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Background and Purpose. Hemodialysis patients face a higher risk of ischemic stroke. p-Cresyl sulfate is a typical protein-bound
uremic toxin that contributes to chronic kidney disease and cardiovascular disease progression, as well as mortality in
hemodialysis patients. The present study was aimed at elucidating the association between p-cresyl sulfate and the risk of
ischemic stroke in hemodialysis patients. Method. Patients on hemodialysis over 6 months were enrolled in this prospective
cohort study and were divided into 2 groups based on plasma p-cresyl sulfate level. The primary end point was the first
episode of ischemic stroke during follow-up. The association between p-cresyl sulfate and ischemic stroke incidence was
analyzed by Kaplan-Meier method and Cox proportional hazard model. Results. 220 patients were enrolled in this study. 44
patients experienced episodes of first ischemic stroke during follow-up for 87.8 (47.6-119.5) months. Kaplan-Meier analysis
demonstrated that the incidence of ischemic stroke in the high p-cresyl sulfate group was significantly higher than that in the
low p-cresyl sulfate group (Log-Rank P = 0:007). Cox regression analysis as well proved that p-cresyl sulfate level was
significantly associated with the first incidence of ischemic stroke (HR (hazard ratio) 2.332, 95% CI (95% confidence interval)
1.236-4.399, P = 0:009). After being adjusted for other confounding risk factors, the results persisted significant (model 11: HR
2.061, 95% CI 1.030-4.125, P = 0:041). Conclusion. Plasma p-cresyl sulfate predicts the first incidence of ischemic stroke in
hemodialysis patients.

1. Introduction

The relationship between kidney diseases and cerebrovascu-
lar diseases has become increasingly recognized in recent
years. The incidence of cerebrovascular disease is higher
among chronic kidney disease (CKD) patients compared to
that in the healthy population, and the prevalence of cere-
brovascular disease is higher in more advanced stages of
CKD [1]. CKD patients, especially end-stage renal disease
(ESRD) patients, are with increased hospitalization rates [2,
3] and mortality [4] associated with ischemic stroke.

During CKD progression, uremic toxins accumulate in
the circulation since kidney function declines. Among the
uremic toxins, protein-bound uremic toxins have recently

been noted as a potential link in cardiorenal syndrome [5],
and removal of protein-bound uremic toxins by dialysis is
extremely difficult due to their high protein-binding affinity
[6]. This has been well demonstrated with two of the most
typical protein-bound uremic toxins: p-cresyl sulfate (PCS)
[7–10] and indoxyl sulfate (IS) [11–13]. Our past research
demonstrated that plasma indoxyl sulfate was associated
with the first heart failure event in patients on hemodialysis
[14]. In this study, we focused on the other protein-bound
uremic toxin, PCS.

PCS, with a molecular weight of 188.2 g/mol, originates
from sulfation (para-) of the intestinally generated p-cresol,
and it is bound to about 95% to the protein albumin in the
circulation [15]. In normal condition, the clearance value
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of indoxyl sulfate is 1055 ± 148mL/min/1.73m2, which is 8
± 1 times of creatinine [16], but it increases significantly in
uremic patients (uremic patients 20:9 ± 12:2μg/mL vs. nor-
mal 1:9 ± 1:3μg/mL) due to renal dysfunction [17]. And
plasma levels of PCS were increased with even moderate
impairment of renal function [18]. In the past decade, a
growing number of publications documented the impact of
PCS on CKD progression, cardiovascular diseases, and mor-
tality [7–10, 19]. An existing study also suggests that p-cresyl
sulfate is a significant independent predictor of carotid pla-
que burden [20]. However, the clinical association of PCS
and stroke is uncertain. We, therefore, conducted the cur-
rent prospective study to investigate the relationship
between PCS and ischemic stroke in hemodialysis patients.

