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Abstract: This study investigated the effect of different storage temperatures (35–55 ◦C) on the bioac-
tive substances and antioxidant properties of Hyeronima macrocarpa berries loaded on nanocellulose.
NC was extracted from banana pseudo-stems and presented an interesting surface and porosity prop-
erties. The acidified ethanol extract showed better anthocyanin extraction (1317 mg C3G eq./100 g FW)
and was used for the preparation of the powdered product, which presented an intense and uniform
magenta color, with CIELAB parameters of L* = 59.16, a* = 35.61, and b* = 7.08. The powder exhibited
significant stability at storage temperatures of 35 and 45 ◦C, in which there was no significant loss
of anthocyanins or a decrease in antioxidant capacity. In addition, the color was stable for up to
4 months without adding any preservative agent. The anthocyanin-rich extract of H. macrocarpa
reached an estimated shelf-life of 315 days (stored at 35 ◦C), as a result of the impregnation process
between the extract and NC, with the ability to protect the bioactives from degradation, due to NC
surface properties.

Keywords: anthocyanins; Hyeronima macrocarpa; free radicals; berries powder; nanocellulose; stor-
age time

1. Introduction

In South America, various berries are distributed and grow wild. There are species
such as the tree grape (Myrciaria cauliflora), small blackberry (Rubus spp.), agraz (Vaccinium
meridionale), blueberry (Vaccinium corimbosum), arazá (Psidium cattleianum), jaboticaba (Plinia
cauliflora), Cavendishia spp., Disterigma spp., and coral blueberry or motilón (Hyeronima
macrocarpa) [1–3]. This type of fruit is small, round, and characterized by having an
intense red or violet color, with strong flavors, slight acidity, sweet tones, and wide- spread
acceptability as a nutraceutical [4].

The main antioxidant bioactive substances in berries are vitamins (A, C, and E) and
polyphenolic derivatives such as phenolic acids, tannins, and flavonoids, including an-
thocyanins, flavones, and flavonols [5]. Polyphenolic compounds are bioactive molecules
since they help combat the effects of oxidative stress by preventing or delaying the onset of
heart disease, diabetes, and some types of cancer [6,7]. The antioxidant mechanisms in the
human body are complex but have been grouped into the following processes: inhibition
of lipid peroxidation, elimination of or reduction in free radicals, activation of endogenous
antioxidant enzymes, and metal ion chelation [8]. Beyond the multiple benefits of these
molecules to maintain an adequate oxidative balance in the body, there are bioavailability
and stability considerations, which must be taken into account when ingesting berries or
derived products.

Anthocyanins are antioxidant metabolites that, in addition to presenting health bene-
fits, are characterized by their qualities as natural colorants, especially in an acid medium,
where they offer colors that cover the scale of oranges, reds, and violets [9]; however, due
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to their chemical structure, they present a low intestinal absorption that does not exceed
3% [10]. Anthocyanins are also molecules that have stability problems and environmental
conditions, such as changes in pH, high temperatures, and oxygen presence, can easily
deteriorate them [11].

The most common preservation methods for ingredients rich in natural antioxidants
include dehydration by drying processes (conventional, solar, microwave, and vacuum
drying), freeze-drying, and spray-drying microencapsulation [12–14]; however, these pro-
cesses offer certain disadvantages. For example, for some antioxidant molecules that are
subjected to temperatures above 120 ◦C, their degradation is accelerated. Tonon et al. [15]
reported a decrease of up to 21% in the anthocyanin content of açai juice (Euterpe oleracea)
when spray-drying was used, with tapioca starch as a bulking agent. Another problem
is related to the acquisition and operating costs of the equipment required to carry out
these processes.

On the other hand, nanocellulose (NC) is a natural polymer derived from cellulose;
it receives this name when the cellulose breaks down, and small strands or nanocrystals
are obtained. This phenomenon occurs thanks to the breaking of inter- and intramolecular
hydrogen bonds, when used in different physical or chemical methods, resulting in at
least one of the dimensions being on the nanometric scale [16]. NC is a material that has
quickly gained attention thanks to its surface and mechanical properties, low density, and
biocompatibility. In addition, there are a large number of plant sources, many of which are
sustainable and renewable [17].

The berries of H. macrocarpa are an important source of bioactive substances such as
polyphenols and anthocyanins [18]. It has been reported that this fruit has an anthocyanin
content of 17.18 mg/g [19]. Despite this, the market for this fruit is not yet very established,
and its consumption is mainly via fresh or processed products in an artisanal way, such as
wine-type drinks, jams, jellies, and desserts.

