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Noradrenaline is an important neuromodulator in the cerebellum. We previously found
that noradrenaline depressed cerebellar Purkinje cell activity and climbing fiber–Purkinje
cell synaptic transmission in vivo in mice. In this study, we investigated the effect
of noradrenaline on the facial stimulation-evoked cerebellar cortical mossy fiber–
granule cell synaptic transmission in urethane-anesthetized mice. In the presence of
a γ-aminobutyrateA (GABAA) receptor antagonist, air-puff stimulation of the ipsilateral
whisker pad evoked mossy fiber–granule cell synaptic transmission in the cerebellar
granular layer, which expressed stimulus onset response, N1 and stimulus offset
response, N2. Cerebellar surface perfusion of 25 µM noradrenaline induced decreases
in the amplitude and area under the curve of N1 and N2, accompanied by an increase
in the N2/N1 ratio. In the presence of a GABAA receptor blocker, noradrenaline
induced a concentration-dependent decrease in the amplitude of N1, with a half-
maximal inhibitory concentration of 25.45 µM. The noradrenaline-induced depression
of the facial stimulation-evoked mossy fiber–granule cell synaptic transmission was
reversed by additional application of an alpha-adrenergic receptor antagonist or
an alpha-2 adrenergic receptor antagonist, but not by a beta-adrenergic receptor
antagonist or an alpha-1 adrenergic receptor antagonist. Moreover, application of an
alpha-2 adrenergic receptor agonist, UK14304, significantly decreased the synaptic
response and prevented the noradrenaline-induced depression. Our results indicate
that noradrenaline depresses facial stimulation-evoked mossy fiber–granule cell synaptic
transmission via the alpha-2 adrenergic receptor in vivo in mice, suggesting that
noradrenaline regulates sensory information integration and synaptic transmission in the
cerebellar cortical granular layer.

Keywords: adrenergic receptor (AR), cerebellum, facial stimulation, electrophysiology, mossy fiber-granule cell
synaptic transmission

Abbreviations: NA, noradrenaline; CF, climbing fiber; GABA, γ-aminobutyrate; GC, granule cell; MF, mossy fiber; GL,
granular layer; PC, Purkinje cell; AR, adrenoceptor; AUC, area under the curve; LC, locus coeruleus; PKA, protein kinase
A; ACSF, artificial cerebrospinal fluid.
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INTRODUCTION

The cerebellar cortex acquires information from three classes of
afferents: mossy fibers (MFs), climbing fibers, and multilayered
fibers, and generates motor-related output by Purkinje cells
(PCs) (Haines and Dietrichs, 2002). Under in vivo conditions,
granule cells (GCs) exhibit a low frequency of spontaneous
firing, but they are very sensitive to sensory stimulation (van
Beugen et al., 2013). This sensory stimulation induces spike
firing followed by a GABAergic inhibitory response in the
GCs (Eccles et al., 1967; Ito, 1984; Jakab and Hámori, 1988),
which precisely encodes the sensory information (D’Angelo
et al., 2005; Jörntell and Ekerot, 2006). Therefore, it has
been suggested that the GCs both exhibit high-frequency and
high-fidelity properties in response to sensory stimulation,
which could ensure that accurate information is transmitted
to PCs (Arenz et al., 2008; van Beugen et al., 2013; Bing
et al., 2015), while also filtering out unassociated components
(Chadderton et al., 2004).

Noradrenaline (NA) is a widely studied neuromodulator
involved in the modulation of learning and memory in the central
nervous system. Anatomical studies indicate that noradrenergic
(NAergic) fibers originate in the locus coeruleus (LC) and
distribute through the cerebellar cortex through a multilayered
fiber pathway (Kimoto et al., 1978; Schroeter et al., 2000).
Noradrenergic inputs of the cerebellum have been shown to be
involved in cerebellum-dependent motor learning (McCormick
and Thompson, 1982; Keller and Smith, 1983; Watson and
McElligott, 1984; Pompeiano, 1998) and long-term depression
induction at PF–PC synapses in the flocculus by activating
protein kinase A (PKA) (Inoshita and Hirano, 2021). Either
iontophoretic application of NA or activation of the LC-induced
potentiation of GABAergic transmission at molecular layer
interneurons–PC synapse results in an inhibition of the PC
spontaneous simple spike activity via activation of adrenoceptors
(ARs) (Mitoma and Konishi, 1999; Saitow et al., 2000).

