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Abstract

Progressive supranuclear palsy (PSP) is a movement disorder with prominent tau neuropathology. 

Brain diseases with abnormal tau deposits are called tauopathies, the most common being 

Alzheimer’s disease. Environmental causes of tauopathies include repetitive head trauma 

associated with some sports. To identify common genetic variation contributing to risk for 

tauopathies, we carried out a genome-wide association study of 1,114 PSP cases and 3,247 

controls (Stage 1) followed up by a second stage where 1,051 cases and 3,560 controls were 

genotyped for Stage 1 SNPs that yielded P ≤ 10−3. We found significant novel signals (P < 5 × 
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10−8) associated with PSP risk at STX6, EIF2AK3, and MOBP. We confirmed two independent 

variants in MAPT affecting risk for PSP, one of which influences MAPT brain expression. The 

genes implicated encode proteins for vesicle-membrane fusion at the Golgi-endosomal interface, 

for the endoplasmic reticulum unfolded protein response, and for a myelin structural component.

PSP is a rare neurodegenerative movement disorder clinically characterized by falls, axial 

rigidity, vertical supranuclear gaze palsy, bradykinesia, and cognitive decline. Though PSP 

is rare (prevalence is 3.1–6.5/100,0001), after Parkinson’s disease (PD), PSP is the second 

most common cause of degenerative parkinsonism2. PSP is a tauopathy with abnormal 

accumulation of tau protein within neurons as neurofibrillary tangles (NFTs), primarily in 

the basal ganglia, diencephalon, and brainstem, with neuronal loss in globus pallidus, 

subthalamic nucleus and substantia nigra. Abnormal tau also accumulates within 

oligodendroglia and astrocytes3. In Alzheimer’s disease (AD), even though all cases have 

NFTs, Aβ plaques are closely tied to the primary disease process, and thus AD is a 

secondary tauopathy. PSP is a primary tauopathy because tau is the major abnormal protein 

observed. Both environmental insults and inherited factors contribute to the risk of 

developing tauopathies4. Repetitive brain trauma, associated with certain sports, can cause 

chronic traumatic encephalopathy associated with tau deposits5. Viral encephalitis, 

associated with subsequent parkinsonism, is also associated with tau neuropathology. In 

PSP, neurotoxins4 and low education levels6 may also contribute to risk. Genetic risk for 

PSP is in part determined by variants at a 1 Mb inversion polymorphism that contains a 

number of genes including MAPT, the gene that encodes tau7. The inversion variants are 

called H1 and H2 “haplotypes”, with H1 conferring risk for PSP8. H1 also contributes to 

risk for corticobasal degeneration9,10 and Guam amyotrophic lateral sclerosis/parkinsonism 

dementia complex11, both rare tauopathies. H1 does not contribute to risk for AD. 

Surprisingly, H1 is also a risk factor for PD12, a movement disorder with clinical features 

that overlap those of PSP, yet in PD there are no neuropathologically recognizable tau 

containing lesions.

We performed a genome wide association (GWA) study of PSP to identify genes that 

modify risk for this primary tauopathy. We performed a two-stage analysis to maximize 

efficiency while maintaining power13,14. For Stage 1 we used only autopsied cases (n = 

1,114), thereby essentially eliminating incorrect diagnoses. These were contrasted with 

3,287 controls; 96% of cases and 90% of controls were of European ancestry (Table 1, 

Supplementary Table 1). We assessed association between genotypes at 531,451 single 

nucleotide polymorphisms (SNPs) and PSP status among subjects of all ancestries 

(Supplementary Table 2) and those of only European ancestry (Table 2) using an additive 

model. Results from both ancestry groups were similar. Because our control samples were 

younger than cases, we compared their allele frequencies at significant and strongly 

suggestive SNPs to those of older controls (N = 3,816) from three datasets from the NIH 

repository Database for Genotypes and Phenotypes (Supplementary Table 3). Only SNPs 

with no significant differences in allele frequencies between old and young controls are 

presented in Table 2.
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Stage 1 P-values (P1) for SNPs in three regions crossed the significance threshold of P < 5 × 

10−8 (Table 2, Fig. 1). At 1q25.3, a SNP in STX6 crossed this threshold (P1 = 1.8 × 10−9). 