Because of these antecedents, the aim was to obtain an anthocyanin-rich extract from
ripe berries of H. macrocarpa and to load these antioxidants in the NC obtained from
agro-industrial byproducts. Additionally, the storage stability of the powder at different
temperatures was determined as a function of the content of anthocyanins, color, and
antioxidant capacity.

2. Results and Discussion
2.1. Content of Bioactive Substances of Different Hyeronima macrocarpa Extracts

The extraction of compounds with bioactive potential from plant sources is of great
interest because it is the main stage for the correct use of these substances. The main
objective of solvent extraction processes is to solubilize important compounds from the
plant cell, to concentrate and purify them. The extraction of anthocyanins is carried
out with polar and acidified solvents due to the greater stability in these conditions,
mainly with mixtures of methanol and hydrochloric, formic, or acetic acid [20]. In this
work, it was decided not to use methanol due to biosafety problems [21]. Instead, four
commonly reported methodologies were used to extract anthocyanins and polyphenolic
compounds. Table 1 shows the content of the main antioxidant metabolites that were
obtained using different methods of extracting berries from H. macrocarpa. In general, the
different extraction methods showed significantly different behaviors (p < 0.05) on the
content of antioxidant metabolites.
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Table 1. Content of antioxidant bioactive substances of H. macrocarpa berries.

Extraction Methods
Total

Anthocyanins
(mg C3G */100 g FW)

Total
Polyphenols

(mg GAE **/100 g FW)

Total
Flavonoids

(mg Catechin Eq./100 g FW)

Ethanol 1% 1317.39 ± 17.18 a 859.47 ± 12.03 a 173.76 ± 6.43 a

Water 1% 969.42 ± 6.71 b 810.01 ± 9.62 b 133.29 ± 9.23 b

ATPE 824.38 ± 12.74 c 861.48 ± 18.02 a 198.34 ± 11.64 c

Water 70 ◦C 724.32 ± 9.56 d 929.85 ± 12.97 c 209.90 ± 4.78 c

Data are the mean ± SD. Values in the same column followed by different letters (a to d) are significantly different
(p < 0.05). * C3G: cyanidin-3-glucoside. ** GAE: gallic acid equivalent.

2.1.1. Effect of Extraction on the Content of Total Anthocyanins

Berries or red fruits are recognized by consumers as a source of beneficial substances
for health [22]. This fact is supported by the different types of molecules that are part of
their composition, such as anthocyanins. The different extraction methods of H. macrocarpa
show anthocyanin contents ranging from 724 to 1317 mg C3G eq./100 g FW. HCl/ethanol
(1:99 v/v) presented the highest anthocyanin extraction yield, followed by HCl/water
(1:99 v/v), while ATPE and water (70 ◦C) presented a slightly lower yield. The solid–liquid
extraction of phytochemicals from plants, using solvents, implies a distribution equilibrium
or partition coefficient, which is defined as the ratio between the amount of the compound
that is extracted by the solvent and the amount of same compound present in plant material.
The characteristics of the solvent and the molecules of interest significantly affect the extrac-
tion process. However, other processes such as solvent diffusion through the material and
interaction with other solutes must also be considered [23]. For the anthocyanins present in
the fruits, the extraction with HCl/ethanol (1:99 v/v) was more efficient compared to the
other extraction systems. One explanation would be that this solvent has a greater capacity
and velocity to solubilize anthocyanins, rapidly reaching equilibrium concentration, due to
a lower interfacial tension of ethanol compared to extraction systems that use water [24].
The results indicate that the extraction HCl/ethanol (1:99 v/v) constitutes a suitable method
for obtaining these bioactives; it is even 50% more efficient than ATPE, a method that is
typically used for its selectivity [25,26]. Other commercially recognized berries such as
elderberry (Sambucus nigra) and chokeberry (Aronia spp.) presented values of 1375 and
1480 mg C3G eq./100 g FW, respectively [27]. On the basis of our results, it is possible to
consider that H. macrocarpa berries are an important source of anthocyanins.