The ARs are G-protein-coupled receptors that come in two
types, α-AR and β-AR. Both α-ARs and β-ARs are present in
the cerebellar cortex, including the granular layer (GL) (McCune
et al., 1993). The roles of α-ARs and β-ARs in the cerebellar
cortex vary. Several studies demonstrated that NA could regulate
cerebellar-dependent learning tasks and long-term memory via
activation of β-ARs (Cartford et al., 2004; Schambra et al.,
2005; Hein, 2006). In vitro, NA facilitated mouse cerebellar
parallel fiber–PC synaptic transmission via activation of β-ARs,
but it suppressed synaptic transmission via α2-ARs (Lippiello
et al., 2015). However, NA facilitated spontaneous inhibitory
postsynaptic currents of PCs via simultaneous activation of
both α1-ARs and β-ARs located at the presynaptic terminals
of molecular layer interneurons, which could synergically boost
GABAergic transmitter release (Hirono et al., 2014). In addition,
activation of α2-ARs by NA decreased the probability of
transmitter release at climbing fiber–PC synapses, which in
turn suppressed the climbing fiber-evoked dendritic calcium
transients and controlled the induction of synaptic plasticity
at parallel fiber–PC synapses by modulating dendritic calcium
influx (Carey and Regehr, 2009). We previously found that

NA-activated presynaptic α2-AR regulated climbing fiber–PC
synaptic transmission via the PKA signaling pathway, suggesting
that the NAergic fibers from the nucleus of the LC might regulate
the output behavior of PC by suppressing the information
transmission from the inferior olivary nucleus to the cerebellar
cortex in vivo in mice (Sun et al., 2019; Cui et al., 2020).

Taken together, the effects of NA on cerebellar cortical
neuronal synaptic transmission have been well studied in vitro,
but the modulatory function of NA on sensory information
processing in the cerebellar GL is not well understood.
Therefore, in this study, we combined electrophysiological
and pharmacological approaches to investigate the effects
of NA on the facial stimulation-evoked MF-GC synaptic
transmission in the absence the GABAergic inhibition in
urethane-anesthetized mice.

MATERIALS AND METHODS

All the experimental procedures were approved by the Animal
Care and Use Committee of Yanbian University and performed
in accordance with the animal welfare guide lines of the National
Institutes of Health. The permit number is SYXK (Ji) 2011-
006. Anesthesia and surgical procedures have been described
previously (Chu et al., 2011). In brief, either male (n = 36) or
female (n = 30) adult (6–8 weeks old) ICR mice were anesthetized
with urethane (1.1 g/kg body weight, intraperitoneal injection,
i.p). After a water tight chamber was prepared, a 1–1.5 mm
craniotomy was opened to expose the cerebellar surface of Crus
II. The brain surface was superfused with oxygenated artificial
cerebrospinal fluid (ACSF: 125 mM NaCl, 3 mM KCl, 1 mM
MgSO4, 2 mM CaCl2, 1 mM NaH2PO4, 25 mM NaHCO3, and
10 mM D-glucose) with a peristaltic pump (Gilson Minipulse 3;
Villiers, LeBel, France). The rectal temperature was monitored,
and keeped at 37.0± 0.2◦C.

The sensory stimulation was performed by air-puff (60 ms,
50–60 psi) of the ipsilateral whisker pad through a 12-gauge
stainless steel tube connected to a pressurized injection system
(Picospritzer

R©

III; Parker Hannifin Co., Pine Brook, Fairfield, NJ,
United States). The whiskers were cut off to avoid the stimulation
of the whiskers. The air-puff stimuli were controlled by a personal
computer and were synchronized with the electrophysiological
recordings and delivered at 0.05 Hz via a Master 8 controller
(A.M.P.I., Jerusalem, Israel) and Clampex 10.4 software.

Local field potential recordings from GL were performed with
an Axopatch 200B amplifier (Molecular Devices, Foster City,
CA, United States) under current clamp conditions (I = 0). The
potentials were acquired through a Digidata 1440 series analog-
to-digital interface on a personal computer using Clampex 10.4
software. Recording electrodes were filled with ACSF and with
resistances of 3–5 M�. Air-puff (60 ms, 50–60 psi) of the
ipsilateral whisker pad evoked a paired-negative components
N1, N2, accompanied with a positive component P1 in the GL
of cerebellar cortical folium Crus II (Figure 1A). According
to our previous studies (Wu et al., 2014; Bing et al., 2015;
Ma et al., 2019), N1 and N2 were identified as MF-GC
synaptic transmission which evoked by the stimulation-on (N1)
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FIGURE 1 | Noradrenaline (NA) depresses the facial stimulation-evoked
mossy fiber-granule cell (MF-GC) synaptic transmission in mouse cerebellar
cortex. (A) Representative field potential recording traces showing the air-puff
stimulation (60 ms, 60 psi) evoked MF-GC synaptic transmission in a mouse
cerebellar GL during treatment with artificial cerebrospinal fluid (ACSF), NA
(25 µM) and recovery (washout). (B) Summary of data showing the time
course of normalized amplitude of N1 during NA application. Bars denote the
data points which were used for panels (C–E) in treatments with ACSF, NA,
and washout. (C) Mean value (± SEM) with individual data showing the
normalized area under the curve (AUC) of N1 in treatments with ACSF, NA,
and recovery (washout). (D,E) Mean value (± SEM) with individual data
showing the normalized amplitude of N2 (D) and the N2/N1 ratio (E) in
treatments with ACSF, NA and recovery (washout). (F) The
concentration-response curve shows the NA-induced decrease in amplitude
of the facial stimulation-evoked of N1. The IC50 value obtained from the curve
was 25.45 µM. The number of recordings tested for each concentration is
indicated near the bars. *p < 0.05 versus control (ACSF); n = 6 in each group.