2. Materials and Methods

2.1. Study Population and Endpoint Evaluation. The study
population consisted of 220 patients ≥ 18 years old, who
underwent regular hemodialysis therapy over 6 months in
the Blood Purification Center, Zhongshan Hospital, Fudan
University. The enrollment was completed within 6 months
from July to December 2009. The patients who had heart
failure and acute myocardial infarction within 3 months
before the study, as well as who had stroke ever, were
excluded from our study. Patients were treated thrice weekly
(4 hours per session). The study was performed according to
the Declaration of Helsinki and approved by the Ethical
Committee, Zhongshan Hospital, Fudan University. All par-
ticipants provided written informed consent.

Ischemic stroke was defined according to ICD-9 diagno-
sis codes by 2 physicians according to brain imaging (com-
puted tomography and/or magnetic resonance imaging).
The primary endpoint was the first incidence of ischemic
stroke. The secondary endpoint was death, kidney trans-
plantation, and transfer to other dialysis centers.

2.2. Anthropometric Measurements, Biochemical
Measurements, and Clinical Data Collection. Demographic
and clinical data includes age, sex, dialysis duration, smok-
ing history, history of medicine application, underlying kid-
ney disease, and comorbidities. Height and weight were
measured while patients were without shoes and with light
clothes. Body mass index (BMI) was calculated according
to the following formula: weight ðin kgÞ/height2 ðinm2Þ.
Blood pressure was defined as the average of all predialysis
blood pressure during 4 weeks (12 times in total) before this
study. Blood sampling was achieved during a midweek non-
dialysis day 8-10 am. Serum blood urea nitrogen (BUN),
serum creatinine (SCr), hemoglobin, albumin, pre-albumin,
calcium (Ca), phosphorus (P), lipids, uric acid (UA), total
homocysteine (tHcy), iron, transferrin, and ferritin were
measured via standard methods by the clinical laboratory.
The concentrations of high-sensitivity C-reactive protein
(hsCRP) and β2-microglobulin (β2M) were measured by
immunoturbidimetry assay, and the concentration of iPTH
(intact parathyroid hormone) was measured by electroche-
miluminescence immunoassay.

2.3. PCS Measurement. Standard of PCS (99.8%) was kindly
provided by Professor Raymond Vanholder (Ghent Univer-
sity Hospital). Internal standard of warfarin (99.5%) was
kindly provided by Shanghai Institute for Drug Control.
High-performance liquid chromatography tandem mass
spectrometry (HPLC-MS/MS) method was used to detect
PCS concentration in plasma. Briefly, 100μL plasma was
pipetted to a 1.5mL polypropylene tube. Then, 500μL of
internal standard/protein precipitation solution (50 ng/mL
warfarin in methanol) was added to precipitate the proteins.
The contents were vortex mixed for 1min. After centrifuga-
tion at 12 000 × g for 10min, a 100μL aliquot of clear super-
natant was mixed with 100μL of water in a polypropylene
tube and transferred to an autosampler. A volume of 5μL
was injected into LC-MS/MS. The chromatographic separa-
tion was achieved on a Venusil XBP Phenyl column
(100mm × 2:1mm, 5μm; Bonna-Agela Technologies Inc,
Wilmington, DE, USA). Mobile phase A was 2mmol/L
ammonium acetate in 0.1% formic acid (v/v). Mobile B
was methanol. The mobile phase (A : B = 30 : 70) was deliv-
ered at a flow rate of 0.35mL/min. The temperature of the
column and autosampler was maintained at 40°C and 4°C,
respectively. Mass spectrometric detection was performed
on an API 3000 triple quadrupole instrument (Applied Bio-
systems, Toronto, ON, Canada) in multiple reaction moni-
toring (MRM) mode. A TurboIonSpray ionization (ESI)
interface in negative ionization mode was used. Turbo spray
voltage was set at -4200V. Source temperature was main-
tained at 500°C. The compound parameters, collision energy
(CE), declustering potential (DP), entrance potential (EP),
and collision exit potential (CXP) were -27V, -30V, -10V,
and -15V for PCS and -20V, -46V, -10V, and -15V for
warfarin. Quadrupole 1 and quadrupole 3 were maintained
at unit resolution. Dwelling time set was 200ms for all the
analytes. Mass transitions m/z187:1⟶ 107:1 for PCS and
m/z307:0⟶ 249:7 for warfarin were used. Data processing
was performed with Analyst 1.4.1 software package (Applied
Biosystems, Toronto, ON, Canada). Standard curve for IS
was set at 0.025, 0.05, 0.1, 0.5, 1, 5, 10, and 40μg/mL, with
an average r value of 0.999 (n = 8). The lower limit of quan-
titation was 0.025μg/mL. Data analysis was performed with
Analyst 1.4.1 software package (Applied Biosystems,
Toronto, ON, Canada).