2.1.2. Extraction Effect on the Polyphenol and Flavonoid Content

The effect of the different extractions on the total polyphenol and total flavonoid
content of H. macrocarpa showed significant differences (p < 0.05) in most of the treatments
evaluated. The water (70 ◦C) method presented the highest extraction for both polyphenols
and flavonoids (Table 1). It has been widely reported that the increase in the extraction
temperature offers the necessary kinetic conditions for the solvent to diffuse more quickly in
the cellular tissues of the fruit, especially in the vacuoles, and solubilize a greater amount of
compounds [28–30]. HCl/ethanol (1:99 v/v) and ATPE did not show significant differences
(p > 0.05), yielding interesting amounts of total polyphenols. Similar yields using methanol
as solvent were reported by Pérez-Jiménez et al. [31] and Guerrero et al. [32] in Vaccinium
angustifolium berries and Maqui berries (Aristotelia chilensis), respectively. The flavonoids
showed similar behavior, with the extraction using water (70 ◦C) and ATPE being the
best methods.

2.1.3. Effect of Extraction on Reducing Capacity and Free-Radical Scavenging

The antioxidant activity of H. macrocarpa extracts was determined using the FRAP
method and the scavenging capacity of the main reactive oxygen species (hydroxyl, super-
oxide, and peroxyl radicals). The results showed that all extraction methods presented the
ability to trap free oxygen radicals and reducing capacity. The extraction with water (70 ◦C)
was the method that presented the highest activity in each of the evaluated tests, followed
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by ATPE, HCl/ethanol (1:99 v/v), and HCl/water (1:99 v/v) (Figure 1). This behavior
correlates with the content of total polyphenols and flavonoids (Table 1), indicating that
these are the metabolites responsible for exerting the antioxidant activity. The reducing
capacity of polyphenols and flavonoids, measured by FRAP, can be explained by the ability
of these molecules to chelate metals such as iron and copper, preventing these metals from
subsequently generating free radicals [33,34].
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Figure 1. Antioxidant capacity of H. macrocarpa extracts measured in terms of FRAP and ORAC. Bars
with different letters (a to d) at the same color, are significantly different (p < 0.05).

The scavenging capacity of hydroxyl and superoxide radicals for the different H.
macrocarpa berries extraction methods was also determined, since they are the most critical
radical oxygen species. The results are presented in Figure 2. In line with what was found
for FRAP, the water (70 ◦C) extraction was most effective in removing ROS, followed
by ATPE, HCl/ethanol (1:99 v/v). and HCl/water (1:99 v/v). The reaction mechanisms
involved in the scavenging of free radicals by polyphenols indicate that these molecules can
prevent the problems caused by free radicals by trapping them directly. A flavonoid, for
example, reacts with an ROS due to the high reactivity of the hydroxyl groups; the molecule
is oxidized, generating a more stable radical and inactivating the injurious radicals. A study
by Amić et al. [35] on metabolic derivatives of caffeic acid and ferulic acid showed that the
presence of catechol, guaiacil, and carboxyl groups favored high efficiency in trapping free
radicals, due to double mechanisms of electron transfer (2H+/2e−) via sequential proton
loss (SPLET). In the case of anthocyanins, which are also polyphenols, the process is very
similar; however, in this case, the predominant mechanism of antiradical capacity is directly
related to the ease of these molecules in transferring hydrogen atoms to neutralize radicals
and convert to resonance-stabilized and less reactive phenoxyl radicals [36]. These results
suggest the ROS-scavenging activity was not significantly influenced by the extraction
methods (p > 0.05), while the reducing capacity was significantly (p < 0.05) influenced by
the extraction method and directly correlated with the content of antioxidant metabolites,
specifically total polyphenols and flavonoids.
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Figure 2. Radical-scavenging capacity of H. macrocarpa extracts. Bars with different letters (a to c) at
the same color, are significantly different (p < 0.05).

In general, berries have shown a remarkable antiradical capacity using in vitro and
in vivo models. Cranberry (Vaccinium macrocarpon) and blueberry (Vaccinium myrtillus)
showed high radical-scavenging properties in a xanthine/xanthine oxidase system that
generates superoxide radicals, achieving IC50 values of 27 µg/mL for cranberry juice and
7 µg/mL for blueberry juice [37]. Assays on human hepatoma cells (HepG2) showed that
acidified ethanol extracts from lingonberry (Vaccinium vitis-idaea) protected cells from oxida-
tive damage caused by ROS generated by H2O2, confirming that the antioxidants present
in berry-type fruits can protect cells from oxidative stress by acting synergistically [38].