and stimulation-off (N2), respectively. P1 was identified as
GABAergic inhibitory components which could be abolished by
GABAA receptor blocker.

The reagents included urethane; NA; phentolamine (Phen),
nonselective α-AR antagonist; propranolol (Prop), a nonselective
β-AR blocker; prazosin (Praz), α1-AR antagonist; yohimbine
(Yohim), α2-AR antagonist; UK14304 (UK), α2-AR agonist and
gabazine (SR95531) were bought from Sigma-Aldrich (Shanghai,
China). The chemicals were dissolved in ACSF and applied
to the cerebellar surface at 0.5 ml/min by a peristaltic pump
(Gilson Minipulse 3; Villiers, Le Bel, France). The ACSF included

gabazine (20 µM) during all recordings to prevent GABAA
receptor-mediated inhibition.

Electrophysiological data were analyzed using Clampfit 10.4
software (Molecular Device, Foster City, CA, United States). The
amplitude and area under the curve (AUC) of the evoked field
potential responses were maintained constant for an individual
experiment in treatments of ACSF, drugs and recovery. It has
been suggested that changes in the N2/N1 ratio vary inversely
with the presynaptic release of transmitter (Mennerick and
Zorumski, 1995; Hashimoto and Kano, 1998). We calculated
N2/N1 ratio to mirror the probability of vesicular release at
the MF-GC synapse (Zhang et al., 2020). All data are expressed
as the mean ± SEM. Differences between the mean values
recorded under control and test conditions were evaluated with
the one-way ANOVA with Tukey’s post-hoc test using SPSS
(Chicago, IL, United States) software. P values below 0.05
were considered to indicate a statistically significant difference
between experimental groups.

RESULTS

Noradrenaline Depressed Facial
Stimulation-Evoked Mossy Fiber-Granule
Cell Synaptic Transmission in Granular
Layer via α-Adrenoceptors
Air-puff stimulation on the ipsilateral whisker pad evoked field
potential responses in the GL (depth: 300 µm), which expressed
strong negative components N1 and N2, accompanied with a
positive component P1 in the GL of the cerebellar cortical folium
Crus II (Figure 1A). Based on our previous studies (Wu et al.,
2014; Bing et al., 2015; Ma et al., 2019), N1 and N2 were
identified as MF-GC synaptic transmission, while P1 was the
GABAergic inhibitory component (Ma et al., 2019). To study
the effect of NA on MF-GC synaptic transmission, we recorded
the facial stimulation-evoked field potential response in the GL
in the absence of GABAergic inhibition. In the presence of the
GABAA receptor blocker, gabazine (20 µM), air-puff stimulation
(60 ms, 60 psi) of the ipsilateral whisker pad induced N1 and
N2 in the GL (Figures 1A,B). Cerebellar surface perfusion
of NA (25 µM) decreased the amplitude and area under the
curve (AUC) of N1 (Figure 1A). In the presence of NA, the
normalized amplitude of N1 was 79.1 ± 5.5% of baseline [ACSF:
100.1 ± 4.9%; F (3, 54) = 13.25, P = 0.023; n = 6; not shown],
and the normalized AUC of N1 was 79.5 ± 5.6% of baseline
[99.8 ± 4.6%; F (3, 60) = 14.76, P = 0.029; n = 6; Figure 1C].
In addition, the application of NA decreased the normalized
amplitude of N2 to 90.4± 5.8% of baseline [ACSF: 100.1± 4.3%;
F (2, 28) = 10.92, P = 0.041; n = 6; Figure 1D]. However,
NA produced a significant increase in the N2/N1 ratio from
baseline (ACSF: 99.7 ± 4.9%) to 114.3 ± 6.3% [F (2, 33) = 14.33,
P = 0.021; n = 6; Figure 1E]. The NA-produced inhibition of
the amplitude of N1 was concentration-dependent. The lowest
effective dose was 5 µM, which decreased the amplitude of N1 to
94.95 ± 5.3% of baseline [ACSF: 100.1 ± 4.4%; F (2, 39) = 12.94,
P = 0.031; n = 6], while the maximum effective dose was 500
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µM, which decreased the amplitude of N1 to 52.3 ± 5.9% of
baseline [ACSF: 99.9± 4.6%; F (3, 63) = 17.57, P = 0.013; n = 10;
Figure 1F]. The half-maximal inhibitory concentration (IC50)
of NA was 25.45 µM. These results indicate that NA depresses
the facial stimulation-evoked MF-GC synaptic transmission in a
concentration-dependent manner.

