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Abstract

Background: Adequate termination of an immune response is as important as the induction of an appropriate response.
CD46, a regulator of complement activity, promotes T cell activation and differentiation towards a regulatory Tr1
phenotype. This Tr1 differentiation pathway is defective in patients with MS, asthma and rheumatoid arthritis, underlying its
importance in controlling T cell function and the need to understand its regulatory mechanisms. CD46 has two cytoplasmic
tails, Cyt1 and Cyt2, derived from alternative splicing, which are co-expressed in all nucleated human cells. The regulation of
their expression and precise functions in regulating human T cell activation has not been fully elucidated.

Methodology/Principal Findings: Here, we first report the novel role of CD46 in terminating T cell activation. Second, we
demonstrate that its functions as an activator and inhibitor of T cell responses are mediated through the temporal
processing of its cytoplasmic tails. Cyt1 processing is required to turn T cell activation on, while processing of Cyt2 switches
T cell activation off, as demonstrated by proliferation, CD25 expression and cytokine secretion. Both tails require processing
by Presenilin/cSecretase (P/cS) to exert these functions. This was confirmed by expressing wild-type Cyt1 and Cyt2 tails and
uncleavable mutant tails in primary T cells. The role of CD46 tails was also demonstrated with T cells expressing CD19
ectodomain-CD46 C-Terminal Fragment (CTF) fusions, which allowed specific triggering of each tail individually.

Conclusions/Significance: We conclude that CD46 acts as a molecular rheostat to control human T cell activation through
the regulation of processing of its cytoplasmic tails.
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Introduction

Proper functioning of the immune system depends not only on a

rapid, effective activation of immune cells, but also on timely

downregulation of the response. Inadequate termination of these

responses could lead to autoimmunity, chronic inflammation and

cancer. Though the parameters of T cell activation are well

documented, mechanisms that participate in T cell contraction are

less well characterized. A number of mechanisms have been

reported (and recently compiled in a series of reviews [1]). These

include regulation of cell death [2] and autophagy [3], upregula-

tion of negative signaling molecules such as CTLA-4 [4] and PD-1

[5], metabolic amino-acid regulation [6,7], control by T

regulatory (Treg) cells [8] and Treg induction by dendritic cells

[9], among many others. Thus, homeostasis of the immune system

depends on a fine balance between immune cell induction and

deactivation.

CD46 was first identified as a regulator of the complement

cascade [10,11], but has subsequently been shown to link innate

immunity to acquired immunity. Its activation promotes T cell

activation and differentiation. Costimulation of TCR with CD46

leads to increased T cell proliferation [12], and affects T cell

morphology [13] and polarity [14]. Furthermore, CD46 activation

leads to Tr1 Treg differentiation [15]. This was characterized by

secretion of high amounts of IL-10 [15] and granzyme B [16].

Interestingly, a recent report demonstrates that CD46 can in fact

switch T cell differentiation from a Th1 to a Tr1 phenotype,

depending on IL-2 concentrations present in the milieu [17]. This

underlines the importance of the plasticity of CD46 in controlling

T cell activation. We have previously shown that Tr1 differenti-

ation is altered in patients with multiple sclerosis (MS). IL-10

secretion upon CD3/CD46 costimulation was impaired in T cells

from ,50% of patients with MS [18,19]. The lack of Tr1

differentiation in MS was recently confirmed by another study
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[20] and in a primate model of MS [21], and the dysregulation of

CD46 pathways in T cells was recently described in patients with

asthma [22] and with rheumatoid arthritis [17]. The role of CD46

in human diseases highlights its importance in controlling T cell

activation, and further underlines the need to understand its

regulation and the molecular mechanisms responsible for its

functions.

CD46 is a type I membrane protein expressed in all nucleated

human cells. Its isoforms, products of alternative splicing, have

four complement control repeats (CCR) at the N-terminus,

followed by a heavily glycosylated region rich in serine, threonine

and proline, a transmembrane segment, and one of two short

cytoplasmic tails termed Cyt1 and Cyt2 [23]. Both tails can

transmit signals [24,25]. Most cell types co-express Cyt1 and Cyt2

except for brain and kidney cells, which predominantly express

Cyt2 [26], and their function is mostly unknown. As mice do not

express CD46 except for testis, we initially studied their role in

inflammation in a CD46 transgenic mouse model of T cell-

dependent contact hypersensitivity. We reported that CD46-Cyt1

inhibits inflammatory responses, whereas Cyt2 augments inflam-

mation [27]. We also demonstrated that CD3/CD46 coactivated

T cells from MS patients have higher levels of CD46-Cyt2 mRNA

compared to activated T cells from healthy donors [19]. This

suggests that the higher level of CD46-Cyt2 transcript resulting

from CD46 engagement in MS patients may influence their T cell

responses. Recently CD46 was shown to be a substrate for the

presenilin/c-secretase (P/cS). Upon infection by pathogenic

Neisseria, epithelial cell CD46 was sequentially cleaved by MMP

and P/cS [28]. MMP cleavage releases a soluble ectodomain and

a C-Terminal Fragment (CTF) consisting of the transmembrane

region and cytoplasmic tail. P/cS then cleaves the CTF, releasing

the Cyt1 and Cyt2 tails into the cytosol. Whether the Cyt1 and/or

Cyt2 ICDs have biological activity is currently unknown.

Herein, we investigated the regulation of CD46 expression upon

T cell activation and tested the hypothesis that P/cS modulates

the function of CD46-Cyt1 and CD46-Cyt2 on immune function.

We demonstrate a novel function of CD46 in terminating T cell

activation. We first present evidence of CD46 processing in human

primary T cells. We show that CD46 is cleaved by MMP in

CD46-coactivated human T cells. Furthermore, our data illustrate

that Cyt1 and Cyt2 levels fluctuate dynamically during T cell

stimulation. CD28 costimulation results in an increase in Cyt1 and

Cyt2 expression, suggestive of a crosstalk between CD46 and

CD28. However, upon CD46 coactivation, CD46 cytoplasmic

isoforms were temporally downregulated. Cyt1 expression de-

creased transiently, whereas Cyt2 expression increased then

strongly decreased. Addition of P/cS enzymatic complex inhib-

itors impaired CD46 tail downregulation. We demonstrate the

requirement of CD46 CTF processing in immune regulation by

two approaches. First, we expressed uncleavable mutant CD46

Cyt1 and Cyt2 CTF constructs (hereafter called CTF1 and CTF2,

respectively) in primary human T cells. Expression of wild-type

(wt) CTF1 promoted T cell proliferation, CD25 expression and

IL-10 secretion, whereas expression of uncleavable CTF1

(UNCL.F1) abrogated T cell activation, demonstrating that

cleavage of Cyt1 is required for its function. Expression of wt

CTF2 decreased IFNc secretion, while expression of uncleavable

CTF2 (UNCL.F2) enhanced T cell proliferation, increased CD25

expression and IFNc secretion, indicating that Cyt2 cleavage acts

as an inhibitory signal for T cell activation. Second, we expressed

CD19 ectodomain-CD46 CTF fusion proteins in primary T cells.