2.4. Statistical Analyses. For the primary endpoint, the
Kaplan-Meier method and Cox proportional hazard model
were used to evaluate the association between PCS and the
first incidence of ischemic stroke. To adjust confounding
risk factors, we constructed Model 1 (age, sex, and BMI),
Model 2 (hemoglobin, iron, transferrin, and ferrintin),
Model 3 (history of smoking, primary hypertension, coro-
nary heart disease, diabetes, and uarthritis), Model 4 (sys-
tolic blood pressure (SBP), diastolic blood pressure (DBP),
urinary volume, and single-pool Kt/V (spKt/V)), Model 5
(albumin, prealbumin, BUN, SCr, UA, and glucose), Model
6 (triglyceride (TG), total cholesterol (TC), low-density lipo-
protein cholesterol (LDL-C), high-density lipoprotein choles-
terol (HDL-C), apolipoprotein A (Apo-A), apolipoprotein B
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Table 1: Baseline demographic, clinical, and biochemical characteristics.

All patients
(n = 220)

Low-PCS group (PCS ≤ 20:10μg/mL)
(n = 110)

High-PCS group (PCS > 20:10 μg/mL)
(n = 110) P

Age (year) 56 ± 14 55 ± 13 57 ± 16 0.093

Sex (M/F) 125/95 59/51 66/44 0.207

Height (m) 1:56 ± 0:09 1:64 ± 0:09 1:65 ± 0:09 0.973

Weight (kg) 58.7 (52.0, 66.2) 57.6 (52.3, 65.6) 60.3 (48.8, 69.3) 0.799

BMI (kg/m2) 21.8 (19.9, 24.0) 21.8 (20.0, 23.7) 21.7 (19.2, 24.0) 0.595

SBP (mmHg) 136 ± 17 136 ± 17 137 ± 17 0.656

DBP (mmHg) 82 ± 10 83 ± 10 82 ± 10 0.295

spKt/V 1.34 (1.17, 1.59) 1.33 (1.10, 1.53) 1.36 (1.20, 1.66) 0.011

Urinary volume (mL/kg/24 h) 0 (0, 5.80) 0 (0, 5.60) 1.09 (0, 5.93) 0.596

Smoking history (%) 36.4 28.2 44.5 0.017

Underlying kidney disease 0.359

Glomerular disease (%) 44.1 40.9 47.3

Diabetic nephropathy (%) 7.3 7.3 7.3

Hypertensive nephropathy (%) 7.3 8.2 6.4

Polycystic kidney disease (%) 6.8 10 3.6

Medicinal nephropathy (%) 4.5 6.4 2.7

Others (%) 12.3 10.9 13.6

Unknown (%) 17.7 16.4 19.1

Comorbidity

Primary hypertension (%) 27.7 26.4 29.1 0.382

CHD (%) 5.9 3.6 8.2 0.126

Diabetes (%) 11.4 8.2 14.5 0.101

Uarthritis (%) 22.7 24.5 20.9 0.315

Medications

CCB (%) 62.3 64.5 60 0.289

ACEI (%) 15.9 12.7 19.1 0.134

ARB (%) 26.8 33.6 20.0 0.033

β-Blocker (%) 17.3 20 14.5 0.186

α-Blocker (%) 20.0 21.8 18.2 0.307

Aspirin (%) 20.5 20 21.0 0.514

Statin (%) 5.9 5.5 6.4 0.500

Calcium (%) 67.3 70.0 64.5 0.236

1,25(OH)2vitD3 (%) 54.5 62.7 46.4 0.011

Albumin (g/L) 40 (37, 42) 39 (36, 41) 40 (38, 42) 0.010

Prealbumin (g/L) 0:34 ± 0:08 0:33 ± 0:08 0:35 ± 0:08 0.736

Hemoglobin (g/L) 104 (96, 113) 104 (94, 112) 106 (97, 114) 0.258

Iron (μmol/L) 10.8 (7.8, 15.0) 10.6 (6.8, 14.7) 11.3 (8.5, 15.5) 0.070