We further employed a nonselective α-AR antagonist,
phentolamine (Phen), to determine whether NA induced
inhibition of MF-GC synaptic transmission through α-ARs.
Application of NA produced a significant decrease in the
amplitude of N1, which was completely reversed by additional
application of Phen (100 µM) (Figures 2A,B). In the presence
of a mixture of Phen and NA, the normalized amplitude of N1
increased from 79.3 ± 5.1% (NA, 25 µM) to 100.2 ± 5.9% [F (2,
19) = 11.76, P = 0.045; n = 6] of baseline [ACSF: 100.1 ± 5.0%,
F (1, 5) = 0.021, P = 0.89; n = 6; Figure 2C], and the normalized
AUC of N1 increased from 80.1 ± 5.1% (NA) to 98.6 ± 5.3% [F
(3, 54) = 14.82, P = 0.021; n = 6] of baseline [ACSF: 99.7 ± 4.3
%, F (1, 5) = 0.005, P = 0.95; n = 6; Figure 2D]. Additional
perfusion of Phen also reversed the NA-induced inhibition of N2.
The normalized amplitude of N2 increased from 89.8 ± 5.8%
(NA, 25 µM) to 100.3 ± 6.1% [NA + Phen; F (3, 39) = 13.64,
P = 0.024; n = 6] of baseline [ACSF: 100.2 ± 5.0%; F (1,
7) = 0.34, P = 0.59; n = 6; Figure 2E]. Moreover, the N2/N1
ratio decreased from 113.2± 6.1% (NA, 25 µM) to 100.1± 5.9%
[NA+ Phen; F (3, 60) = 17.24, P = 0.015; n = 6] of baseline [ACSF:
100 ± 4.1%; F (1, 5) = 0.003, P = 0.96; n = 6; Figure 2F]. These
results indicate that application of an α-AR antagonist reverses
the NA-induced inhibition of facial stimulation-evoked MF-GC
synaptic transmission.

We also employed a nonselective β-ARs antagonist,
propranolol (Prop, 100 µM) to determine whether NA induced
inhibition of MF-GC synaptic transmission through β-ARs.
Additional application of 100 µM Prop failed to reverse the
NA-induced inhibition of N1 (Figures 3A,B). In the presence of
a mixture of Prop and NA, the amplitude of N1 was 78.7 ± 5.5%
(NA + Prop; n = 6) of baseline [ACSF: 99.9 ± 4.9%; F (2,
39) = 12.61, P = 0.036; n = 6], which was similar to that in
the presence of NA alone [NA: 79.3 ± 5.5%; F (1, 7) = 1.52,
P = 0.33; n = 6; Figure 3C], and the normalized AUC of N1 was
80.5 ± 5.3% (NA + Prop; n = 6) of baseline [ACSF: 99.8 ± 4.7%;
F (3, 60) = 17.92, P = 0.012; n = 6], which was not significantly
different from that observed in the presence of NA alone [NA:
79.2 ± 5.4%; F (1, 4) = 0.009, P = 0.16; n = 6; Figure 3D].
Additional perfusion of Prop did not reverse the NA-induced
inhibition of N2. In the presence of Prop and NA, the normalized
amplitude of N2 was 89.8± 5.6% (NA+ Prop; n = 6) of baseline
[ACSF: 100.1 ± 3.6%; F (3, 60) = 15.03, P = 0.018; n = 6],
which was not significantly different from that observed in the
presence of NA alone [90.3 ± 5.3%; F (1, 7) = 0.02, P = 0.74;
n = 6; Figure 3E]. Moreover, the N2/N1 ratio increased to
114.1± 5.3% (NA+ Prop; n = 6) of baseline [ACSF: 100± 4.1%;
F (3, 54) = 14.86, P = 0.014; n = 6], which was similar to that
observed in the presence of NA alone [NA: 113.9 ± 5.4%; F (1,
5) = 0.32, P = 0.67; n = 6; Figure 3F]. These results indicate that
blockade of β-AR does not block the NA-induced inhibition of
facial stimulation-evoked MF-GC synaptic transmission.

