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Miniature fishes have always been a challenge for cytogenetic studies due to the difficulty in
obtaining chromosomal preparations, making them virtually unexplored. An example of
this scenario relies on members of the family Lebiasinidae which include miniature to
medium-sized, poorly known species, until very recently. The present study is part of
undergoing major cytogenetic advances seeking to elucidate the evolutionary history of
lebiasinids. Aiming to examine the karyotype diversification more deeply in Pyrrhulina, here
we combined classical and molecular cytogenetic analyses, including Giemsa staining,
C-banding, repetitive DNAmapping, comparative genomic hybridization (CGH), and whole
chromosome painting (WCP) to perform the first analyses in five Pyrrhulina species
(Pyrrhulina aff. marilynae, Pyrrhulina sp., P. obermulleri, P. marilynae and Pyrrhulina cf.
laeta). The diploid number (2n) ranged from 40 to 42 chromosomes among all analyzed
species, but P. marilynae is strikingly differentiated by having 2n � 32 chromosomes and a
karyotype composed of large meta/submetacentric chromosomes, whose plesiomorphic
status is discussed. The distribution of microsatellites does not markedly differ among
species, but the number and position of the rDNA sites underwent significant changes
among them. Interspecific comparative genome hybridization (CGH) found a moderate
divergence in the repetitive DNA content among the species’ genomes. Noteworthy, the
WCP reinforced our previous hypothesis on the origin of the X1X2Y multiple sex
chromosome system in P. semifasciata. In summary, our data suggest that the
karyotype differentiation in Pyrrhulina has been driven by major structural
rearrangements, accompanied by high dynamics of repetitive DNAs.
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INTRODUCTION

Characiformes comprise a very diverse and abundant freshwater
order (Nelson et al., 2016), in which the family Lebiasinidae is
represented by 75 valid species (Fricke et al., 2021) widely
distributed across South and Central America (Weitzman and
Weitzman, 2003). The phylogenetic relationships of the
Lebiasinidae remained in doubt for a long time, but more
recent phylogenetic analysis indicate their proximity to the
Ctenoluciidae (Calcagnotto et al., 2005; Oliveira et al., 2011),
which was also reinforced by the different studies (Arcila et al.,
2017; Betancur-R et al., 2019; Melo et al., 2021). Most
Lebiasinidae species reach about 60 mm of Standard Length
(SL), but miniature species, not surpassing a maximum of
26 mm SL, is found within the Pyrrhulininae, whereas
medium-sized species up to 150 mm SL can be found within
Lebiasininae (Weitzman and Weitzman, 2003).

Because of their small sizes and difficulties in obtaining good
chromosomal preparations, species of Lebiasinidae were, for a
long time, little analyzed in terms of cytogenetics, with scarce
references mainly on the chromosomal number of few species
(Scheel, 1973; Oliveira et al., 1991; Arai, 2011). However, this
scenario has recently undergone significant changes with the
methodological advance of cytogenetics and its applicability
among small to miniature fishes of Pyrrhulina, Lebiasina,
Copeina, and Nannostomus genus (de Moraes et al., 2017, de
Moraes et al.,2019; Sassi et al., 2019; Toma et al., 2019; Sassi et al.,
2020; Sember et al., 2020).

Pyrrhulina is one of the most speciose genera of the subfamily
Pyrrhulininae, with 19 valid small species (Fricke et al., 2021),
ranging from 30.4 to 85 mm SL (Weitzman andWeitzman, 2003;
Netto-Ferreira andMarinho, 2013). The genus is among the most
problematic, with many poorly known species, species
complexes, and old taxonomic problems (Netto-Ferreira and
Marinho, 2013). The first Pyrrhulina species to have some
chromosomal data evidenced was Pyrrhulina cf. australis, with
2n � 40 chromosomes, mainly acrocentric ones (Oliveira et al.,
1991). Taxonomic boundaries of P. australis are still poorly
defined, demonstrated in subsequent studies (de Moraes et al.,
2017; de Moraes et al.,2019) of two morphotypes. Both P.
australis and Pyrrhulina aff. australis showed similar data 2n
� 40 (4st + 36a), distinct from P. brevis, 2n � 42 (2sm + 4st + 36a),
with no evidence of heteromorphic sex chromosomes in the three
species (de Moraes et al., 2017; de Moraes et al., 2019). Another
species, P. semifasciata, was analyzed, presenting 2n � 42 (4st +
38a) in females, and 2n � 41 (1m + 4st + 36a) in males, the latter
with three unpaired chromosomes because of a multiple
X1X1X2X2/X1X2Y sex chromosome system (de Moraes et al.,
2019). This occurrence was also confirmed by comparative
genomic hybridizations (CGH) and whole-chromosome
painting (WCP), with some indications that the Y
chromosome originated by centric fusions of non-homologous
acrocentric chromosomes (de Moraes et al., 2019).