Triggering of Cyt1 or Cyt2 by CD19 ligation led to similar

conclusions in terms of cytokine production and proliferation.

Taken together, our data indicate that processing of CD46 tails is

required to first promote T cell activation followed by signals

resulting in T cell inhibition, demonstrating the unexpected role of

CD46 in turning off its own activation in a negative feedback loop.

These data suggest that the timely activity of P/cS on the two

CD46 isoforms provides a molecular rheostat for regulating T cell

activation.

Results

CD46 is cleaved by a metalloproteinase upon T cell
activation

We first assessed whether activating primary human T cells via

CD46 could modulate its surface expression. Purified human

CD4+ primary T cells were activated by immobilized anti-CD3,

anti-CD3 and anti-CD28 (anti-CD3/CD28), or anti-CD3 and

anti-CD46 antibodies (CD3/CD46) for 2 days. The presence of

CD46 ectodomain on T cells was monitored by flow cytometry.

CD3 and CD3/CD28 costimulation led to an increase in surface

CD46 levels (Figure 1A). In contrast, CD3/CD46 stimulation

resulted in a loss of surface CD46. Reduced levels of surface CD46

were observed up to 5 days post-activation (Figure 1B).

In order to determine whether MMPs are involved in the

downregulation of surface CD46, we cultured T cells in presence

of GM6001, a broad MMP inhibitor. Activating T cells with

CD3/CD46 in the presence of GM6001 partly restored surface

CD46 levels (Figure 1C). Moreover, using an ectodomain-specific

antibody, we were able to immunoprecipitate CD46 from

supernatants of CD3/CD46 stimulated cells, but not from

supernatants of unstimulated cells, or cells stimulated with CD3

or CD3/CD28 (Figure 1D). The slightly lower molecular weight of

soluble CD46 compared to membrane CD46 is the size predicted

for the ectodomain released by MMP. Furthermore, addition of

GM6001 decreased the levels of soluble CD46 in the supernatants

of CD3/CD46 activated T cells. Hence, T cell activation via

CD46 causes its ectodomain to be released from the membrane,

and MMP cleavage is responsible at least in part for this shedding.

We next determined whether addition of MMP inhibitor could

modulate CD46 function and notably IL-10 production. Addition

of GM6001 slightly increased the proliferation of CD46-activated

T cells. However, it significantly inhibited IL-10 production

(Figure S1). These data suggest that CD46 processing may be

required for IL-10 production by CD46-activated T cells.

P/cS causes fluctuations in the levels of the two CD46
cytoplasmic tails

We next addressed the possibilities of further downstream

processing of CD46 cytoplasmic tails in primary human CD4+ T

cells. CD4+ primary T cells were activated by anti-CD3/CD46

antibodies for ,28–40 hrs (early time point) or 96–120 hrs (late

time point). CD46 tails Cyt1 and Cyt2 were monitored by flow

cytometry using tail-specific monoclonal antibodies [29]. At the

early time point, Cyt1 levels were reduced in stimulated cells

compared to unstimulated cells (p = 0.026), whereas Cyt2 levels

were significantly increased (p = 0.0002; Figure 2A and Figure S2).

At the late time point, Cyt1 levels in stimulated and unstimulated

cells were equivalent, whereas Cyt2 levels were significantly lower

than those in unstimulated cells (Figure 2A and Figure S2).

Stimulating cells with CD3 or CD3/CD28 antibodies, i.e., without

CD46 ligation, slightly increased cytoplasmic Cyt1 at the early

time point, with CD3/CD28 having the most dramatic effect

(p = 0.0001; Figure 2B). Cyt1 levels remained elevated at the late

time point, but only in CD3/CD28 stimulated cells (p = 0.0006).

In contrast, CD3 and CD3/CD28 stimulated cells had increased

Cyt2 levels only at the early time point, with CD3/CD28
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stimulation having again the most dramatic effect (p = 0.0001).

These data demonstrate that T cell costimulation by CD46 but

also by CD28 regulates the levels of expression of CD46

cytoplasmic tails, and suggest a crosstalk between these two

costimulatory molecules.

We next investigated whether P/cS is involved in regulating

Cyt1 and Cyt2 tail levels. CD4+ T cells were activated by

immobilized anti-CD3/CD46 antibodies in the presence of

DAPT, a P/cS pharmacological inhibitor, or of DMSO as a

control, for 2 or 4 days, and Cyt1 and Cyt2 levels were analyzed

by flow cytometry using tail-specific monoclonal antibodies. A

representative experiment with one set of donor cells is presented

in Figure 2C. Both Cyt1 and Cyt2 levels were increased in the

presence of DAPT, compared to cells stimulated in the absence of

DAPT (Figure 2C). An increased expression of Cyt1 was detected

at day 2 while increased expression of Cyt2 was detected at day 4.

Similar results were obtained when the experiment was repeated

with addition of L-685,458, another P/cS inhibitor (Figure S3).

These inhibitors had no effect on the levels of surface CD46 (not

shown). These data suggest that P/cS activity modulates the levels

of Cyt1 and Cyt2 isoforms in T cells, in a time-dependent fashion.

IL-2 has no significant effects on CD46 expression
CD46 costimulation drives Tr1 differentiation in presence of IL-

2 [15,17]. Hence, we assessed whether IL-2 modulates CD46

expression. CD4+ T cells were activated with anti-CD3/CD46

antibodies in presence of increasing doses of IL-2. Expression of

cell surface CD46 and of its cytoplasmic isoforms were monitored

overtime by flow cytometry (Figure 3). No significant effect was

observed for surface CD46 expression (Figure 3A). Although there

was a small increase in Cyt1 and Cyt2 expression in presence of

IL-2, it was not significant (Figure 3B). Hence, IL-2 did not seem

to considerably affect CD46 expression.

The expression of the two CD46 CTFs differently affects T
cell responses

To further investigate the role of P/cS processing of CD46 in T

cell functions, we next expressed the Cyt1 or Cyt2 CTF in primary

T cells. These constructs consist of the membrane-spanning

segment of CD46 and either the Cyt1 or Cyt2 cytosolic tail.

Hereafter, these constructs are named CTF1 (containing the Cyt1

tail) or CTF2 (containing the Cyt2 tail) (Figure 4). We first checked

that primary T cells transfected with empty vector responded

normally to CD46 and CD28 co-stimulation. Indeed, these cells

produced high levels of IL-10 and low levels of IFNc when

activated by CD46 antibodies, and higher levels of IFNc when

activated by CD28 antibodies. As reported, cells activated with

CD28/CD46 produced more IL-10 than those activated by CD28

alone (Figure 5A and [15]). Cells were then transfected with

plasmids encoding CTF1, CTF2 or with empty vector (CVO).