FIGURE 2 | Application of α-adrenoceptor (AR) antagonist reverses the
NA-induced depression of the facial stimulation-evoked MF-GC synaptic
transmission. (A) Representative field potential traces showing the facial
stimulation (60 ms, 60 psi) evoked MF-GC synaptic transmission in a mouse
cerebellar GL during treatment with ACSF, NA (25 µM), NA + phentolamine
(Phen; 100 µM), and recovery (washout). (B) Summary of data showing the
time course of normalized amplitude of N1 during treatment with ACSF, NA
(25 µM), NA + phentolamine (Phen; 100 µM) and recovery (washout). Bars
denote the data points which were used in the bar graphs (C–F) in treatments
with ACSF, NA, NA + phentolamine and washout. (C,D) Mean value (± SEM)
with individual data showing the normalized amplitude (C) and AUC (D) of N1
during each treatment, NA, NA + Phen and recovery (washout). (E,F) Mean
value (± SEM) with individual data showing the normalized amplitude of N2
(E) and the N2/N1 ratio (F) during each treatment. Note that application of
phentolamine reversed the NA induced-inhibition of facial stimulation-evoked
MF-GC synaptic transmission. *p < 0.05 versus control (ACSF); n = 6 in each
group.

Noradrenaline Depressed Cerebellar
Mossy Fiber–Granule Cell Synaptic
Transmission Through α2-Adrenoceptor
in vivo in Mice
A previous study has shown that both α1-ARs and α2-ARs are
expressed in the cerebellar GL (Schambra et al., 2005). We then
examined the effects of the α1-AR antagonist, prazosin (Praz),
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FIGURE 3 | Application of β-AR antagonist does less affect the NA-induced
inhibition of the facial stimulation-evoked MF-GC synaptic transmission.
(A) Representative field potential traces showing the facial stimulation (60 ms,
60 psi) evoked MF-GC synaptic transmission in a mouse cerebellar GL during
treatment with ACSF, NA (25 µM), NA + propranolol (Prop; 100 µM), and
recovery (washout). (B) Mean value (± SEM) with individual data showing the
time course of normalized amplitude of N1 during treatment with ACSF, NA,
NA + propranolol (Prop; 100 µM) and recovery (washout). Bars denote the
data points which were used in the bar graphs (C–F) in treatments with ACSF,
NA, NA + propranolol and washout. (C,D) Mean value (± SEM) with individual
data showing showing the normalized amplitude (C) and AUC (D) of N1
during each treatment. (E,F) Mean value (± SEM) with individual data showing
the normalized amplitude of N2 (E) and the N2/N1 ratio (F) for each
treatment. Note that propranolol failed to affect the NA induced inhibition of
facial stimulation-evoked MF-GC synaptic transmission. *p < 0.05 versus
control (ACSF); n = 6 in each group.

on the NA-induced depression of MF-GC synaptic transmission.
Application of NA produced a significant decrease in amplitude
of N1, which was not reversed by additional application of
Praz (50 µM) (Figures 4A,B). In the presence of a mixture of
Praz (50 µM) and NA, the amplitude of N1 was 78.2 ± 5.7%
(NA + Praz; n = 6) of baseline [ACSF: 100 ± 4.3%; F (2,
33) = 11.63, P = 0.042; n = 6], which was similar to that observed
in the presence of NA alone [NA: 78.7 ± 5.0%; F (1, 5) = 0.01,
P = 0.58; n = 6; Figure 4C], and the normalized AUC of N1 was

FIGURE 4 | Application of α1-AR blocker, prazosin failes to reverse the
NA-induced depression of the facial stimulation-evoked MF-GC synaptic
transmission. (A) Representative field potential traces showing the facial
stimulation (60 ms, 60 psi) evoked MF-GC synaptic transmission in a mouse
cerebellar GL during treatment with ACSF, NA (25 µM), NA + prazosin (Praz;
50 µM), and recovery (washout). (B) Summary of data showing the time
course of normalized amplitude of N1 during treatment with ACSF, NA,
NA + prazosin (Praz; 50 µM) and recovery (washout). Bars denote the data
points which were used in the bar graphs (C–F) in treatments with ACSF, NA,
NA + prazosin and washout. (C,D) Mean value (± SEM) with individual data
showing the normalized amplitude (C) and AUC (D) of N1 during each
treatment. (E,F) Mean value (± SEM) with individual data showing the
normalized amplitude of N2 (E) and the N2/N1 ratio (F) for each treatment.
*p < 0.05 versus control (ACSF); n = 6 in each group.