To improve the knowledge of the evolutionary processes
within the genus Pyrrhulina, we combined classical and
molecular cytogenetic analyses, including Giemsa staining,
C-banding, repetitive DNA mapping, comparative genomic

hybridization (CGH), and whole chromosome painting (WCP
to perform the first analyses in five Pyrrhulina species (Pyrrhulina
aff. marilynae, Pyrrhulina sp., P. obermulleri, P. marilynae and
Pyrrhulina cf. laeta). The results highlighted relationships and
particular evolutionary paths at the chromosomal and genomic
levels among the species. In addition, the hypothesis on the origin
of the multiple sex chromosome system in P. semifasciata is
validated.

MATERIALS AND METHODS

Animals
The collection sites, number, and sex of the specimens
investigated are presented in Figure 1, Table 1. Part of the
sampling (Figure 1, white circles) resembles the one
previously analyzed by de Moraes et al. (2017), de Moraes
et al. (2019) with different cytogenetic and molecular methods.
Animals were collected with the authorization of the Brazilian
environmental agency ICMBIO/SISBIO (license no. 48628-14)
and SISGEN (A96FF09). All species were properly identified by
morphological criteria, and the specimens were deposited in the
fish collection of the Museu de Zoologia da Universidade de São
Paulo (MZUSP) under the voucher numbers (119077, 119079,
123073, 123080) and the Universidade Federal da Paraíba
(UFPB) museum under the voucher number (12079, 12080,
12082 and 12083). Experiments followed ethical and
anesthesia conducts and were approved by the Ethics
Committee on Animal Experimentation of the Universidade
Federal de São Carlos (process number CEUA 1853260315).

Chromosomal Preparations and Analysis of
the Constitutive Heterochromatin
Mitotic chromosomes were obtained from kidney cells by the
protocol described in Bertollo et al. (2015). The distribution of
constitutive heterochromatin was observed by the C-banding
methodaccording to (Sumner, 1972).

Repetitive DNA Mapping with Fluorescence
in situ Hybridization (FISH)
The 5S rDNA probe included 120 base pairs (bp) of the 5S rDNA
gene coding region and 200 bp of non-transcribed spacer (NTS)
(Pendás et al., 1994). The 18S rDNA probe was composed of a
1,400-bp-long segment of the 18S rDNA coding region (Cioffi
et al., 2009). Both probes were directly labeled with the Nick-
Translation Mix Kit (Jena Bioscience, Jena, Germany)—18S
rDNA with ATTO488-dUTP and 5S rDNA with ATTO550-
dUTP, according to the manufacturer’s instructions. The
(CA)15, (GA)15, (CGG)10 microsatellite probes were directly
labeled with Cy3 during the synthesis, according to Kubat
et al. (2008). In addition, since it contains the lowest 2n,
telomeric (TTAGGG)n sequence was also used as probe in P.
marylinae. This probe was generated by PCR in the absence of a
template according to Ijdo et al. (1991) and later labeled with
ATTO550-dUTP with the Nick-Translation Mix Kit (Jena
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Bioscience, Jena, Germany). FISH experiments followed the
methodology described in Yano et al. (2017). Metaphase
chromosomes were treated with RNAse A (40 μg/ml) for 1.5 h
at 37°C and the DNA denatured in 70% formamide/2× SSC at
72°C for 3.15 min. A hybridization mixture (2.5 ng/μL probes,
50% deionized formamide, 10% dextran sulfate) was then
dropped on the slides, and the hybridization process was
performed overnight at 37°C in a moist chamber. The first
post-hybridization wash was performed with 1× SSC for 5 min
at 65°C, followed by the second one performed with 4xSSC/
Tween for 5 min, at room temperature. Chromosomes were then
counterstained with DAPI, and the slides were mounted with an
antifade solution (Vectashield from Vector Laboratories,
Burlingame, CA).