Transferrin (g/L) 1.90 (1.65, 2.15) 1.89 (1.66, 2.19) 1.93 (1.64, 2.12) 0.859

Ferritin (ng/mL) 121 (68.8, 260.7) 113.0 (61.3, 263.6) 126.2 (68.9, 258.1) 0.724

BUN (mmol/L) 23:9 ± 5:3 23:2 ± 5:0 24:5 ± 5:6 0.275

SCr (μmol/L) 1004 (863, 1206) 980 (855, 1113) 1030 (887, 1273) 0.042

UA (μmol/L) 433 (382, 494) 428 (382, 483) 439 (377, 500) 0.530

Glucose (mmol/L) 5.4 (4.4, 6.7) 5.5 (4.4, 6.7) 5.3 (4.4, 6.8) 0.841

25OHvitD (nmol/L) 57:3 ± 18:9 56:1 ± 19:3 58:4 ± 18:5 0.578

Ca (mmol/L) 2:20 ± 0:21 2:20 ± 0:21 2:22 ± 0:21 0.866

P (mmol/L) 2:17 ± 0:63 2:27 ± 0:62 2:06 ± 0:63 0.689
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(Apo-B), and tHcy), Model 7 (Ca, P, iPTH, and 25
hydroxyl vitamin D (25OHvitD)), Model 8 (hsCRP and
β2M), Model 9 (history of taking calcium channel entry
blockers (CCB), angiotensin-converting enzyme inhibitors
(ACEI), angiotensin receptor blockers (ARB), β-blocker,
α-blocker, aspirin, statin, calcium-based phosphate binders,
and 1,25(OH)2vitD3), Model 10 (N-terminal probrain natri-
uretic peptide (NT-proBNP), Left Ventricular Mass Index
(LVMI), and left ventricular ejection fraction (LVEF)), and
Model 11. The criterion for Model 11 selection was deter-
mined as P < 0:05 in the univariate Cox proportional hazard
model. PCS was entered as a dichotomous variable.

All data were expressed as mean ± SD, median (or inter-
quartile range), or frequency, as appropriate. To compare
the two groups of normal data, an independent samples t
-test was conducted. A two-tailed P < 0:05 was considered
statistically significant. All data analyses were performed
via SPSS 22.0 (SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Baseline Characteristics of the Study Population. The
baseline characteristics of the patients are listed in Table 1.
The cohort consisted of 220 hemodialysis patients (125
males), with an age of 56 ± 14 years. Glomerular disease

was the leading cause of end-stage renal disease, accounting
for 44.1%. The prevalence of primary hypertension, CHD
(coronary heart disease), diabetes, and uarthritis was
27.7%, 5.9%, 11.4%, and 22.7%, respectively. According to
the plasma PCS concentration, patients were categorized
into two groups: low-PCS group (PCS ≤ 20:10μg/mL) and
high-PCS group (PCS > 20:10μg/mL). Compared with the
low-PCS group, patients in the high-PCS group had lower
ARB and 1,25(OH)2vitD3 medication rate and lower serum
hsCRP (high-sensitivity C-reactive protein), as well as higher
serum albumin and creatine. There were no significant dif-
ferences in other characteristics (Table 1).