Twenty-four hours post-transfection, the cells were activated with

anti-CD3/CD28 or anti-CD3/CD46, or with anti-CD3/CD28/

CD46, and after 4 days, IL-10 and IFNc secretion was assessed by

flow cytometry. We determined the proportion of IL-10+, IL-

10+IFNc+ and IFNc+ secreting cells after expression of each

construct and calculated the proportion of IL-10+/IL-10+IFNc+

and of IFNc+/IL-10+IFNc+ to detect the potential effects of the

CTFs on specific cytokine production (Figure 5B). Activation of

CTF1-expressing cells by CD3/CD28 and CD3/CD28/CD46

increased the proportion of IL-10-secreting cells in the population

Figure 1. CD46 ectodomain is processed by MMPs upon T cell activation. (A) CD4+ T cells were left unstimulated, or stimulated as indicated
with immobilized anti-CD3, anti-CD3/CD28 or anti-CD3/CD46 for 48 hrs. The expression of CD46 at the cell surface was examined by flow cytometry.
The results obtained for one donor are shown. The normalized MFI for CD46 (D to the isotype control) are plotted for the different donors analyzed
(mean 6 SEM, n = 12). All data were analyzed using the Wilcoxon test, a non-parametric paired t-test that does not assume Gaussian distribution. (B)
CD4+ T cells were activated with immobilized anti-CD3/CD46 antibodies or left unstimulated (US) for several days and CD46 surface expression
monitored daily. (C) CD4+ T cells were activated with immobilized antibodies as indicated in presence of GM6001, a broad metalloproteinase inhibitor
(10 mM), or DMSO as a control. After 2 days, the cell surface expression of CD46 was determined by flow cytometry. The representative plots obtained
for one donor are shown, and the normalized data obtained for the different donors (n = 10) are shown on the right panels. (D) The presence of
sCD46 in the cell culture supernatants of activated T cells, as indicated, was determined after CD46 immunoprecipitation and western-blot analysis.
TCL = Total Cell Lysate, as a control for membrane CD46. Representative of 2 experiments.
doi:10.1371/journal.pone.0016287.g001
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compared to cells transfected by the empty vector (p = 0.008), and

slightly decreased the proportion of IFNc-secreting cells but only

upon CD3/CD28 activation. CTF2 expression led to a significant

decrease in IFNc-secreting cells (p = 0.012) but had no significant

effect on IL-10-secreting cells (Figure 5B,C). CD3/CD46-activat-

ed T cells remained mainly insensitive to CTF expression. This is

likely due to the dominant stimulation of the endogenous CD46.

However, as CTF expression could modulate the response of the

cells coactivated by CD28/CD46, this suggests an effect of the

CTF on the CD28 pathway, independently of the endogenous

CD46, supporting the hypothesis of a crosstalk between CD28 and

CD46.

Next, we transfected primary T cells with mutants of CTF1 and

CTF2 that cannot be cleaved by P/cS (UNCL.F1 or UNCL.F2,

respectively) (Figure 4). A representative experiment from one set of

transfected donor cells upon CD3/CD8/CD46 activation is shown

in Figure 5C. UNCL.F1-expressing cells secreted ,50% less IL-10

and slightly less IFNc than CTF1-expressing cells. An increase in

Figure 2. CD46 cytoplasmic tails are regulated by P/cS upon T cell activation. Purified CD4+ T cells were left unstimulated or stimulated as
indicated by immobilized anti-CD3/CD46 (A), anti-CD3 or anti-CD3/CD28 (B), for 28–40 hrs (early time point) and 96–120 hrs (late time point). The
expression of the two cytoplasmic tails of CD46 was determined by intracellular staining (0.1% saponin) using specific Cyt1 or Cyt2 monoclonal
antibodies. The samples were analyzed using the Wilcoxon test, a paired test that does not assume Gaussian variation. The means 6 SEM are shown.
(C) CD4+ T cells were stimulated by immobilized anti-CD3/CD46 antibodies for 2 or 4 days in presence of DAPT (10 mM), a P/cS inhibitor, or of DMSO
as control. The expression of Cyt1 and Cyt2 was then analyzed by flow cytometry. There was an increased expression of Cyt1 at D2 and increased
Cyt2 levels at D4 in presence of DAPT. Representative of four experiments.
doi:10.1371/journal.pone.0016287.g002
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IFNc production was observed for UNCL.F2-expressing cells

compared to CTF2-expressing cells. Although UNCL.F2-express-

ing cells secreted more IL-10 than CTF2-expressing cells, the

proportion of IL-10+/IL-10+IFNc+secreting-cells was unaffected.

The proportion of IL-10+ and IFNc+ only secreting cells upon the

different conditions of stimulation obtained for 7 independent

donors is also represented in Figure 5D. Inhibition of CTF1

cleavage abrogated the increase in IL-10+ cells and had a weaker

effect on IFNc-secretion. Inhibition of CTF2 cleavage enhanced the

percentage of IFNc-secreting cells.

We next assessed T cell activation levels by monitoring CD25

expression and proliferation in primary T cells expressing wild-

type and uncleavable CTFs. Transfected T cells were labeled with

CFSE, then activated with anti-CD3/CD46, anti-CD3/CD28 or

anti-CD3/CD28/CD46 antibodies, and CD25 expression and

proliferation were assessed by flow cytometry. A representative

experiment with one set of transfected donor T cells upon CD3/

CD28 activation is presented in Figure 6. CTF1-expressing cells

had higher levels of CD25 and proliferated more than control

cells. Expression of UNCL.F1 abrogated this effect (Figure 6A).

CTF2-expressing cells proliferated similarly than control cells.

However, expression of UNCL.F2 led to a strong increase in

proliferation rate and CD25 expression, compared to CFT2

expressing cells, as shown by the increased percentage of

CFSEloCD25+ cells (inner gate, Figure 6A). The percentage of

changes in CFSEloCD25+ cells upon expression of the uncleavable

constructs compared to cleavable ones obtained for 7 independent

experiments are also represented in Figure 6B. The % of

CFSEloCD25+ cells obtained for the different experiments are

represented in Figure 6C. UNCL.F1-expressing cells had signif-

icant reduced levels of CFSEloCD25+ cells than CTF1-expresing

cells, while expression of UNCL.F2 led to a significant increase in

CFSEloCD25+ cells. This indicates that processing of the two

isoforms regulated cell activation, albeit antagonistically. CTF1

cleavage was necessary to boost T cell activation, while CTF2

cleavage resulted in T cell inhibition.