FISH for Whole Chromosome Painting
As P. semifasciata represents the only Pyrrhulina species that
harbors an X1X2Y multiple sex system, a Y-chromosome probe,
named PSEMI-Y, was previously prepared by microdissection, as

described in (de Moraes et al., 2019) Male and female
metaphases of P. marilynae, Pyrrhulina aff. marilynae,
Pyrrhulina sp., P. obermulleri, Pyrrhulina cf. laeta were used
for Zoo-FISH experiments with the PSEMI-Y probe, according
to procedures described in Yano et al. (2017). The hybridization
was performed for 72 h at 37°C in a moist chamber, with post-
hybridization washes with 1xSSC for 5 min at 65°C, and in
4xSSC/Tween (RT). 10 μg of male-derived C0t-1 DNA from
P. semifasciata was used as suppressor in each experiment.
Chromosomes were stained with DAPI (1.2 μg/ml) and the
slides were mounted with an antifade solution, as
described above.

Probes for Comparative Genomic
Hybridization
The genomic DNAs (gDNAs) frommale and female specimens
of P. marilynae, Pyrrhulina aff. marilynae, Pyrrhulina sp., P.
obermulleri, Pyrrhulina cf. laeta, P. australis, Pyrrhulina aff.

FIGURE 1 | Brazilian collection sites of the Pyrrhulina species cytogenetically investigated in the present study (red circles) and the ones previously cytogenetically
analyzed (white circles: data from (de Moraes et al., 2017; de Moraes et al., 2019).

TABLE 1 | Geographical coordinates, sample size, and diploid number of Pyrrhulina (Characiformes, Lebiasinidae) species collected in Brazil.

Species Locality Sample size 2n (Sex) References

Pyrrhulina aff. australis Rio Sepotuba, Lambari D’Oeste—MT (15°11′28.0″S 57°41′30.7″W) 16_ 22\ 40_\ de Moraes et al. (2017)
Pyrrhulina aff. marilynae Igarapé 12 de Outubro, Comodoro—MT (12°58′41.0″S 60°00′34.0″W) 14_ 10\ 40_\ This study
P. australis Barra do Bugres—MT (15°04′27.5″S 57°11′05.4″W) 18_ 30\ 40_\ de Moraes et al. (2017)
P. brevis Reserva Florestal Adolpho Ducke, Manaus—AM (2°58′20.7″S 59°55′53.0″W) 17_ 13\ 42_\ de Moraes et al. (2019)
Pyrrhulina cf. laeta Presidente Figueiredo—AM (1°59′10.8″S 60°03′40.8″W) 07_ 05\ 42_\ This study
P. marilynae Ipiranga do Norte—MT (11°36′02.0″S 55°56′27.0″W) 14_ 08\ 32_\ This study
P. obermulleri Tefé—AM (3°25′50.7″S 64°44′54.8″W) 21_ 12\ 42_\ This study
P. semifasciata Careiro—AM (3°51′00.0″S 60°04′00.0″W) 12_ 09\ 41_42\ de Moraes et al. (2019)
Pyrrhulina sp Represa, Alto Alegre dos Parecis—RO (12°11′58.0″S 61°46′47.7″W) 19_ 29\ 40_\ This study
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australis, P. brevis, and P. semifasciata were extracted from
liver tissue by the standard phenol-chloroform-isoamyl
alcohol method (Sambrook and Russell, 2001). For
intraspecific comparisons, the male-derived gDNAs of all
species were labeled with ATTO550-dUTP and the female
gDNAs with ATTO 488-dUTP, by nick translation (Jena
Bioscience, Jena, Germany). The repetitive sequences were
blocked using unlabeled C0t-1 DNA in all experiments,
according to (Zwick et al., 1997). The final hybridization
mixture for each slide (20 μL) was composed of male- and
female-derived gDNAs (500 ng each), plus 25 μg of female-
derived C0t-1 DNA from the respective species. The probe
was ethanol-precipitated, and the dry pellets were mixed in a
hybridization mixture containing 50% formamide, 2× SSC,
10% SDS, 10% dextran sulfate, and Denhardt´s buffer,
pH 7.0.