2.2. Nanocellulose from Banana Pseudo-Stems
2.2.1. Functional Group Analysis by FT-IR

The conversion of raw material to NC was followed by analyzing the functional groups
using FT-IR. Figure 3 shows the infrared spectrum of untreated banana pseudo-stems,
bleached cellulose, and NC obtained after chemical treatments. For the untreated material,
characteristic absorption bands can be observed between ~1725 cm−1 and ~1735 cm−1,
corresponding to stretching of the carbonyl group (C=O) that can be attributed to non-
conjugated ketones [39] or the acetyl and uronic ester groups present in the hemicellulose
molecule [40]; this band may also correspond to the ester group of the carboxylic group of
phenolic acids (ferulic and p-coumaric) of the lignin molecule [41]. At ~1510 cm−1, a band
can be observed in the spectrum of the raw material, corresponding to the vibrations of the
stretching of the C=C bonds that are part of the benzene rings of the lignin molecule [42].
The thin band with average absorption at ~1629 cm−1 corresponds to the characteristic
bending of the O–H, both of the different lignocellulosic polymers and of the adsorbed
water molecules [43]. This band correlates with the strong absorption occurring in a broad
band between ~3200 cm−1 and ~3600 cm−1, corresponding to the stretching vibration
of the O–H bond [43]. The interaction with other OH groups in the cellulose molecules
is reflected by a band at ~2920 cm−1 related to the C–H bond stretching vibrations [44].
Some characteristic absorption bands are present in the fingerprint region corresponding
to 1031 cm−1, associated with the stretching vibration of the C–O–C group present in the
heterocyclic ring of pyranose [44]. These bands are related to those of 1151 cm−1 and
1108 cm−1 ascribed to C–C stretching and glycosidic ether bonds [45]. The absence of bands
in the regions of ~1725 cm−1 to ~1735 cm−1 and ~1510 cm−1 in the bleached cellulose and
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NC samples indicate the elimination of hemicellulose and lignin in the acid hydrolysis
process. The three samples shared the characteristic adsorption bands of cellulose, such
as the broad band at ~3300 cm−1 (stretching of the intramolecular hydrogen bonds of the
O–H groups), small bands at ~1386 cm−1 indicating in-plane scissoring movements of CH2,
and the C–H bending observed at ~1428 cm−1 [46]. The β-glycosidic bond between the
glucose molecules that form cellulose can be observed at ~896 cm−1 [47].
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2.2.2. X-Ray Diffraction (XRD)

NC crystallinity can be defined as the ratio of crystalline NC to the total amount
of material. In this work, the measurement was performed using X-ray diffraction, a
technique that measures the phenomenon of photon dispersion that collides inelastically
with atoms arranged periodically in crystal lattices and generates dispersed light rays with
defined phase relationships. The X-ray diffraction patterns for NC are presented in Figure 4.
In the diffractogram, a shoulder-shaped peak between 2θ = 12.5◦ and 18◦ is observed,
corresponding to cellulose I (amorphous region) followed by a most prominent peak at
2θ = 18◦ to 27◦ corresponding to the crystalline region of cellulose II.
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The crystallinity index was calculated using Segal’s empirical method, where the
heights of the peaks for the crystalline and amorphous cellulose zones are related. The
NC from banana pseudo-stems showed a high crystallinity value, with a CI of 84.5%. The
results suggest that the acid hydrolysis was very efficient, removing most amorphous
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structures such as lignins and hemicellulose. These data are slightly lower than those
reported by Theivasanthi et al. [48], who obtained NC from cotton fibers with a crystallinity
of 91.2%, using the same preparation method.

2.2.3. Particle Sizes Using DLS

The NC obtained from banana pseudo-stems presented a unimodal particle size
distribution, with sizes ranging from 71.0 nm to 212.5 nm, as observed in Figure 5. Most of
the particles (90th percentile) presented sizes between 87.3 nm and 108.7 nm. With these
results (added to those of FT-IR and XRD), it can be suggested that the production of NC
from agro-industrial residues via acid hydrolysis was effective.
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2.2.4. Nanocellulose Surface Properties

NC is a material that is characterized by having a large, very active surface porous
area. The characterization of the porosity was carried out using two inert gases, N2 and
CO2. With N2, the total BET (Brunauer–Emmett–Teller) area was measured, in addition to
the size and distribution of large pores up to micropores; with CO2, the ultramicroporous
area was measured. [49]. Table 2 summarizes the surface properties of NC obtained from
banana pseudo-stems. The surface area measured using the BET method was 48.3 m2/g,
and the ultramicroporous area was 6.2 m2/g, while the total porous volume was 0.28 cm3/g.
Regarding the pore size distribution, a unimodal distribution was found with an average
diameter of 8.2 nm. IUPAC classifies materials according to the size of the predominant
pores [50]. The NC obtained in this work can be classified as a material that mainly presents
narrow mesopores. The presence of this type of pore in NC is vital for applications as
adsorbent materials, separation media, catalysts, and loading bioactive substances [51,52].