81.1 ± 5.7% of baseline [ACSF: 100.4 ± 4.0%; F (3, 54) = 13.92,
P = 0.023; n = 6], which was not significantly different from that
observed in the presence of NA alone [NA: 80.3 ± 5.7%; F (1,
5) = 0.24, P = 0.41; n = 6; Figure 4D]. Additional perfusion of Praz
did not reverse the NA-induced inhibition of N2. In the presence
of a mixture of Praz and NA, the normalized amplitude of N2 was
90.2 ± 5.0% of baseline [ACSF: 99.9 ± 3.9%; F (3, 60) = 17.67,
P = 0.015; n = 6], which was not significantly different from that
observed in the presence of NA alone [NA: 89.4 ± 5.9%; F (1,
5) = 0.27, P = 0.32; n = 6; Figure 4E]. Moreover, the N2/N1 ratio
increased to 115.3 ± 6.2% of baseline [ACSF: 99.8 ± 4.4%; F (3,
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60) = 17.32, P = 0.016; n = 6], which was similar to that observed
in the presence of NA alone [NA: 115 ± 6.7%; F (1, 5) = 0.36,
P = 0.54; n = 6; Figure 4F]. These results indicate that blocking
α1-AR does not reverse the NA-induced depression of the facial
stimulation-evoked MF-GC synaptic transmission in the mouse
cerebellar cortex.

Administration of the α2-AR antagonist, yohimbine (Yohim,
100 µM), had no effect on facial stimulation-evoked MF-
GC synaptic transmission (Supplementary Figure 1). However,
additional application of 100 µM Yohim completely revered
the NA-induced decrease in amplitude and AUC of N1
(Figures 5A,B). In the presence of a mixture of Yohim and NA,

FIGURE 5 | Application of yohimbine reverses the NA-induced depression of
the MF-GC synaptic transmission. (A) Representative field potential traces
showing the facial stimulation (60 ms, 60 psi) evoked responses in a mouse
cerebellar GL during treatment with ACSF, NA (25 µM), NA + yohimbine
(Yohim; 100 µM), and recovery (washout). (B) Summary of data (n = 6)
showing the time course of normalized amplitude of N1 during treatment with
ACSF, NA, NA + yohimbine (Yohim; 100 µM) and recovery (washout). (C,D)
Bar graphs with individual data showing show the normalized amplitude (C)
and AUC (D) of N1 during each treatment. (E,F) Mean value (± SEM) with
individual data showing the normalized amplitude of N2 (E) and the N2/N1
ratio (F) during each treatment. *p < 0.05 versus control (ACSF); n = 6 in each
group.

the normalized amplitude of N1 increased from 78.5± 5.1% (NA,
25 µM) to 99.3± 5.4% [NA+Yohim; F (2, 28) = 10.64, P = 0.042;
n = 6] of baseline [ACSF: 101.1 ± 3.8%; F (1, 7) = 0.37, P = 0.66;
n = 6; Figure 5C], and the normalized AUC of N1 increased from
79.3 ± 5.1% (NA, 25 µM) to 101.2 ± 5.0% [NA + Yohim; F (2,
39) = 11.75, P = 0.023; n = 6] of baseline [ACSF: 100.2 ± 4.0%; F
(1, 5) = 0.04, P = 0.86; n = 6; Figure 5D]. Additional perfusion
of Yohim also reversed the NA-induced inhibition of N2. The
normalized amplitude of N2 increased from 89.8 ± 5.1% (NA,
25 µM) to 100.9 ± 5.5% [NA + Yohim; F (2, 19) = 9.42,
P = 0.035; n = 6] of baseline [ACSF: 101.3± 4.0%; F (1, 5) = 0.05,
P = 0.82; n = 6; Figure 5E], and the N2/N1 ratio decreased from
114.4 ± 5.4% (NA, 25 µM) to 101.4 ± 5.3% [NA + Yohim; F (3,
54) = 15.45, P = 0.017; n = 6] of baseline [ACSF: 99.9 ± 4.3%; F
(1, 7) = 1.07, P = 0.37 versus ACSF; n = 6; Figure 5F].