Specific triggering of CD46 cytoplasmic tail results in
differential T cell activation profile

We next designed fusion constructs that would allow us to

directly and specifically trigger Cyt1 or Cyt2 without affecting

endogenous CD46. We constructed chimeric molecules consisting

of the extracellular domain of CD19, a B cell marker, fused to

CTF1 or CTF2 (Figure 7A). These constructs contain the MMP

Figure 3. IL-2 has no significant effect on CD46 expression. Purified CD4+ T cells were stimulated by immobilized anti-CD3/CD46 with
increasing concentrations of rhIL-2, as indicated, for various lengths of time. Expression of cell surface CD46 (A) and of intracellular Cyt1 or Cyt2 (B)
was monitored by flow cytometry. The means 6 SEM are shown (n = 5). The samples were analyzed using the Wilcoxon test, a paired test that does
not assume Gaussian variation. A slight increase in expression of CD46 cytoplasmic isoforms was observed but no statistical differences were
obtained.
doi:10.1371/journal.pone.0016287.g003
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cleavage domain, and they were named CD19-Cyt1, or CD19-

Cyt2. These constructs were first characterized for the correct

expression of the chimeric proteins by transfecting them into

HEK293 cells and examining fusion protein expression by flow

cytometry using antibodies to CD19 ectodomain, Cyt1 and Cyt2

(Figure 7B). Approximately 40% of cells transfected with

pcDNA3-CD19-Cyt1 expressed CD19 and high levels of Cyt1

while CD19 and high expression level of Cyt2 was only observed

in pcDNA3-CD19-Cyt2 transfected cells. Expression in primary T

cells also resulted in ,40% expression of CD19 (Figure 7C). We

assessed the functionality of the MMP cleavage site in these

fusions. Transfected T cells expressing fusion constructs were left

unstimulated, or were activated with immobilized anti-CD3/

CD28 antibodies in presence or absence of immobilized anti-

CD19 to specifically trigger the fusion proteins, or activated with

anti-CD3/CD46, or anti-CD3/CD28/CD46 antibodies. Ligation

of CD19 strongly decreased surface levels of CD19 (Figure 7C).

This reduced CD19 staining was not due to the masking of the

epitope by detached (and pre-immobilized) CD19 antibodies, as

the cells did not react with FITC-anti-mouse IgG when harvested

from culture (data not shown). These chimeric constructs therefore

contain a functional MMP cleavage site.

We next determined whether specific activation of CD19-Cyt1 or

CD19-Cyt2 could modulate T cell activation. Because coactivation

by CD3/CD28 elicited a much stronger response than CD3 alone

(not shown), we subsequently studied the effect of CD19 ligation on

CD3/CD28 activation. Primary T cells expressing CD19-Cyt1,

CD19-Cyt2 or empty vector were labeled with CFSE and then

activated by immobilized anti-CD3/CD46, or by anti-CD3/CD28

antibodies in presence or absence of anti-CD19. After four days,

proliferation and CD25 expression were assessed by flow cytometry.

A representative experiment is shown in Figure 8A. Expression of

CD19-Cyt1 resulted in a decrease of proliferation of the cells

compared to cells transfected by the control vector, while CD19-

Cyt2 expression by itself, without its ligation, increased prolifera-

tion. Ligation of CD19 had no significant effect of cells transfected

by the control or expressing CD19-Cyt1. In contrast, a dramatic

inhibition of proliferation was observed when CD19-Cyt2 was

engaged. While no significant difference in CD25 expression was

detected for the control cells and CD19-Cyt1 expressing cells, a

strong decrease in CD25 expression was observed for CD19-Cyt2

expressing cells upon CD19 ligation (Figure 8A and B). These

results therefore supported those observed using the CTF

constructs. Expression of CD19-Cyt1 mainly mimicked UNCL.F1

Figure 4. CTF constructs used in this study. (A) Schematic representation of the proteins encoded by the different CTF plasmids used in this
study. Plasmids encoding the CTF portion of either Cyt1 (CTF1) or Cyt2 (CTF2) as well as mutants rendered uncleavable by the P/cS (UNCL.F1 and
UNCL.F2) are represented. (B) Uncleavable CTF constructs. Left panel: Top diagram shows wt and mutant Cyt1 tail constructs. SP: heterologous signal
peptide; black box: peptide linker; unlabelled white box: short segment of CD46 ectodomain; TM: CD46 transmembrane region; Cyt1 (or Cyt2 for
CTF2 constructs) cytoplasmic tail. Lower diagram shows amino-acid sequence of the wt TM and uncleavable mutant TMs with amino-acid
substitution (boxed residues). The Notch1 TM is shown for comparison. Downward arrow points to predicted P/cS cleavage site for CD46; upward
arrow to known cleavage site for Notch1. The right panel shows the immunoblot of CHO cells expressing wt (CTF) and mutant (CTF VV_GG). Arrow
indicates the 6 kD Cyt1 peptide release by P/cS cleavage. GAPDH = loading control.
doi:10.1371/journal.pone.0016287.g004
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expression while CD19-Cyt2 expression mainly reflects UNCL.F2

expression. However, specific activation of CD19-Cyt2 led to a

striking inhibition of proliferation and CD25 expression, and

indicated that Cyt2 differently modulates T cell activation

depending on its triggering and processing.

We next determined the effect of Cyt1 and Cyt2 specific

triggering on cytokine production. T cells expressing CD19-Cyt1

and CD19-Cyt2 were activated by CD3/CD28 or CD3/CD28/

CD19, and cytokine production determined. The percentage of

change in cytokine production upon CD19 ligation was calculated

for IL-10+, IL-10+IFNc+ and IFNc+ cells. Co-activation of CD19-

Cyt1 cells increased the percentage of cells producing IL-10 only

(p = 0.019; Figure 8C). CD19-Cyt1 had no significant effect on the

proportion of IL-10+IFNc+ cells and on IFNc+ secreting cells. In

contrast, CD19 co-activation of CD19-Cyt2 cells significantly

reduced IFNc production (p = 0.037). Finally, CD19 co-activation

of vector only control cells had no effect on either IL-10 or IFNc
production. These results corroborate the findings from CTF-

expressing cells that altered the proportion of IL-10+ or IFNc+-

only producing cells.

Specific triggering of CD19-Cyt2 results in increased
CTLA-4 expression and dephosphorylation of LAT

In order to determine a possible mechanism for the inhibitory

effect of Cyt2, we analyzed CTLA-4 levels, a potent co-inhibitory

molecule for T cells [30]. As shown in Figure 9A, CTLA-4

expression is induced by activation of primary human T cells, and

notably when CD46 is stimulated. In transfected cells, activation

by CD19 had no effect on CD19-Cyt1 expressing cells and control

cells. However, triggering of CD19-Cyt2 led to a strong increase in

CTLA-4 expression, providing a possible mechanism for Cyt2

inhibitory role. The results obtained for one experiment is shown

in Figure 9B, and the average data obtained for the different

donors represented in Figure 9C.