Table 2. Characterization of nanocellulose isolated from banana pseudo-stem.

Parameter Value

BET specific surface area measured with N2 48.3 ± 5.1 m2/g
Ultramicroporous area measured with CO2 6.2 ± 0.4 m2/g

Particle diameter measured using DLS (90%) 87.3–108.7 nm
Particle size measured using TEM 87−124 nm

Mean pore diameter 3.8 ± 0.2 nm
Total pore volume 0.28 cm3/g

Data are presented as the mean ± SD.
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2.2.5. TEM Microscopy

The morphology of banana pseudo-stem NC was analyzed using TEM, a technique
that uses the dispersion of electrons deflected by the material to produce a grayscale image
that allows observing the precise morphology of this material, with higher magnification
and definition than other types of microscopes. The images obtained are presented in
Figure 6. Broadly, different superimposed and chain-shaped structures could be observed,
forming a kind of cluster. Performing a more detailed analysis of each micrograph, irregular
to almost spherical structures were observed, which presented slightly uniform sizes
between 87 nm and 124 nm. Generally, NC under the TEM microscope presents elongated
shapes called rods or whiskers; however, in this work, a spherical or globose shape was
mainly obtained, which indicates that the NC fibrils aggregated, forming a kind of sphere,
or that the NC was detached from the material, due to the hydrolysis process, in the
form of small nanometric-sized particles called nanocrystals. Similar results have been
reported in agricultural residues of rice straw to produce drug-loaded capsules [53], while
El-Hadi (2017) [54] also reported cellulose nanocrystals that had the same shape, used as
reinforcement for food packaging. In line with the results obtained using TEM, XRD, DLS,
and FT-IR, it can be concluded that the lignocellulosic material obtained via acid hydrolysis
of banana pseudo-stems corresponded to NC, as indicated by the size, the crystallinity, and
the functional groups.
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2.3. Preparation of Hyeronima macrocarpa and Nanocellulose Powder

For the powder preparation, HCl/ethanol (1:99 v/v) extract was selected since it
presented the highest content of anthocyanins compared to the other extraction methods
(Table 1). In this research, simple impregnation was used as a tool to support natural
antioxidants on NC. This is an easy method that does not require complex equipment
and works very well for porous and highly adsorbent materials, such as NC extracted
from banana pseudo-stems [55]. After the drying process, a powder with an intense and
uniform magenta color was obtained (Figure 7). This indicates that, at first glance, the
Hyeronima macrocarpa extract (purple) managed to be adsorbed by NC without appreciable
deterioration of the anthocyanins, which are the main substances responsible for the color.
According to the CIELAB color coordinates, the powder presented L* = 59.16, a* = 35.61, and
b* = 7.08. These values are similar to those reported by Yamashita et al. [56] in lyophilized
extracts rich in anthocyanins from blackberry byproducts loaded on maltodextrin.
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2.3.1. Thermogravimetric Analysis

The thermal decomposition of the powder was analyzed using thermogravimetry.
The technique is based on monitoring the weight loss of a substance due to the formation
of decomposition products that volatilize depending on the temperature of the medium.
The thermogram is presented in Figure 8A. It can be observed that the powder did not
present thermal decomposition up to 250 ◦C, and it is from this temperature onward that
the degradation process occurred, reaching its maximum point at 340 ◦C. On the other hand,
Figure 8B presents the thermogravimetric analysis of the H. macrocarpa extract that was
used to load onto the NC. Above 100 ◦C, there was a considerable loss of mass potentially
associated with water molecules and other low-molecular-weight volatiles in the extract.
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Once 200 ◦C was reached, the most significant mass loss due to decomposition oc-
curred, followed by another at 350 ◦C. The difference in the thermograms allows us to
conclude that the extract loaded on the NC presented greater stability to thermal degrada-
tion, possibly due to the interactions between the polar molecules of the extract and the
OH groups of the NC through hydrogen bonds.