Median follow-up time was 87.8 (47.6-119.5) months.
During follow-up, 44 patients experienced episodes of
ischemic stroke, and 5 of which were followed by cerebral
hemorrhage. 10 patients had acute myocardial infarction. 16
patients were lost to follow-up because of transference to a
different center. 15 patients received kidney transplantation.
101 patients died, of which 9 were classified as death caused
by ischemic stroke, 6 as death caused by cerebral hemor-
rhage, and 25 as cardiac death.

3.2. Association between Serum p-Cresyl Sulfate Level and
Ischemic Stroke. In this study, 44 patients experienced the
first incidence of ischemic stroke. In the crude analysis by
the Kaplan-Meier method, we found that the incidence of

Table 1: Continued.

All patients
(n = 220)

Low-PCS group (PCS ≤ 20:10μg/mL)
(n = 110)

High-PCS group (PCS > 20:10 μg/mL)
(n = 110) P

iPTH (pg/mL)
276.9 (136.9,

559.4)
289.3 (144.3, 587.5) 270.1 (136.7, 518.8) 0.274

hsCRP (mg/L) 2.0 (0.7, 6.1) 2.8 (0.7, 9.0) 1.4 (0.7, 4.3) 0.038

TG (mmol/L) 1.44 (1.08, 1.98) 1.36 (1.07, 1.90) 1.46 (1.08, 2.01) 0.510

TC (mmol/L) 4.25 (3.72, 5.00) 4.16 (3.70, 4.86) 4.33 (3.72, 5.26) 0.420

HDL-C (mmol/L) 1.10 (0.89, 1.37) 1.11 (0.92, 1.39) 1.06 (0.86, 1.35) 0.216

LDL-C (mmol/L) 2.42 (1.87, 2.95) 2.40 (1.89, 2.90) 2.45 (1.86, 3.09) 0.594

Apo-A (g/L) 1.18 (1.02, 1.40) 1.22 (1.03, 1.44) 1.15 (1.01, 1.35) 0.172

Apo-B (g/L) 0.81 (0.69, 0.98) 0.80 (0.69, 0.98) 0.83 (0.69, 0.99) 0.578

Lp(a) (mg/L)
175.5 (114.0,

280.8)
175.0 (121.0, 302.5) 175.5 (109.8, 273.3) 0.716

tHcy (μmol/L) 35.4 (28.0, 45.7) 33.3 (27.2, 44.8) 36.8 (30.3, 45.9) 0.074

β2M (mg/L) 36.1 (30.3, 42.7) 36.4 (30.2, 43.1) 35.6 (30.6, 41.6) 0.593

NT-proBNP (ng/mL)
3807 (1747,

8816)
3696 (1379, 10352) 4097 (1991, 7917) 0.601

LVMI (g/m2.7)
108.2 (90.6,

137.8)
110.1 (90.4, 141.7) 106.8 (90.8, 129.1) 0.529

LVEF (%) 67 (62, 72) 68 (63, 73) 66 (62, 70) 0.158

PCS (μg/mL) 22:52 ± 16:22 9:53 ± 5:38 35:53 ± 12:60 <0.001
Abbreviations: BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; spKt/V: single-pool Kt/V; CHD: coronary heart disease;
CCB: calcium channel blocker; ACEI: angiotensin conversion enzyme inhibitor; ARB: angiotensin receptor blocker; BUN:, blood urea nitrogen; SCr: serum
creatinine; UA: uric acid; ALP: alkaline phosphatase; Ca: calcium; P: phosphorus; Ca∗P: calcium phosphorus product; iPTH: intact parathyroid hormone;
hsCRP: high-sensitivity C-reactive protein; TG: triglyceride; TC: total cholesterol; HDL-C:, high-density lipoprotein cholesterol; LDL-C: low-density
lipoprotein cholesterol; Apo-A: apolipoprotein A; Apo-B: apolipoprotein B; Lp(a): lipoprotein (a); tHcy: total homocysteine; β2M: β2-microglobulin; PCS:
p-cresyl sulfate.
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ischemic stroke in the high-PCS group was significantly
higher than that in the low-PCS group (Log-Rank P =
0:007) (Figure 1).