For interspecific comparisons, the gDNA of male specimens
of P. australis (Paus), Pyrrhulina aff. australis (Pafa), P.
semifasciata (Psem), P. brevis (Pbre), P. marilynae (Pmar),
Pyrrhulina aff. marilynae (Pafm), Pyrrhulina sp. (Psp),
P.obermulleri (Pobe) and Pyrrhulina cf. laeta (Pcfl) were
hybridized against metaphase chromosomes of P. marilynae.
This species was selected since it harbors the lowest 2n � 32
until now register for the genus, coupled with a remarkable
karyotype differentiation. For this purpose, male-derived
gDNA of P. marilynae was labeled with ATTO 550-dUTP,
while the gDNAs of the other species were labeled with ATTO
488-dUTP (P. australis, Pyrrhulina aff. marilynae, P. brevis
and P. obermulleri) or ATTO 425-dUTP (Pyrrhulina aff.
australis, Pyrrhulina sp., P. semifasciata and Pyrrhulina cf.
laeta), both through nick translation (Jena Bioscience, Jena,
Germany).

The interspecific comparisons were divided into a set of
four slides. In the first slide, the final probe mixture was
composed of 500 ng of male-derived gDNA plus 10 μg of
male-derived C0t-1 DNA of each of the following species: P.
marilynae, P. australis, and Pyrrhulina aff. australis. In the
second slide, the final probe mixture was composed of 500 ng
of male-derived gDNA plus 10 μg of male-derived C0t-1 DNA
of each one of the following species: P. marilynae, Pyrrhulina
aff. marilynae and Pyrrhulina sp. In the third slide, the final
probe mixture was composed of 500 ng of male-derived gDNA
plus 10 μg of male-derived C0t-1 DNA of each one of the
following species: P. marilynae, P. brevis, and P. semifasciata.
Finally, in the fourth slide, the final probe mixture was
composed of 500 ng of male-derived gDNA plus and 10 μg
of male-derived C0t-1 DNA of each one of the following
species: P. marilynae, P. obermulleri, and Pyrrhulina cf.
laeta. The chosen ratio of probe vs. C0t-1 DNA amount was
based on previous experiments performed in our fish studies
(de Moraes et al., 2019; Toma et al., 2019; Sassi et al., 2020).
The CGH experiments followed the methodology described in
Sember et al. (2018).

Microscopy and Images Processing
To confirm the diploid number, karyotype structure and FISH
results inat least 30 metaphase spreads were analyzed per

individual. The microscopy images were captured using an
Olympus BX50 epifluorescence microscope (Olympus
Corporation, Ishikawa, Japan) coupled with a CoolSNAP
camera, and the images were processed using Image-Pro Plus
4.1 Software (Media Cybernetics, Silver Spring, MD,
United States). Final images were optimized and arranged
using Adobe Photoshop, version CC 2020. Chromosomes
were classified as metacentric (m), submetacentric (sm),
subtelocentric (st), or acrocentric (a), according to their arm
ratios (Levan, 1964). As the males and females results showed no
differences, only male metaphases were represented in the
figures.

RESULTS

Karyotypes and Heterochromatin
Distribution
The diploid number ranged from 2n � 40 to 42 among the
following four species: Pyrrhulina sp. (2n � 40; 2st+38a),
Pyrrhulina aff. marilynae (2 � 40; 40a), P. obermulleri (2n �
42; 2m/sm+8st+32a) and Pyrrhulina cf. laeta (2n � 42; 2m/
sm+4st+36a), the two latter also sharing a characteristic small
metacentric/submetacentric pair. On the other hand, P.
marilynae differed by presenting a very distinct karyotype
composition (2n � 32; 8m/sm+4st+20a). These results
represent the first cytogenetic data for the abovementioned
species. The constitutive heterochromatin was distributed at
the pericentromeric region of several chromosome pairs in P.
marilynae and Pyrrhulina aff. marilynae. In its turn, Pyrrhulina
sp., P. obermulleri, and Pyrrhulina cf. laeta presented a
remarkable series of interstitial and pericentromeric C-bands,
in addition to telomeric ones (Figure 2). In our sampling, we did
not observe any karyotype differences between males and
females.