CTLA-4 engagement decreases T cell activation by transmitting

negative signals. Notably, it induces the dephosphorylation of

Figure 5. Cleavage of CTF-Cyt1 and CTF-Cyt2 differently controls IL-10 and IFNc production. (A) Activation of transfected (with a control
plasmid) primary CD4+ T cells results in normal differentiation. Twenty-four hours post transfection by Amaxa/Lonza with the empty vector control
(CVO), CD4+ T cells were stimulated by immobilized anti-CD3/CD46, anti-CD3/CD28 or anti-CD3/CD28/CD46 monoclonal antibodies for 72 hrs. The
secretions of IL-10 and IFNc were assessed by secretion assays (Miltenyi). CD46 costimulation induces mainly IL-10 production, while CD28
coactivation induces more IFNc. CD28/CD46 coligation also induces Tr1/IL-10 secretion (as described by [15]). (B) CD4+ T cells were transfected with
the control plasmid (CVO) or encoding CTF-Cyt1 (CTF1) or CTF-Cyt2 (CTF2) fragments. Twenty-four hours post transfection, CD4+ T cells were
stimulated by immobilized anti-CD3/CD28, anti-CD3/CD46 or anti-CD3/CD28/CD46 monoclonal antibodies, as indicated. After 3 days, the secretions
of IL-10 and IFNc were assessed by secretion assays (Miltenyi). The proportions of IL-10+/IL-10+IFNc+ and of IFNc+/IL-10+IFNc+ secreting cells for the
multiple experiments performed are represented. The means 6 SEM are shown (n = 10). All data were analyzed using the Wilcoxon test, a non-
parametric paired t-test that does not assume Gaussian distribution. (C) CD4+ T cells were transfected with the plasmids encoding CTF-Cyt1 (CTF1) or
CTF-Cyt2 (CTF2) or with the uncleavable CTF1 or CTF2 (UNCL.F1 and UNCL.F2) before analysis of IL-10 and IFNc production. The data obtained for one
donor is shown upon CD3/CD28/CD46 activation. (D) The proportions of IL-10+/IL-10+IFNc+ and of IFNc+/IL-10+IFNc+ secreting cells for the multiple
experiments performed are represented (n = 7).
doi:10.1371/journal.pone.0016287.g005
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proteins activated by TCR stimulation, such as LAT [31]. CD46

activation of T cells induces LAT phosphorylation [12]. Hence, we

next determined the level of LAT phosphorylation upon activation

of each tail. CD4+ T cells were transfected with the control plasmid

or the plasmids encoding CD19-Cyt1 or CD19-Cyt2 and activated

for 5 min in presence of anti-CD3/CD28 with or without CD19

ligation. The phosphorylation of LAT was analyzed by flow

cytometry. The results obtained for one experiment are shown in

Figure 9D, and the average data obtained for the different donors

represented in Figure 9E. As expected, no difference was observed

for the control cells when CD19 was activated. No significant effect

was observed by the simultaneous triggering of CD19-Cyt1 and

CD3/CD28. In contrast, CD19-Cyt2 costimulation induced a

significant decrease in LAT phosphorylation, supporting the

hypothesis of the role of Cyt2 in terminating T cell activation.

Discussion

The outcome of T cell activation results from a computation of

signals received by the T cells, ensuring first proper activation,

followed by adequate termination of the immune response

initiated [1]. Here, we demonstrate the ability of CD46, a major

costimulatory molecule for human T cell activation [12], to

provide both coactivation and termination signals, through the

regulation of expression of its two cytoplasmic isoforms. We first

demonstrate the regulation of CD46 processing. An MMP-

dependent cleavage of CD46 ectodomain was initially observed

at the cell surface of T cells when CD46 was ligated. The

antibodies used for activation and labeling were different, and

there was a clear effect of MMP inhibitor indicating that an MMP-

dependent cleavage was at least partly involved. We also

investigated whether CD46 activation induced its internalization

by measuring intracellular levels of CD46 after intracellular

staining and acid-stripping of the cells, as reported in [32] (data

not shown). No significant increase in CD46 was detected in these

conditions, suggesting that most CD46 was shed from the surface.

This also correlated with the presence of soluble CD46 in the

culture supernatants of coactivated T cells. Apoptosis of neuronal

and epithelial cells also triggers CD46 MMP-dependent shedding

[33,34], indicating that several biological pathways use this

Figure 6. Cleavage of CTF-Cyt1 and CTF-Cyt2 differently controls T cell proliferation and CD25 expression. CD4+ T cells were
transfected with the plasmid encoding CTF-Cyt1 (CTF1) or CTF-Cyt2 (CTF2), or the uncleavable fragments (UNCL.F1and UNCL.F2). Twenty-four hours
post transfection, CD4+ T cells were labeled with CFSE and stimulated with immobilized antibodies for 4 days. Proliferation and CD25 expression was
determined by flow cytometry. (A) The data obtained upon CD3/CD28 activation for one donor is shown. (B) The percentage of change in
CFSEloCD25+ cells upon expression of the uncleavable constructs compared to the cleavable ones upon the different conditions of stimulation is
represented as an average of several independent experiments with different donors (n = 7). (C) The average % of CFSEloCD25+ cells (inner gate in
(A)) obtained in the different experiments performed is also represented.
doi:10.1371/journal.pone.0016287.g006
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mechanism of regulation. The loss of CD46 expression at the cell

surface was followed by the downregulation of its cytoplasmic

isoforms, although with a strikingly different time-course. Cyt1 was

downregulated first, while Cyt2 downregulation was observed

afterwards. The decrease in Cyt1 and Cyt2 expression could be

partially restored in presence of P/cS inhibitors, in a timely

fashion. This suggests that, upon T cell activation, this enzymatic

complex cleaves at least a part of CD46 cytoplasmic tails. We were

barely able to detect by western-blots these fragments in activated

primary T cells (not shown). This may be due to the short half-life

of these fragments once released in the cytosol and the limit in

sensitivity of our assay with primary T cells. However, we could

detect the decrease in full length CD46 upon its activation (not

shown). Importantly, the processing by P/cS of both CD46

cytoplasmic isoforms has been observed upon binding of the

pathogenic Neisseria bacteria, N. gonorrhoeae and N. meningitidis, to

epithelial cells [28]. Hence, CD46 processing might be a general

pathway initiated by its triggering, producing active ICD that will

transduce signals.

Most importantly, we demonstrate herein the dual role of CD46

in regulating human T cell activation. Ten years ago, it was

discovered that CD46 could act as a costimulatory molecule for

human T cells [12] and few years later that it could drive Tr1

differentiation [15]. Our data now illustrate the role of CD46 in

turning off T cell activation, providing a novel concept in the

regulation of the immune response. This ‘‘yin and yang’’ ability of

CD46 in regulating T cell activation is mediated by the P/cS-

dependent processing of its two cytoplasmic isoforms. Activation of

T cells by CD46 leads to Tr1 differentiation [15]. Our data

indicate that Tr1 differentiation initiated by CD46 activation is

mainly due to Cyt1, as its specific activation using the CD19-

CD46 fusion protein promoted IL-10 secretion, previously

characterized as a marker of CD46-induced Tr1 cell differentia-

tion [15,16]. An increase in Granzyme B, another hallmark of

CD46-induced Tr1 cells [16] was also observed (data not shown).