In the univariate Cox proportional hazard model, PCS
was entered only as a dichotomous variable. Results showed
that PCS was significantly associated with first cerebral
infarction (HR 2.332, 95% CI 1.236-4.399, P = 0:009)
(Figure 2). A series of models were constructed to adjust
confounding risk factors, including Models 1-11. PCS was
still significant in Models 1-10(Table 2). In Model 11 (hier-
archically selected covariates of age, serum prealbumin,
SCr, serum glucose, history of primary hypertension, history
of coronary heart disease, history of diabetes, and history of
taking calcium-based phosphate binders), result still
remained significant after adjustment for confounding risk
factors listed above (HR 2.061, 95% CI 1.030-4.125, P =
0:041) (Table 3). In Model 11, age, history of diabetes, and
history of taking calcium-based phosphate binders as well
are associated with ischemic stroke after adjustment of other
confounding risk factors (Table 3).

4. Discussion

Hemodialysis patients face a higher risk and poorer out-
comes of ischemic stroke, due to special risk factors in this
particular population. However, stroke prevention measures
in patients on dialysis remain similar to those in general
population, and treatment options for reducing ischemic
stroke in hemodialysis patients remain limited. It is critical
to identify particular risk factors for stroke in ESRD, to
develop novel prevention measures and treatment strategies.

In this prospective cohort study, we found that a
protein-bound uremic toxin, p-cresyl sulfate, predicts the
incidence of newly developed ischemic stroke in hemodialy-
sis patients. PCS is a kind of protein-bound uremic toxin
originating from intestinally generated p-cresol. Existing
studies focused on the relationship between serum PCS level
and mortality, especially cardiovascular mortality in the
hemodialysis [7, 21] and CKD patients [10, 22].

Our study innovatively provided evidence for an associ-
ation between higher serum PCS level and an increased risk
of ischemic stroke in hemodialysis patients. Result still
remained significant after adjustment for other risk factors,
suggesting that PCS is independently associated with the
first incidence of ischemic stroke in hemodialysis patients.

Endothelial dysfunction is one possible explanation for
the association between high serum PCS and ischemic
stroke. Meijers et al. [23] found that serum p-cresol concen-
tration is independently associated with the number of cir-
culating EMPs (endothelial microparticles, surrogate
biomarkers for endothelial dysfunction, and also could be
biomarkers of ischemic [24] and hemorrhagic [25] stroke)
in hemodialysis patients, and PCS induces EMP shedding
in vitro. Cell experiments demonstrated that PCS activates
leucocyte [26], human vascular smooth muscle cells, and
human umbilical vein endothelial cell [27] free radical pro-
duction, promoting both vascular dysfunction and vascular
remodeling. PCS also exerts proinflammatory effects that
contribute to vascular damage by motivating the crosstalk
between leukocytes and vessels [28]. Endothelial damage is
an essential cause of ischemic stroke. Once the endothelium
is impaired, arterial smooth muscle cells proliferate and lead
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Figure 1: Kaplan-Meier curves of first incidence of ischemic stroke during follow-up in hemodialysis patients stratified by the low- and
high-PCS group.
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to further contraction of the vessel lumen. Mast cells release
elastase and metalloproteinases, contributing to eventual
plaque rupture and stroke [29]. Endothelium injury plays
important roles in the development of cerebral hemorrhage.
Brain endothelial cells function in the maintenance of the

blood–brain barrier [30], of which integrity disrupts during
and after hemorrhage. Endothelial cells also participate in
the delayed phase of hemorrhage, including cerebral vaso-
spasm, microthrombosis, and inflammation, affecting its
prognosis [31].