Chromosomal Mapping of Repetitive DNA
Sequences
All the five species differ by the distribution of the multigene
rDNA families. Pyrrhulina sp. and P. marilynae were the only
species with only one chromosome pair bearing 18S rDNA
sites, found at the telomeric region of acrocentric pairs 4 and
9, respectively. Six to twelve centromeric or telomeric sites
occur in the other three species, including bitelomeric sites in
Pyrrhulina aff. marilynae (pair 11) and Pyrrhulina cf. laeta
(pairs 6 and 13). As for the 5S rDNA, from six to twelve
centromeric sites occured among species, including a
syntenic condition for the 5S and 18S rDNA repeats in the
chromosome pair 6 of Pyrrhulina cf. laeta, the same pair that
displays bitelomeric 18S rDNA signals in this species
(Figure 2). The distribution of the microsatellites (CA)15,
(GA)15, and (CGG)10 does not differ significantly among
species, having a preferential location in the centromeric
and telomeric regions of the chromosomes, in addition to
some interstitial sites. However, (CA)15 differs quantitatively,
with a greater number of conspicuous sites compared to the
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other microsatellites, especially in Pyrrhulina aff. marilynae
and Pyrrhulina cf. laeta. In the same way, (CGG)10 occurs in
smaller amounts in the five species (Figure 3). The
(TTAGGG)n repeats showed the expected hybridization
signals on telomeres of P. marylinae (Figure 4F). Whole
chromosome painting–WCP.

Two acrocentric chromosome pairs were entirely painted with
the PSEMI-Y probe in Pyrrhulina marilynae, P. obermulleri,
Pyrrhulina sp., Pyrrhulina aff. marilynae and Pyrrhulina cf.
laeta (Figures 4A–E).

Comparative Genomic Hybridization–CGH
The interespecific genomic comparison among Pyrrhulina
marilynae and other Pyrrhulina species (P. semifasciata, P.
australis, P. brevis, P. obermulleri, Pyrrhulina aff. australis,
Pyrrhulina sp., Pyrrhulina aff. marilynae, Pyrrhulina cf. laeta)
revealed a high level of DNA compartmentalization, within all
species presenting a distinct composition of repetitive DNA
sequences and specific signals. However, P. marilynae shows

more evident species-specific arrangements when compared to
the other species. (Figure 5). Intraspecific genomic
hybridization between males and females did not show any
clustering for sex-specific sequences in all species (data not
shown).

DISCUSSION

Overall, two main evolutionary trends are proposed for the
karyotypic evolution of the Lebiasinidae: 1) the conservation of
a plesiomorphic karyotype in the subfamily Lebiasininae, with
2n � 36 bi-armed chromosomes and, 2) high variations in
diploid numbers and karyotypic structures in the subfamily
Pyrrhulininae, with the predominance of acrocentric
chromosomes (Sassi et al., 2020). It is noteworthy that the
karyotypic structure of Lebiasininae, 2n � 36 biarmed
chromosomes, is similar to that found in the sister family
Ctenoluciidae (de Souza e Sousa et al., 2017; Sassi et al., 2019;

FIGURE 2 |Male and female karyotypes of Pyrrhulina marilynae (A, F, and K), Pyrrhulina aff.marilynae (B, G and L), Pyrrhulina sp. (C, H andM), P. obermulleri (D,
I and N) and Pyrrhulina cf. laeta (E, J and O) arranged after Giemsa staining (A-E), C-banding (F-J), and dual-color in situ hybridization (FISH) with 18S (green) and 5S
(red) ribosomal DNA probes (K-O). Chromosomes were counterstained with 4′,6-diamidino-2-phenylindole (DAPI).Scale bar � 5 μm.
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de Souza e Sousa et al., 2021). Therefore, in this scenario, the
majority of the acrocentric chromosomes found in the species
of the Pyrrhulininae are probably derived from
rearrangements such as centric fissions (Sassi et al., 2020).

However, unlike other Pyrrhulina species, P. marilynae has the
smallest 2n identified in the genus so far, 2n � 32, including
four typical meta/submetacentric pairs. Some exceptions
within the subfamily showed secondary fusion events of

FIGURE 4 | Zoo-FISH with the PSEMI-Y probeonmale metaphase plates of P. marilynae (A), Pyrrhulina aff.marilynae (B), Pyrrhulina cf. laeta (C), Pyrrhulina sp. (D),
and P. obermulleri (F) shows the distribution of the telomeric (TTAGGG)n repeats in P. marilynae. Bar � 5 μm.