Importantly, the role of Cyt1 in IL-10 production was corrobo-

rated by the CTF constructs, as expression of CTF1 increased the

proportion of IL-10-secreting cells. It also promoted T cell

proliferation and CD25 expression. The cleavage of CTF1 was

required for these functions, as they were abrogated by expression

of the uncleavable CTF1 mutant. As CD3/CD28 activation

induced a much stronger response than CD3 activation alone, we

mainly studied the effects of CTF on CD3/CD28 or CD46 co-

activated T cells. However, we were able to detect similar effects of

the CTF constructs on CD3-activated T cells when CD3 induced

sufficient activation levels (Figure S4). Expression of uncleavable

Figure 7. CD19-CTF fusion proteins used in this study. (A) Schematic representation of the proteins encoded by the different fusion plasmids
used in this study. Plasmids encoding the CD19 ectodomain fused to either CTF-Cyt1 or CTF-Cyt2 was constructed. (B) Chimeric protein expression in
HEK293 cells. HEK cells were transfected by Fugene with pcDNA3 plasmids (control (C), CD19-Cyt1 (Cyt1) or CD19-Cyt2 (Cyt2)). Twenty-four hours
later, the expression of CD19, Cyt1 and Cyt2 was assessed by flow cytometry using anti-CD19-FITC and monoclonal antibodies specific of each
isoform. (C) CD4+ T cells were transfected with the control pcDNA3 plasmid (C) or encoding the fusion proteins consisting of the extracellular domain
of CD19 and CTF of either Cyt1 or Cyt2 and activated as indicated. Twenty-four hours later, CD19 expression was determined by flow cytometry.
Representative of three experiments.
doi:10.1371/journal.pone.0016287.g007
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CTF1 appears to block the cells in an unactivated state and fewer

cells get activated. Expression of CD19-Cyt1 has the same effects –

there are fewer cells capable of being activated. Hence, the

decrease in proliferation of CD19-Cyt1 expressing cells, without its

ligation, correlates with the results obtained by expressing

UNCL.F1. The increase in proliferation and CD25 expression

was not detected in CD19-activated cells expressing CD19-Cyt1

fusion protein. This may relate to the strength of activation of the

cells, as the effect of CTF1 was only observed in CD3/CD28 co-

activated T cells. The specific engagement of Cyt2 led to strikingly

different effects. Expression of uncleavable CTF2 strongly

promotes T cell activation. Similar results are obtained when

CD19-Cyt2 is expressed. This suggests that Cyt2 can trigger

signaling events independently of extracellular ligation, and

participates in T cell activation at the early time point. Specific

Cyt2 activation, via CD19 ligation, provokes its cleavage as

demonstrated by the loss of CD19 expression upon its engage-

ment, and results in lowered IFNc secretion, as well as

dramatically decreased proliferation and CD25 expression com-

pared to CD3/CD28 activation in absence of CD19. Similarly,

expression of an uncleavable CTF2 resulted in an increased IFNc
production, enhanced proliferation and CD25 levels. Further-

more, specific triggering of Cyt2 could enhance CTLA-4 level, a

potent co-inhibitory molecule for T cells [30], providing a possible

mechanism for Cyt2 inhibitory role. Indeed, we could demonstrate

that specific Cyt2 triggering led to a decrease in LAT

phosphorylation. Interestingly, CD46-activated T cells do not

sustain proliferation over longer activation periods [35]. We have

shown that gated CTLA-4+ cells exhibit a strong inhibition of

proliferation when Cyt2 in engaged (Figure S5). Our data suggest

an involvement of Cyt2 by upregulation of CTLA-4 and

subsequent dephosphorylation. Together, these data and the

Figure 8. Specific triggering of Cyt1 and Cyt2 differently controls T cell activation. (A) CD4+ T cells were transfected with the control
pcDNA3 plasmid (C) or encoding the CD19-CTF1 (Cyt1) or CD19-CTF2 (Cyt2) fusion proteins. Twenty-four hours post transfection, CD4+ T cells were
labeled with CFSE. Labeled cells were then stimulated by immobilized anti-CD3/CD46, anti-CD3/CD28 or anti-CD3/CD28/CD19 monoclonal antibodies
and proliferation as well as CD25 expression were determined by flow cytometry. (B) Proliferating cells were gated on CFSE-low cells and the
expression of CD25 was determined. The black lines represent the staining obtained for CD3/CD28 activated cells, the shaded grey histograms
represent the staining for the cells activated in presence of anti-CD19. Representative of three experiments. (C) Transfected cells were activated by
anti-CD3/CD28 or anti-CD3/CD28/CD19 monoclonal antibodies. After 4 days, the secretions of IL-10 and IFNc were assessed by secretion assays
(Miltenyi). The changes in the percentages of IL-10+, IL-10+IFNc+ and IFNc+ secreting cells induced by CD19 ligation compared to secretion in absence
of CD19 (100%) for the multiple experiments performed are represented (n = 9). Samples were analyzed using the Wilcoxon test.
doi:10.1371/journal.pone.0016287.g008
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results obtained using CTF2 clearly demonstrate that the lack of

cleavage results in increased T cell activation. This illustrates that

CTF2 processing is required to trigger inhibitory signals within

activated T cells, in a negative feedback mechanism.

Importantly, while this manuscript was being written, it was

reported that CD46 activation could switch T cells from a Th1

toward to Tr1 phenotype depending on IL-2 concentrations

present in the milieu [17]. However, in our hands, we did not

observe significant effects of increasing IL-2 concentrations on

CD46 processing. Remarkably though, the authors found that

expression of Cyt1 in Jurkat cells led to increased IL-10 secretion.

Moreover, ligation of CD46 in cd T cells that express more Cyt2

than Cyt1 (at least by PCR) results in a decrease in IFNc
expression. Our data corroborate these findings in primary CD4+

T cells, but they also demonstrate the role of CD46 isoforms in

overall primary human T cell activation, and we provide evidence

of the requirement of their processing in such functions.

Importantly, both studies highlight the importance of the plasticity

of CD46 in controlling T cell activation. While Kemper’s group

shows the ability of CD46 to switch cytokine production

depending on IL-2 concentrations, we demonstrate that within

the Tr1 differentiation conditions, CD46 acts as a rheostat for T

cell activation. We first observed the loss of expression of Cyt1,

while Cyt2 processing occurred later. This supports the notion that

the initial regulation of CD46-Cyt1 induces IL-10 production and

Tr1 differentiation, while the later Cyt2 processing results in

switching off Tr1 cells, in a negative feedback mechanism. We had

previously reported that CD46 cytoplasmic isoforms had differ-

ential roles in inflammation using transgenic mice expressing

either isoform. In an in vivo model of contact hypersensitivity

reaction to DNFB, CD46-Cyt1 had a potent anti-inflammatory

role, while Cyt2 promoted inflammation [27]. Our data in human

cells corroborate the anti-inflammatory role of Cyt1 through

activation and Tr1 differentiation, and the pro-inflammatory role

of Cyt2 may be explained by decreased IFNc production [36,37]