We further examined the effect of a highly selective α2-
AR agonist, UK14304, on the facial stimulation-evoked MF-
GC synaptic transmission to observe whether pharmacological
activation of α2-ARs could induce depression of MF-GC synaptic
transmission. In the presence of UK14304 (1 µM), the amplitude
of N1 decreased to 51.4 ± 5.8% of baseline [ACSF: 99.8 ± 4.0%;
F (2, 28) = 10.74, P = 0.022; n = 6], and the AUC of N1 decreased
to 52.6 ± 4.9% of baseline [ACSF: 100.1 ± 4.1%; F (2, 19) = 8.99,
P = 0.014; n = 6]. Notably, additional application of NA failed
to induce further inhibition of MF-GC synaptic transmission
(Figures 6A,B). In the presence of a mixture of UK14304 and
NA, the amplitude of N1 was 51.8 ± 6.1% [UK14304 + NA; F
(1, 15) = 6.38, P = 0.045; n = 6] of baseline (ACSF: 99.8 ± 4.0%;
n = 6), which was similar to that observed in the presence
of UK14304 alone [UK14304: 51.4 ± 5.8%; F (1, 7) = 0.41,
P = 0.72; n = 6; Figure 6C], and the normalized AUC of N1
was 52.3 ± 4.4% [UK14304 + NA; F (3, 63) = 16.84, P = 0.012;
n = 6] of baseline (ACSF: 100.1 ± 4.1%; n = 6), which was
not significantly different from that observed in the presence
of UK14304 alone [UK14304: 52.3 ± 4.9%; F (1, 5) = 0.14,
P = 0.23; n = 6; Figure 6D]. In the presence of UK14304
and NA, the normalized amplitude of N2 was 61.8 ± 5.0%
[UK14304 + NA; F (2, 28) = 12.76, P = 0.033; n = 6] of
baseline (ACSF: 100.2± 4.5%; n = 6), which was not significantly
different from that observed in the presence of UK14304 alone
[UK14304: 60.9 ± 5.1%; F (1, 7) = 0.32, P = 0.53; n = 6;
Figure 6E]. The N2/N1 ratio also increased to 119.4 ± 5.3% of
baseline [UK14304 + NA; ACSF: 99.9 ± 4.2%; F (3, 54) = 16.53,
P = 0.011; n = 6], which was similar to that observed in the
presence of UK14304 alone [UK14304: 118.6 ± 4.7%; F (1,
4) = 0.046, P = 0.081; n = 6; Figure 6F]. The results indicate
that activation of α2-AR suppresses the evoked MF-GC synaptic
transmission and overwhelms the NA-induced inhibition of MF-
GC synaptic transmission.

DISCUSSION

In this study, we showed that cerebellar surface perfusion of
NA induced a concentration-dependent depression of facial
stimulation-evoked MF-GC synaptic transmission, which was
reversed by additional application of an α-AR antagonist but
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FIGURE 6 | Effect of α2-AR agonist, UK14304 (UK) on the NA induces
inhibition of the MF-GC synaptic transmission. (A) Representative field
potential traces showing the facial stimulation (60 ms, 60 psi) evoked
responses in a mouse cerebellar GL during treatment with ACSF, UK14304
(UK; 1 µM), UK + NA (25 µM), and recovery (washout). (B) Summary of data
showing the time of course of normalized amplitude of N1 during treatment
with ACSF, UK14304, UK + NA and recovery (washout). (C,D) Mean value
(± SEM) with individual data showing the normalized amplitude (C) and AUC
(D) of N1 during each treatment. (E,F) Mean value (± SEM) with individual
data showing the normalized amplitude of N2 (E) and the N2/N1 ratio (F)
during each treatment. *p < 0.05 versus control (ACSF). n = 6 in each group.

not reversed by a β-AR antagonist. Furthermore, the NA-
induced inhibition of facial stimulation-evoked MF-GC synaptic
transmission was reversed by additional application of an α2-
AR antagonist but not by an α1-AR antagonist. Moreover,
pharmacological activation of α2-AR significantly inhibited
the facial stimulation-evoked MF-GC synaptic response and
overwhelmed the NA-induced depression.

In the cerebellar cortex, GCs receive excitatory inputs
from MFs and inhibitory inputs from Golgi cells (Shambes
et al., 1978; Bower and Woolston, 1983; Chadderton et al.,
2004). For evaluating the sensory information transmitted
by MF-GC synaptic transmission, we here studied the facial
stimulation-evoked field potential response in the mouse
cerebellar GL in the absence of GABAergic inhibitory inputs

(Ma et al., 2019). Consistent with previous studies (Wu
et al., 2014; Bing et al., 2015; Ma et al., 2019), air-puff
stimulation of the ipsilateral whisker pad induced MF-GC
synaptic transmission, which expressed stimulus onset and
stimulus offset responses in the absence of GABAergic inhibition.
These results indicate that tactile mechanoreceptors generate
the receptor potentials at both stimulus onset and offset, which
suggests that the sensory stimulation-evoked MF-GC synaptic
transmission is high-fidelity and reliably reflects the encoded
sensory information (Arenz et al., 2008; van Beugen et al., 2013;
Bing et al., 2015).

Previous studies showed that NAergic afferents originate in
the LC and distribute throughout the cerebellar cortical GL,
PC, and molecular layers (Kimoto et al., 1978; Schroeter et al.,
2000). Morphological studies have shown that both α-ARs and
β-ARs are present in the cerebellar cortex (McCune et al.,
1993). We previously found that NA regulates spontaneously
complex spikes activity of cerebellar PCs via activation of
α2-ARs in vivo in mice (Sun et al., 2019). Our results
in this study show that cerebellar surface perfusion of NA
produces a concentration-dependent inhibition of synaptic
transmission convey sensory information in the cerebellar GL.
The NA-induced depression of the evoked MF-GC synaptic
transmission was reversed by additional application of an
α2-AR antagonist and was mimicked by activation of α2-
ARs. These results indicate that NA activates α2-ARs, which
results in a depression of the facial stimulation-evoked MF-GC
synaptic transmission in the mouse cerebellar cortex. In addition,
our results show that blockade of α2-AR has less effect on
the sensory stimulation-evoked MF-GC synaptic transmission,
suggesting that there is less α2-AR activation under these
experimental conditions.