FIGURE 3 | Male and female metaphase plates of Pyrrhulina marilynae; Pyrrhulina aff. marilynae; Pyrrhulina sp.; P. obermulleri and Pyrrhulina cf. laeta shows the
general distribution of the microsatellites (GA)15, (CA)15 and (CGG)10 on chromosomes. Bar � 5 μm.
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acrocentric chromosomes giving rise to metacentric
chromosomes, reducing the diploid number as observed in
Nannostomus unifasciatus (Sember et al., 2020). Biarmed
chromosomes could also represent remnants of the
ancestral karyotype condition that were maintained during
the evolutionary processes. However, no ITS was found in any
chromosome of P. marilynae, but such a scenario does not
exclude the hypothesis of fusion, given that telomeric regions
can be lost after the rearrangement occurs (Bolzán, 2017).
Thus, to corroborate such hypotheses and to determine
whether the evolutionary trajectory of karyotype change in
Pyrrhulina is directed mainly towards centric fusions or
fissions, cytogenetic data should be discussed in a larger

phylogenetic framework of interspecific and intergeneric
relationships of Lebiasinidae.

CGH procedures have greatly assisted cytogenetic studies
(Symonová et al., 2013; Cioffi et al., 2017; Cioffi et al.,2019), as
among all Pyrrhulina studied so far. In fact, despite showing close
genomic similarities, the species also show considerable
divergences, in addition to species-specific repetitive DNA and
C-band patterns, thus helping to understand their differential
evolutionary paths, considering the taxonomic problems still
pending in this fish group. In addition, multiple and syntenic
ribosomal sites are not frequently observed among fishes, but
these chromosomal features are very informative cytotaxonomic
markers regarding Pyrrhulininae species. Comparatively, they

FIGURE 5 | Comparative genomic hybridization (CGH) using male-derived genomic probes from Pyrrhulina species hybridized onto male chromosomes of P.
marilynae. The common genomic regions are depicted in the 1st column in each line representing the experiments A-D. Hybridization between the gDNA of P. marilynae
(Pmar), P. australis (Paus) and Pyrrhulina aff. australis (Pafa) (A); P. marilynae(Pmar), Pyrrhulina aff.marilynae (Pafm) and Pyrrhulina sp. (Psp) (B); P. marilynae(Pmar), P.
brevis (Pbre) and P. semifasciata (Psem) (C); P. marilynae (Pmar), P. obermulleri (Pobe) and Pyrrhulina cf. laeta (Pcfl) (D). Bar � 5 μm.
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occur more frequently among Pyrrhulina than in other species of
this subfamily (de Moraes et al., 2017; de Moraes et al.,2019; Sassi
et al., 2019; Sassi et al.,2020; Toma et al., 2019; Sember et al.,
2020). Like Pyrrhulina aff. australis (de Moraes et al., 2017),
Pyrrhulina sp., and P. marilynae present multiple 5S rDNA sites
and only one 18S rDNA site, thus differentiating them from
Pyrrhulina aff.marilynae, P. obermulleri, and Pyrrhulina cf. laeta,
as well as from some other Pyrrhulina species (de Moraes et al.,
2017; de Moraes et al.,2019), which have multiple 5S and 18S
rDNA sites. Furthermore, the syntenic condition for the 18S/5S
rDNAs in Pyrrhulina cf. laeta is shared with P. brevis and P.
australis, indicating a high rDNA diversity. (Figure 6). In its turn,
the 18S rDNA clusters are distributed on distal chromosome
positions for all investigated Pyrrhulina species (de Moraes et al.,
2017; de Moraes et al.,2019; this study), as also occur among
Copeina (Toma et al., 2019), Lebiasina (Sassi et al., 2019), and
Nannostomus (Sember et al., 2020), so as in the species of the
sister family, Ctenoluciidae (de Souza e Sousa et al., 2017; de
Souza e Sousa et al., 2021).