Another SNP at 3p22.1 in MOBP crosses this threshold (P1 = 1.0 × 10−9). The third region 

was 17q21.31, in which 58 SNPs had P1 < 5 × 10−8 (Table 2, Fig. 2a). This focus of 

association is the approximately 1 Mb H1/H2 inversion polymorphism containing MAPT15.

SNPs for Stage 2 were selected from the original set if they yielded a P1 < 10−3. We 

assessed 4,099 SNPs for association in 1,051 cases, mostly living subjects clinically 

diagnosed with PSP (Supplementary Table 4) and 3,560 control subjects, all of European 

ancestry. We also included 197 ancestry informative markers16 to evaluate population 

substructure. Clinically diagnosed PSP17 is reasonably concordant with autopsy results18. 

We estimated the diagnostic misclassification rate as 12%, which has only a small impact on 

power (Online Methods).

All three loci associated in Stage 1, were replicated by joint analysis (Table 2, Figs. 1 and 2). 

Joint analysis revealed two new loci with joint P-values (PJ) below the genome-wide 

significant threshold. One was at 2p11.2, within EIF2AK3 (PJ = 3.2 × 10−13). Another, 

rs12203592 (PJ = 6.2 × 10−15), at 6p25.3, highlighted IRF4, with a neighboring SNP in 

EXOC2, rs2493013 (PJ = 6.0 × 10−7); rs2493013 was significant after controlling for 

rs12203592 at P < 1 × 10−3 (Supplementary Table 5). However, allele frequencies for 

rs12203592 and rs2493013 in older controls were significantly different from those of our 

controls (Supplementary Table 3). Curiously, the older control data sets were all 

significantly different from each other. While rs12203592 alleles frequencies vary widely 

across Europe19, we could not ascribe these fluctuations amongst controls to either ancestry 

or genotyping artifacts. In the joint analysis, 3 other loci reached suggestive association (an 

intergenic region at 1q41, PJ = 2.8 × 10−7; BMS1, PJ = 4.9 × 10−7; SLCO1A2, PJ = 1.9 × 

10−7; Supplementary Table 6 and Figure 5).

In the MAPT region, most of the PSP-associated SNPs mapped directly or closely onto 

H1/H2, producing very small P-values (e.g., for rs8070723, P1 = 2.1 × 10−51, PJ = 1.5 × 

10−116). H1 confers risk and 95% of PSP subject chromosomes are H1 compared to 77.5% 

of control chromosomes. In the Stage 1 autopsy cases, the odds ratio (OR) is 5.5 [confidence 

interval (C.I.) 4.4 – 6.86, Table 2], which is stronger than the OR for the APOE ε3/ε4 

genotype as a risk locus for AD20. The OR for the Stage 2 PSP samples was comparable to 

the Stage 1 OR, evidence that the clinically and autopsy-diagnosed cohorts are similar in 

composition.

If all of the risk from 17q21.31 were associated with H1/H2, controlling for H1/H2 (using 

rs8070723 as a proxy) should be sufficient to make association at all other loci in this region 

non-significant. That is not the case; instead certain SNPs remained associated, with the 

maximum falling in MAPT (rs242557) (Table 2, Figure 2, Supplementary Table 5). No other 

17q21.31 SNPs showed association after controlling for rs8070723 and rs242557 genotypes. 