Figure 2: Univariate Cox hazard ratios for the incidence of first ischemic stroke.

Table 2: Multivariate Cox for the incidence of first ischemic stroke.

HR 95% CI P

p-Cresyl sulfate (dichotomous variable)

Unadjusted 2.332 1.236-4.399 0.009

Model 1 1.998 1.041-3.834 0.037

Model 2 2.368 1.246-4.501 0.009

Model 3 1.956 1.008-3.796 0.047

Model 4 1.994 1.034-3.847 0.039

Model 5 3.291 1.707-6.344 <0.001
Model 6 2.504 1.313-4.778 0.005

Model 7 2.319 1.209-4.447 0.011

Model 8 2.313 1.226-4.365 0.010

Model 9 2.155 1.121-4.143 0.021

Model 10 2.343 1.236-2.439 0.009

Model 11 2.061 1.030-4.125 0.041

HR: hazard ratio; 95% CI: 95% confidence interval; Model 1: adjusted for age, sex, and BMI; Model 2: adjusted for hemoglobin, iron, transferrin, and ferrintin;
Model 3: adjusted for history of smoking, primary hypertension, coronary heart disease, diabetes, and uarthritis; Model 4: adjusted for SBP, DBP, urinary
volume, and spKt/V; Model 5: adjusted for albumin, prealbumin, BUN, SCr, UA, and glucose; Model 6: adjusted for TG, TC, LDL-C, HDL-C, Apo-A,
Apo-B, and tHcy; Model 7: adjusted for Ca, P, iPTH, and 25OHvitD; Model 8: adjusted for hsCRP and β2M; Model 9: adjusted for history of taking CCB,
ACEI, ARB, β-blocker, α-blocker, aspirin, statin, calcium, and 1,25(OH)2vitD3; Model 10: adjusted for NT-proBNP, LVMI, and LVEF; Model 11:
hierarchically selected covariates of age, serum prealbumin, SCr, serum glucose, history of primary hypertension, history of coronary heart disease, history
of diabetes, and history of taking calcium-based phosphate binders.
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We also identified other risk factors for stroke besides
serum PCS level, including age, history of diabetes, and his-
tory of taking calcium-based phosphate binders. Diabetes
mellitus is a risk factor for stroke in the general population
[32]; our result suggests that diabetes may also be a risk fac-
tor of ischemic stroke in hemodialysis patients. Calcium-
based phosphate binders are widely used in hemodialysis
patients with hyperphosphatemia [33]. Although there are
few clinical evidences indicating that calcium load directly
leads to vascular calcification, a clinical trial suggests that
non-calcium-containing phosphate binder such as sevelamer
may contribute to lower vascular calcification compared
with calcium-containing binders [34]. However, in the year
of 2009, non-calcium-containing phosphate binders were
not used in our center.

Our study has several strengths, including long follow-up
time, prospectively collected data, and that a series of possible
confounders were adjusted for. Many studies suggest that PCS
contributes to endothelial damage and vascular remodeling,
while no clinical evidence ever demonstrated the association
between PCS and stroke. Our study first demonstrated that
PCS is associated with the first incidence of ischemic stroke.
The limitation of our study is that a single time point of serum
PCS measurement may not appropriately describe intraindi-
vidual variability in levels over time and thus may lead to mis-
classification of patients into appropriate categories.

5. Conclusions

In summary, we demonstrated that high plasma PCS level
was associated with higher risk of first incidence of ischemic
stroke in hemodialysis patients. Our finding was indepen-
dent of a series of conventional and unconventional risk fac-
tors. Our results suggest that PCS may be an important
biomarker to predict ischemic stroke in a hemodialysis
population.
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