α2-Adrenoceptors are coupled to a wide variety of second
messenger systems via Gi/o-proteins, which negatively regulate
the activity of adenylyl cyclases and inhibit voltage-gated
Ca2+ channel activity (Limbird, 1988). Activation of α2-ARs
suppresses the production of cAMP-dependent protein kinase
activity, leading to the activation of protein phosphatase 1,
which plays an inhibitory role in synaptic transmission through
modifying α-amino-3-hydroxy-5-methyl-4-isoxazole-propionica
(AMPA) receptors (Mulkey et al., 1994; Yan et al., 1999).
Activation of α2-ARs reduces the phosphorylation of AMPA
receptors via the PKA signaling pathway, resulting in the
inhibition of synaptic transmission (Yi et al., 2013). In the
cerebellar cortex, α2-ARs play critical roles in information
processing and motor coordination skills (Lähdesmäki et al.,
2002). A previous study demonstrated that activation of α2-
ARs suppresses presynaptic glutamate release from mitral cells
by a Gi/o-protein-mediated inhibition of Ca2+ channels in
the mouse olfactory bulb (Huang et al., 2018). We previously
found that NA inhibits complex spike activity via a presynaptic
PKA signaling pathway in vitro (Cui et al., 2020). Our results
here demonstrate that NA depresses the amplitude of N1 and
N2, which is accompanied by an increase in the N2/N1 ratio,
suggesting that NA modulates the facial stimulation-evoked
glutamate release at the MF-GC synapse. Since the N2/N1
ratio is inversely correlated with the probability of vesicular
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release, we proposed that the NA-induced depression of MF-
GC synaptic transmission by reducing presynaptic glutamate
release from mossy fiber terminals (Mennerick and Zorumski,
1995; Hashimoto and Kano, 1998). In addition, we studied
the effect of NA on the facial stimulation-evoked MF-GC
synaptic transmission in urethane anesthetized mice. We could
not exclude the possible effect of urethane on the sensory-
evoked MF-GC synaptic transmission. However, administration
of urethane produces inhibition of neuronal excitability by
activation of the barium-sensitive potassium leak conductance,
without effects on excitatory glutamate mediated synaptic
transmission (Sceniak and Maciver, 2006; Chu et al., 2011).
Therefore, urethane anesthesia might produce less effect on
the facial stimulation-evoked MF-GC synaptic transmission
in vivo in mice.

Cellular mechanisms of motor learning in the cerebellum
are long-term depression (LTD) and potentiation (LTP) at PF–
PC, MF-GC, and MLI–PC synapses (Ito and Kano, 1982; Ito,
1989; Roggeri et al., 2008; Bing et al., 2015). It has been shown
that tactile stimulation of the whisker pad induces long-term
synaptic plasticity in MF-GC synapses in anesthetized rats, which
suggests that MF-GC synaptic transmission and plasticity are
critical for sensory information-dependent motor learning in
rodents (Roggeri et al., 2008). Importantly, NAergic inputs to
the cerebellum have been implicated in cerebellum-dependent
motor learning (McCormick and Thompson, 1982; Keller
and Smith, 1983; Watson and McElligott, 1984; Pompeiano,
1998). Our present results show that NA significantly depresses
sensory stimulation-evoked MF-GC synaptic transmission,
which suggests that cerebellar NAergic inputs modulate synaptic
transmission conveying sensory information through MF–GC
synapses. In addition, NAergic inputs have been found play
critical roles in sensory signal processing, as well as the
facilitation of motor coordination and motor learning function
(McCormick and Thompson, 1982; Keller and Smith, 1983;
Watson and McElligott, 1984; Pompeiano, 1998; Waterhouse
and Navarra, 2019). Thus, the NA-induced depression of MF-
GC synaptic transmission may directly contribute to sensory
information-dependent motor tasks. Since GCs transmit sensory
information to PCs through PFs (Ito and Kano, 1982), the
NA-induced depression of MF-GC synaptic transmission may
modulate MF-PC synaptic plasticity and motor learning by
down regulating PF excitatory inputs onto PCs. While further
experiments are required to further understand the effects of

NAergic inputs on cerebellar physiology, our results provide
important insights into the cellular and synaptic mechanisms
of how NA modulates sensory information processing in the
cerebellar cortex.
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