and lack of Tr1 differentiation. Importantly, CD46 is defective in

MS, as CD46-activation of both T cells and dendritic cells leads to

a pro-inflammatory phenotype [19,38]. Whilst CD46 activation

induced Tr1 differentiation and IL-10 secretion in T cells from

healthy donors, IL-10 production was decreased by T cells from

Figure 9. Specific Cyt2 triggering increases CTLA-4 expression and decreases LAT phosphorylation. (A) CTLA-4 expression was
determined by flow cytometry on untransfected primary T cells activated as indicated for 4 days. (B) Twenty-four hours post transfection with
pcDNA3 plasmids (control, CD19-Cyt1 or CD19-Cyt2), CD4+ T cells were stimulated with anti-CD3/CD28 (black plain line) or anti-CD3/CD28/CD19
(shaded grey area) monoclonal antibodies for 5 days. The expression of intracellular CTLA-4 was then assessed by flow cytometry. Red and green lines
represent the staining obtained with the isotype controls for both types of activation. The average normalized CTLA-4 staining obtained for 5
experiments is represented in (C). Transfected cells were activated with anti-CD3/CD28 with or without CD19 and addition of a cross-linker for 5 min
at 37uC. Activated cells were immediately fixed and then permeabilized. The presence of phospho-LAT was detected with an anti-pLAT by flow
cytometry. Data representative of one donor are shown in (D). Red lines represent the staining obtained with the isotype controls. The average
normalized pLAT staining obtained for 4 experiments is represented in (E).
doi:10.1371/journal.pone.0016287.g009
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MS patients [19,20,21,39]. This was associated with an increased

RNA expression of the Cyt2 isoform upon T cell activation [19].

Our data now reinforce the likely role of the abnormal Cyt1/Cyt2

ratio in the lack of Tr1 differentiation in patients with MS.

Overall, our data suggest that CD46, through the temporal

processing of its cytoplasmic tails, acts as a molecular rheostat for

human T cells. We propose that, first, Cyt1 is cleaved which promotes

T cell activation and IL-10 production, and that, later, Cyt2 cleavage

sends a negative feedback message, turning off T cell activation, as

summarized in the model depicted in Figure 10 and based on the data

presented in Figure S6. Further elucidation of the transduction

cascades initiated by CD46 isoforms will be required to fully

understand their role in human T cell activation. The understanding

of the mechanisms regulating their expression will provide a potent

tool for immuno-therapies and will complete our growing knowledge

on T cell activation and contraction in health and disease.

Materials and Methods

Cell purification and activation
PBMC were isolated by Ficoll-Hypaque density gradient

centrifugation (Pharmacia LKB Biotechnology, Piscataway, NJ),

from heparinized venous blood from healthy donors obtained after

informed consent. Ethical approval was obtained from the Lothian

Board Ethics Committee. CD4+ T cells were negatively isolated

using magnetic beads (CD4 isolation kit II, Miltenyi Biotec,

Auburn, CA, purification .90%). T cells were then cultured in

culture wells pre-coated with anti-CD3 (OKT3, 5 mg/ml), anti-

CD28 (CD28.2, 10 mg/ml), anti-CD46 (10 mg/ml) (20.6, kindly

provided by Dr. Chantal Rabourdin-Combe, France), anti-CD19

(AbD Serotec, 10 mg/ml), or irrelevant IgG1 (Invitrogen, 10 mg/

ml). Exogenous IL-2 (10 U/ml) was added to CD3/CD46

stimulated cells as previously described [15]. In some experiments,

the P/cS inhibitors DAPT (N-[N-(3,5-Difluorophenacetyl-L-

alanyl)]-S-phenylglycine t-Butyl Ester) or L-685,458 (Sigma-

Aldrich) were added to the culture.

Cell transfection
CD4+ T cells were negatively isolated (Miltenyi, purification

.90%) and transfected (Amaxa/Lonza), following the manufac-

turer’s instructions (U-14). HEK293 cells were transfected by

Fugene (Roche). Twenty-four hours later, the expression of CD19,

Cyt1 and Cyt2 was assessed by flow cytometry using CD19-PE

(BD Biosciences), or specific monoclonal antibodies against Cyt1

or Cyt2 [29] (in 0.1% saponin).

CTF constructs
The CTF expression constructs were made by subcloning PCR

products amplified from CD46 pSecTag2/Hygro (Invitrogen)

clones for Cyt1 and Cyt2 into pIRESneo (GenBank Accession

no. U89673). PCR products were generated using primers

CTF_IRES_EcoR1_F with IRES_BamHI_R_CTF1 for Cyt1

and CTF_IRES_EcoR1_F and IRES_BamHI_R_CTF2 for

Cyt2. PCR products were digested with EcoR1 and BamH1

prior to cloning into pIRESneo. The predicted P/cS cleavage site

was mutagenized with the VV_GG and VV_GG_rc primers using

the QuikChange Lightning Site-Directed mutagenesis kit (Strata-

gene) according to the manufacturers instructions (Figure 4).

Fusion proteins
The extracellular domain of CD19 was fused to CD46 CTF1 or

CTF2. After total RNA extraction from HeLa and Raji cells,

cDNAs were obtained using specific primers: AA3 for CD19, AA4

for Cyt-1 and AA5 for Cyt-2 (Table 1). The CD19 extracellular

region was amplified by PCR with the primers AA1 and AA2

using PHUSION hot start polymerase (Finnzyme) with the

addition of HindIII and XbaI restriction sites at the 59 and 39

ends, respectively. Cyt1 and Cyt2 transmembrane and intracyto-

plasmic domains were amplified with the pairs of primers AA3,

AA4 and AA3, AA5 respectively. Amplified CD19, Cyt1 and Cyt2

cDNA were cloned in pBluescript II plasmid (Stratagene) and

sequenced. Chimeric molecules containing CD19 extracellular

region fused to the CTF domain of either CD46-Cyt1 or Cyt2

isoform were created by SOE-PCR [40,41] using PHUSION hot

start polymerase. For chimeric CD19-Cyt1, primer AA1 annealed

at the 59 end of CD19; primer AA4 annealed at the 39 end of Cyt1

cDNA. Primers AA6 and AA7 were complementary to each other,

overlapping at the respective fusion point of the two cDNA

molecules. The chimeric cDNA was cloned into pcDNA3 vector

Figure 10. Proposed model of the yin and yang role of CD46 in human T cell activation. Upon CD3/CD46 activation, there is
downregulation of Cyt1 expression and increase in Cyt2 expression at the early time point compared to unstimulated T cells. Cyt1 expression level
then returns to the level of expression observed in unstimulated T cells, while the downregulation of Cyt2 expression occurs at the late time point.
We propose that Cyt1 isoform is first cleaved by P/cS while there is an increase in Cyt2 expression. This results in T cell activation, increased
proliferation and CD25 expression as well as IL-10 secretion. Later on, Cyt2 is processed by the P/cS, which induces a negative feedback mechanism
and results in T cell inhibition, with lowered IFNc secretion, decreased proliferation and CD25 expression and increased CTLA-4 expression.
doi:10.1371/journal.pone.0016287.g010
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(Invitrogen) using the HindIII and XbaI restriction sites introduced

in the cDNA. The chimeric CD19-Cyt2 construct was similarly

generated, using primers AA1, AA5, AA6 and AA7. All constructs

were verified by sequencing.