SNP rs242557 was previously identified as a key regulatory polymorphism influencing 

MAPT expression21. Note that rs242557 accounts for only part of the total risk associated 

with H1/H2 (Table 2).
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The SNPs used to detect a GWA signal are not necessarily the risk-causing variants. For 

STX6 and EIF2AK3, there are non-synonymous SNPs in close proximity to and highly 

correlated with the top GWA SNPs (Supplementary Table 7) making these coding changes 

candidates for the pathogenic change. To evaluate the possibility that some risk-variants 

regulate gene expression, we analyzed the correlations between gene expression levels from 

two brain regions of 387 normal subjects and SNP genotypes for the regions listed in Table 

2. Two regions showed strong genotype-expression associations (Fig. 3). SNPs falling in or 

near MOBP have some effect on MOBP expression, but are more strongly correlated with 

SLC25A38 expression, which is 70 kb from MOBP (Fig. 3a). This effect on SLC25A38 is 

seen in cerebellum but is weaker in the frontal cortex.

The second region showing a strong genotype-expression correlation is the MAPT inversion 

region. SNP alleles across the entire H1/H2 inversion and flanking regions show strong 

correlation with not only MAPT expression (p = 8.71 × 10−28 for multiple SNPs), but also 

with ARL17A (P = 9.2 × 10−22), PLEKHM1 (P = 1.0 × 10−9), and LRRC37A4 (P = 2.2 × 

10−35)12. Note that while MAPT expression is correlated with SNPs across the entire 

inversion region, the SNPs influencing ARL17A are associated with a subset of regional 

SNPs and these are not identical to the SNPs affecting MAPT expression. Expression of 

CRHR1 and KIAA1267, genes that are in the inversion region and that flank MAPT, is not 

correlated with H1/H2 SNPs.

To distinguish between the effects on gene expression of the inversion versus other 

independent effects, we controlled for H1/H2 as was done for association with PSP (Table 

2). After controlling for H1/H2, all significant genotype-expression correlation for MAPT 

and LRRC37A4 disappears (Fig. 3c) showing that either the orientation of this region or a 

polymorphism that maps onto H1/H2, determines MAPT expression. In contrast, controlling 

for H1/H2 has no effect on genotype-expression correlations for ARL17A. Potential eSNPs 

for ARL17A include rs242557 (Table 2), which is highly associated with PSP but more 

modestly correlated with ARL17A expression, and rs8079215, which is highly correlated 

with ARL17A expression but not as strongly with risk for PSP. Statistical modeling of these 

data produce the following conclusions: haplotypes involving H1 and rs242557 alleles 

predict a highly significant portion of the variability of ARL17A expression; however, 

essentially all of that variance can be explained by alleles at rs8079215, which are correlated 

with H1/H2 and rs242557 alleles; and that alleles at rs8079215 cannot predict risk for PSP 

independent of H1/H2 status even though they are excellent predictors of ARL17A 

expression. In sum, risk for PSP does not rise and fall with ARL17A expression. The global 

MAPT brain region expression analyzed here does not explain how rs242557 alleles confer 

risk to PSP. Yet this SNP or a correlated polymorphism is assumed to have a regulatory 

effect because there are no coding variants in MAPT brain isoforms that are candidate 

pathogenic variants. One possible explanation is that rs242557 alleles could affect 

alternative splicing without altering total MAPT expression levels22,23.

Because AD and PSP are tauoptahies, and because H1 is a shared risk factor for PSP and 

PD, we determined whether any confirmed AD24–28 or PD29 loci also produced suggestive 

evidence for PSP association (Supplementary Table 8). Besides the overlap between PD and 

PSP at MAPT, the single noteworthy result was from rs2075650 in TOMM40 that yielded PJ 
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= 1.28 × 10−5 for association with PSP. TOMM40 is adjacent to APOE and rs2075650 tags 

the AD risk allele, e4, in APOE. The effect in PSP is opposite that seen in AD: e4 frequency 

is elevated in AD and diminished in PSP (for rs2075650, the estimated MAF in cases is 0.11 

versus 0.15 in both our young and older controls; r2 between rs2075650 and e4 is 0.33).