2.3.2. Powder Microstructure

The morphology of Hyeronima macrocarpa and NC powder was monitored using
SEM microscopy. Figure 9 shows the microstructure of the powder formed; most of the
particles had a spherical shape, and there were no agglomerations or cracks. The images
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obtained are similar to those reported by Yu and Lv [57] in extracts of rose (Rosa rugosa)
microencapsulated in gum arabic and maltodextrin. It should be noted that the samples
obtained by our team used a more straightforward technique of simple impregnation with
subsequent conventional drying. Hence, it becomes an interesting alternative to spray-
drying with consequent economic savings in processes and equipment. The size of the
particles obtained ranged from 15 µm to 21 µm, with a uniform distribution. Because
of this size, it can be explained that, at a macroscopic level, the powder did not present
agglomerations and had an adequate flow, which is vital for powdered food products [58].
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2.4. Antioxidants Released from the Powder

Once the powder formed by the incorporation of H. macrocarpa on NC was obtained,
the anthocyanin and polyphenol release kinetics were evaluated. In Figure 10, the desorp-
tion process can be observed over time. This figure shows that about 85% of polyphenols
and 68% anthocyanins were delivered to the medium during the first 60 min. The desorp-
tion equilibrium was reached between 100 and 120 min; after this time, up to 86% of the
polyphenols and 91% of the anthocyanins desorbed from the polymeric matrix. This means
that the process of incorporating natural extracts rich in antioxidants on NC is a reversible
process, since these bioactive substances were not retained in the polymeric matrix. This
process is known as physisorption and was reported in previously published studies by
our team [55].

The anthocyanins presented a higher desorption speed compared to the polyphenols,
a phenomenon that can be explained by their greater solubility in water, which was the
selected desorption medium. After the desorption process, the NC could be used in a new
antioxidant impregnation process; accordingly, the material did not suffer alterations when
mixed with water, thus being able to comply with several regenerative cycles. The same
property was observed in hydrogels prepared with NC as a functional ingredient; these
aerogels had the ability to adsorb and desorb methylene blue, maintaining the adsorption
capacity greater than 55% of the initial, after three cycles of adsorption–desorption [59].
These results indicate the versatility of uses and properties possessed by NC when used as
a polymeric support material for bioactive substances.
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Figure 10. Release profile of polyphenols and anthocyanins from powder formed by the incorporation
of H. macrocarpa on nanocellulose.

2.5. Powder Stability
2.5.1. Stability of Anthocyanins from H. macrocarpa and Nanocellulose Powder

The thermal stability of the powder formed by the incorporation of the H. macrocarpa
extract on NC was performed by measuring the degradation of total anthocyanins, the
change in reducing capacity, and color. The temperatures evaluated were 35 ◦C, 45 ◦C,
and 55 ◦C, following an accelerated model that covers the possible storage temperatures
of a powder product that does not require refrigeration. The degradation kinetics of
anthocyanins are presented in Figure 11. The fit that best described the behavior of the
data was a first-order reaction kinetic model (R2 values from 0.9413 to 0.9662, Table 3).
Various authors have reported that the thermal deterioration of anthocyanins follows this
type of behavior, regardless of the type of matrix, with degradation being faster at a higher
temperature [60,61]. The degradation was dependent on temperature, being greater for
55 ◦C than for 45 ◦C and 35 ◦C. The kinetic constants k presented in Table 3 numerically
verify this behavior over time.

The dependence of the rate of a chemical reaction on temperature is synthesized using
the Arrhenius model or equation. This model was used to find the kinetic parameters of Ea,
K, and t1/2 (Table 3), enabling us to understand the degree of effect of the temperature on the
anthocyanins loaded on the NC and to estimate the degradation at different temperatures.
The Ea or activation energy indicates the minimum amount of energy required by a system
to start a process or to reach the active state of a reaction. Higher values of Ea are associated
with a greater dependence on temperature during the degradation process of anthocyanins.
In this study, an Ea value of 65.76 kJ/mol was obtained. Other reports showed higher
activation energies. For example, a value of 135.83 kJ/mol was found in the blackberry
juice degradation process [62], whereas, for blueberry juice, a value of 80.4 kJ/mol was
presented [63]. In contrast, the half-life (t1/2) is a more helpful parameter since it is used
at the industrial level to compare different products or processes for the preservation and
storage of food matrices. This parameter indicates the time required to reach 50% of its
initial value. Regarding anthocyanin stability, it indicates the time that elapses for the
anthocyanin content to reach half of its initial value at a specific temperature. As expected,
the half-life differed for each storage temperature, being higher at lower temperatures
and presenting a lower value at the highest temperature of 55 ◦C (Table 3). Through the
Arrhenius equation, it is possible to estimate the half-life at temperatures different from
the study; for example, at 25 ◦C the powder would have a half-life of 727 days, which
suggests that the loading process of the anthocyanin-rich extract of H. macrocarpa on NC
isolated from banana pseudo-stems generated a considerable stability of these molecules.
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This fact can be explained by the interaction of the anthocyanins with the NC, through
hydrogen bonds of the phenolic hydroxyls of the anthocyanins and the free OH groups of
the NC [55].
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Table 3. Kinetic parameters of anthocyanin and reducing capacity during heat treatment.