Proliferation assay
Eighteen hours post transfection, T cells were labeled with

CFSE after extensive washes with cold PBS, for 10 min at 37C.

After quenching the reaction with cold 10%RPMI and further

washes, the cells were seeded in 96-well plates precoated with

immobilized antibodies as indicated. Four days later, the

proliferation and CD25 expression (anti-CD25-APC) was assessed

by flow cytometry.

IFNc and IL-10 secretion assays
Eighteen hours post transfection, T cells were seeded into 48-

well culture plates (2.56105 cells per well) pre-coated with various

antibodies. Four days later, the cells were harvested and the

amounts of IL-10- and IFNc-secreting cells were determined using

the secretion assays from Miltenyi (IL-10-PE; IFNc-APC).

Flow cytometry
The expression level of CD46 ectodomain was assessed by flow

cytometry with anti-CD46-FITC (BD Pharmingen). The expres-

sion level of Cyt1 or Cyt2 was performed by intracellular flow

cytometry staining (with 0.1% saponin) using the specific

monoclonal anti-Cyt1 or Cyt2 antibodies previously generated

[29]. The relative expression to the staining with the isotype

control was calculated by calculating the DMFI (MFI antibody

stained - MFI control antibody).

Detection of phospho-LAT
Transfected cells were activated with the appropriate Abs

(CD3/CD28 with CD19 or irrelevant IgG1) and addition of a

cross-linker for 5 min at 37uC [12]. Activated cells were

immediately fixed (Cytofix, BD Biosciences) and then permeabi-

lized (Perm buffer, BD Biosciences). The presence of phospho-

LAT was detected with an anti-pLAT (pY171; BD Biosciences)

and analyzed by flow cytometry.

Statistical analyses
The groups were analyzed using the Graphpad Prism software.

Data were analyzed using the Wilcoxon test, a non-parametric test

that does not assume Gaussian variation. All p-values are two-tails

and with a 95% confidence interval.

Supporting Information

Figure S1 Addition of the GM6001 metalloproteinase
inhibitor inhibits IL-10 production by CD46-activated T
cells. Purified CD4+ T cells were left unstimulated, or stimulated

by immobilized anti-CD3 or anti-CD3/CD46, as indicated, in

presence of GM6001 or DMSO as control for 4 days. The

proliferation was then assessed by thymidine incorporation, and

the levels of IL-10 and IFNc secreted in the culture supernatants

were analyzed by ELISA.

(TIFF)

Figure S2 Timely downregulation of expression of Cyt1
and Cyt2 upon T cell activation. Purified CD4+ T cells were

left unstimulated, or stimulated by immobilized anti-CD3/CD46,

as indicated, for 28–40 hrs (early time point) and 96–120 hrs (late

time point). The expression of the two cytoplasmic tails of CD46

was determined by intracellular staining (0.1% saponin) using

specific anti-Cyt1 or Cyt2 monoclonal antibodies (blue line), or

isotype control (red line). The data obtained for three different

donors are shown.

(TIFF)

Figure S3 Inhibition of P/cS increases the levels of
Cyt1/Cyt2 expression. CD4+ T cells were stimulated by

immobilized anti-CD3/CD46 antibodies for 2 or 4 days in

presence or absence of L-685,458, a P/cS inhibitor. The

expression of Cyt1 and Cyt2 was then analyzed by flow cytometry.

Addition of L-685,458 increases the levels of Cyt1 and Cyt2.

(TIFF)

Figure S4 CTF expression can also alter the profile of
cytokine produced and the proliferation of CD3-activat-
ed transfected T cells. Twenty-four hours post transfection by

Table 1. Primers used for cDNA cloning and generation of CTF and chimeric CD19-CD46 molecules1.

PRIMER NAME SEQUENCE

CTF CONSTRUCTS

CTF_IRES_EcoR1_F CTAGAATTCCCACTGCTTACTGGCTTATCG

IRES_BamHI_R_CTF1 GATCGGATCCTCAGAGAGAAGTAAATTTTACTTCTCTGTGG

RES_BamHI_R_CTF2 GATCGGATCCTCAGCCTCTCTGCTCTGCTGGAG

VV_GG GTTGGAGTTGCAGTAATTTGTGGTGGCCCGTACAGATATCTTCAAAG

VV_GG_rc CTTTGAAGATATCTGTACGGGCCACCACAAATTACTGCAACTCCAAC

FUSION PROTEINS

AA1 59-CCCCCCAAGCTTAGTCTGACCACCATGCCACC-39

AA2 59-CCCCCCTCTAGACTTCCAGCCACCAGTCCTCAG-39

AA3 59-CCCCCCAAGCTTGATGTTTGGGTCATTGCTGTG-39

AA4 59- CCCCCCTCTAGATCAGAGAGAAGTAAATTTTACTTCTC-39

AA5 59-CCCCCCTCTAGATCAGCCTCTCTGCTCTGCTG-39

AA6 59-CAGCAATGACCCAAACATCCTTCCAGCCACCAGTCCT-39

AA7 59-AGGACTGGTGGCTGGAAGGATGTTTGGGTCATTGCTG-39

1Bold letters indicate HindII and XbaI restriction sites. Overlapping sequences for generation of chimeric cDNA are underlined.
doi:10.1371/journal.pone.0016287.t001
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Amaxa/Lonza with the different CTF constructs, CD4+ T cells

were stimulated by immobilized anti-CD3 or anti-CD3/CD28

antibodies. (A) The secretions of IL-10 and IFNc were assessed by

secretion assays (Miltenyi). (B) Proliferation was assessed by flow

cytometry (n = 8). In some experiments, anti-CD3 stimulation was

very weak – hence we mainly studied the effects of expression of

CTF in CD3/CD28 activated T cells. However, in the

experiments where it induced T cell activation, we were then

able to observe a similar effect of the CTF constructs.

(TIFF)

Figure S5 Cyt2 inhibits proliferation of CTLA-4+ cells.
Twenty-four hours post transfection by Amaxa/Lonza with the

different CD19-CD46 fusion proteins, CD4+ T cells were pre-

labeled with CFSE and then stimulated by immobilized anti-

CD3/CD28, anti-CD3/CD28/CD19 or anti-CD3/CD28/CD46

antibodies and CTLA-4 expression was determined after 4 days.

The proliferation of CTLA-4+ gated cells is shown.

(TIFF)

Figure S6 Kinetics of Cyt1 and Cyt2 expression upon
CD46-coactivation. Purified CD4+ T cells were left unstimu-

lated (US), or stimulated by immobilized anti-CD3/CD46 (Stim),

as indicated, for several days. The expression of the two

cytoplasmic tails of CD46 was determined by intracellular staining

using specific anti-Cyt1 or Cyt2 monoclonal antibodies (n = 5).

(TIFF)
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