Our work suggests a number of intriguing insights into PSP. One comes from EIF2AK3, a 

gene that encodes PERK, a component of the endoplasmic reticulum (ER) unfolded protein 

response (UPR). When excess unfolded proteins accumulate in the ER, PERK is activated 

and protein synthesis is inhibited allowing the ER to clear mis-folded proteins and return to 

homeostasis. The UPR is active in PSP30, AD31, and PD32. In PSP, activated PERK is in 

neurons, oligodendrocytes, and astrocytes30. In AD, activated UPR components are found in 

pre-tangle neurons in a number of brain regions31. In PD, UPR activation occurs in 

neuromelanin containing dopaminergic neurons in the substantia nigra32. How the UPR 

contributes to PSP pathogenesis is unclear because the primary mis-folded protein in PSP, 

tau, is not a secreted protein and thus is not expected to traffic through the ER.

The PSP susceptibility gene STX6 encodes syntaxin 6 (Stx6), a SNARE class protein. 

SNARE proteins are part of the cellular machinery that catalyzes the fusion of vesicles with 

membranes33. Stx6 is localized to the trans-Golgi network and endosomal structures34. 

Since our work implicates ER-stress in PSP pathogenesis, genetic variation at STX6 could 

influence movement of mis-folded proteins from the ER to lysosomes via the endosomal 

system.

MOBP (PJ = 1 × 10−16), like the myelin basic protein gene (MBP), encodes a protein 

(MOBP) that is produced by oligodendrocytes and is present in the major dense line of CNS 

myelin. MOBP is highly expressed in the white matter of the medulla, pons, cerebellum, and 

midbrain35, regions affected in PSP. Our findings suggest that myelin dysfunction or 

oligodendrocyte mis-function contributes to PSP pathogenesis.

Our work generates a testable translational hypothesis based on the results for EIK2AK3. 

Our work suggests that perturbation of the UPR can influence PSP risk, and that the UPR is 

not just a downstream consequence of neurodegeneration. Thus pharmacologic modulation 

of the UPR is a potential therapeutic strategy for PSP36,37.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Association results for 1q25.3 STX6. (b) Association results for 2p11.2 EIF2AK3. (c) 

Association results for 3p22.1 MOBP regions. –log10 P values are shown for Stages 1 and 2 

and the joint analyses. Recombination rate, calculated from the linkage disequilibrium (LD) 

structure of the region, is derived from Hapmap3 data. LD, encoded by intensity of the 

colors, is the pairwise LD of the most highly associated SNP at Stage 1 with each of the 

SNPs in the region. Transcript positions are shown below each graph.

Höglinger et al. Page 13

Nat Genet. Author manuscript; available in PMC 2012 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(a) Association results for the 17q21.31 H1/H2 inversion polymorphism (40,974,015 – 

41,926,692 Kb) and flanking segments. (b) Association results for 17q21.31 controlling for 

H1/H2. Results are shown for Stages 1 and 2 and the joint analyses. Recombination rate, 

calculated from the linkage disequilibrium (LD) structure of the region, is derived from 

Hapmap3 data. LD, encoded by intensity of the colors, is the pairwise LD of the most highly 

associated SNP at Stage 1 with each of the SNPs in the region.

Höglinger et al. Page 14

Nat Genet. Author manuscript; available in PMC 2012 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a) Association results for the relationship between SNP genotypes and mRNA transcripts 

from the cerebellum and frontal cortex for the SLC25S38/MOBP region. (b) Association 

results for the relationship between SNP genotypes and mRNA transcripts from the 

cerebellum and frontal cortex for the H1/H2 inversion polymorphism region. (c) Association 

results for the relationship between SNP genotypes and mRNA transcripts from the 

cerebellum and frontal cortex for the H1/H2 inversion polymorphism region controlling for 

H1/H2. The color of the circle corresponds to the color assigned each gene and each SNP is 
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tested against multiple cis transcripts. The data presented here are independent samples from 

those used previously by Simon-Sanchez et al.12.
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