Microsatellite distribution patterns have significantly
contributed to evolutionary studies in fish species, especially
regarding sex chromosome differentiation (Kubat et al., 2008;
Cioffi et al., 2012; Terencio et al., 2012; Kejnovský et al., 2013;
Poltronieri et al., 2014; Yano et al., 2014; de Freitas et al., 2018).
Among the five Pyrrhulina species now investigated, as well as
in other previous analyzed ones (de Moraes et al., 2017; de

Moraes et al.,2019), the distribution of the microsatellites did
not significantly differ among them, although the (CA)15
repeats present a greater number of more conspicuous
sites than the other microsatellites, especially in Pyrrhulina
aff. marilynae and Pyrrhulina cf. laeta. It is noteworthy that
microsatellites have a preferential location in the telomeric
and centromeric regions of fish chromosomes (Cioffi and
Bertollo, 2012), as occur with the (CA)15 and (GA)15 motifs in
Pyrrhulina, despite some interstitial and pericentromeric
signs in Pyrrhulina cf. laeta, P. marilynae, Pyrrhulina aff.
marilynae and Pyrrhulina sp., thus differentiating these
species from others previously studied (de Moraes et al.,
2017; de Moraes et al.,2019). Furthermore, it is also
frequent that microsatellites and other repetitive sequences
occur in the association among fish (Cioffi and Bertollo,
2012), such as in Hepsetus odoe (Carvalho et al., 2017),
Lebiasina bimaculata (Sassi et al., 2019), and Silurichthys
phaiosoma (Ditcharoen et al., 2020), for example. This is the
scenario that also occurs in Pyrrhulina sp., in which the
(CGG)10 microsatellite located in the telomeric region of
pair 4 shares the same chromosomal region with 18S
rDNA repeats.

Fish, besides presenting high diversity in morphological
and genetic characteristics, also have a variety of sex
chromosome systems (Sember et al., 2021). About nine
differentiated systems, involving the XX/XY and ZZ/ZW sex

FIGURE 6 | Representative idiograms of Pyrrhulina species showing the distribution of the 18S (green) and 5S rDNA (red) sites on chromosomes, based on the
present study and some other previous data (de Moraes et al., 2017; de Moraes et al., 2019). Bar � 5 μm.
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chromosomes and their variations, have been identified among
species, including several Neotropical ones (Sember et al., 2021). It
is noteworthy that among the multiple systems, the \X1X1X2X2/
_X1X2Y is the most prevalent one, and commonly originated by
centric or tandem fusions of the ancestral Y with an autosomal
member of the karyotype, giving rise to neo-Y chromosomes, as
identified in a variety of fish species (Sember et al., 2021). That
includes P. semifasciata, the only Lebiasinidae representative
highlighting heteromorphic sex chromosomes so far (de Moraes
et al., 2019), in addition to a putative ZZ/ZW sex system present in
Lebiasina bimaculata (Sassi et al., 2019). Although our intraspecific
CGH results in the current analyzed species did not reveal any sex-
specific differentiated region, our WCP experiment with the
Y-derived probe of P. semifasciata entirely painted two
acrocentric pairs, suggesting that putative proto-XY chromosomes
may occur in these species. Thus, it supports our previous hypothesis
on the origin of the P. semifasciata sex chromosome system through
centric fusion between the non-homologous acrocentric, giving rise
to the large metacentric Y chromosome. That can be considered as
an apomorphy of this species when compared to others of the genus.
Furthermore, the experiments also showed that although the
karyotype of P. marilynae has large metacentric chromosomes,
these do not correspond to the heteromorphic sex chromosome
of P. semifasciata (Figure 4).

CONCLUSION

Our data advances the understanding of evolutionary trends of
the Lebiasinidae, particularly concerning Pyrrhulina.
Karyotypes with 2n � 40–42, with the predominance of
mono-armed chromosomes, are more frequent among its
species, except for P. marilynae, which has a smaller diploid
number (2n � 32), and several atypical biarmed chromosomes, a
characteristic that differentiates this species from the others
analyzed in the genus. However, we cannot rule out the
hypothesis that this karyotypic reduction (2n � 32) may have
been generated by secondary fusions that allowed the formation
of the four meta/submetacentric pairs identified in P. marilynae.
The present data also highlighted the putative proto-XY
chromosomes that may occur in these species and support
the occurrence, through centric fusion, of the multiple sex
chromosome system of P. semifasciata as an independent
evolutionary event of this Lebiasinidae species. Our results
highlight the importance of chromosomal data as valuable

markers for understanding the evolutionary relationships
among Lebiasinidae species.
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