotyping data of vascular lesions from
bison with sheep-associated OvHV-2 MCF  have concluded that the
predominant CD8+ T cells in these lesions were cytotoxic, MHC-
unrestricted lymphocytes of the innate immune system and not
CD8+ ɑß T cells but the cytokine profiles of these invading cells
remains to be defined [174]. These authors further conclude that
MCF  is essentially a disease of immune dysregulation. However the
causative mechanism remains to be defined and so is the immuno-
types of T cells in MCF  lesions in cattle, bison and deer due to AlHV-1
and OvHV-2 in cattle and deer.

An interesting, much studied lesion in acute ASFV disease in
domestic pig is the massive apoptic destruction of B and T lympho-
cytes which is in a marked contrast to the situation in the reservoir
host namely the bush pig. The apoptic damage of lymphocytes
in domestic pigs due to ASFV infection is currently and generally
accepted to result from some unknown by-stander mechanism (see
Section 8.5 below).

8.5. By-stander damage and demyelination

For CDV demyelination there is no general consensus regard-
ing the exact causative mechanism for the lesion as is also the
case for measles virus demyelination in human infections. However
ideas put forward comprise: (i) virus infection mediated metabolic
disruption of white matter cells; (ii) antiviral inflammatory and T
cell cytotoxicity triggering a by-stander damage; (iii) virus-induced
autoimmunity and; (iv) viral persistence and recurrent immune
activation/responses resulting in damage. Although CTL killing is
a specific and often a directed response, the release of cytotoxic
molecules and cytokines such as tumour necrosis factor, particu-
larly at the peak of immune response, when CTL numbers can reach
high levels, may  result in by-stander killing of uninfected cells. This
may  be relevant in CDV demyelinaton and possibly in ASFV apo-

ptosis of lymphocytes in domestic pigs. Demyelination has been
described in visna/maedi disease. Once more, chronic stimulation
of the immune system in VMV  infection may  cause the myelin
destruction via a bystander mechanism.
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.6. Immunoprophylaxis

The prospects of vaccines against some of the diseases described
bove remain distant at present; some EIAV, SRLV and FIV vaccines
ave caused increased immune pathology. Hence these diseases
ose a major challenge for vaccine development. Not withstanding
he difficulties, we believe a better understanding of the aberrant
efective immune responses of the diseases described here may  aid

n the development of effective vaccines.
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