Parameter Temp. k × 103 (days−1) R2 Ea (kJ/mol−1) t1/2 (days)

Total anthocyanins
35 ◦C 2.20 ± 0.13 a 0.9413 65.76 ± 4.34

(R2: 0.9736)

315 ± 16 a

45 ◦C 5.30 ± 0.38 b 0.9495 131 ± 7 b

55 ◦C 10.50 ± 0.97 c 0.9662 66 ± 4 c

FRAP
35 ◦C 0.40 ± 0.02 a 0.9737 46.44 ± 2.71

(R2: 0.9707)

1733 ± 104 a

45 ◦C 1.00 ± 0.08 b 0.9829 693 ± 32 b

55 ◦C 1.30 ± 0.07 c 0.9061 533 ± 17 c

Different letters in the same column indicate significant differences (p < 0.05).

2.5.2. Color Stability

Products made from berries have vibrant colors that vary from blue to red tones,
due to the anthocyanins that they naturally contain. Anthocyanins are natural colorants
that also have a high antioxidant and antiradical capacity, which places them as bioactive
substances. The main disadvantage is that they are very unstable and are easily degraded
by different environmental conditions, e.g., the presence of oxygen, changes in pH and
temperature [64]. H. macrocarpa and NC powder presented a very intense magenta initial
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color, with CIELAB coordinates of L* = 59.16 ± 0.11, a* = 35.61 ± 0.06, and b*= 7.08 ± 0.04.
Consumer acceptance of this type of powdered product is initially determined by intense
pink or red tones [65]. To know the color changes that the powdered product may undergo
during storage, a stability evaluation was carried out at three different temperatures
(35 ◦C, 45 ◦C, and 55 ◦C), and CIELAB coordinates were determined. From these data, the
total color change or ∆E during storage was calculated. The results are summarized in
Table 4, where it can be observed that there was a significant difference (p < 0.05) in the
color variation over time for the same storage temperature. High values of ∆E indicate
appreciable changes to the naked eye in the color of the samples, while values of ∆E
greater than 5.0 are considered detectable changes in color [66]; accordingly, from days 84,
48, and 36, the samples presented changes in color at temperatures of 35 ◦C, 45 ◦C, and
55 ◦C, respectively. The samples stored at 55 ◦C began to exhibit a brown color from day
72 (L* = 47.11 ± 0.09; a* = 21.83 ± 0.04; b* = 14.47 ± 0.05). According to Patras et al. [67],
some easily oxidizable phenolic acids can form quinones that react easily with anthocyanins
and form condensation products, which could explain the appearance of the brown color
of the powder.

Table 4. Effect of temperature on the total color difference (∆E) of H. macrocarpa and nanocellu-
lose powder.

Storage Time (days) 35 ◦C 45 ◦C 55 ◦C

12 0.72 ± 0.01 1.00 ± 0.04 3.60 ± 0.02
24 1.73 ± 0.02 1.96 ± 0.01 6.62 ± 0.05
36 2.66 ± 0.02 3.69 ± 0.08 11.03 * ± 0.03
48 3.37 ± 0.04 5.54 * ± 0.05 14.23 * ± 0.07
60 4.28 ± 0.03 7.26 * ± 0.03 17.04 * ± 0.02
72 4.75 ± 0.05 8.19 * ± 0.06 19.40 ** ± 0.07
84 6.32 * ± 0.04 10.01 * ± 0.04 20.20 ** ± 0.11
96 9.14 * ± 0.06 11.05 * ± 0.08 21.36 ** ± 0.11

108 11.43 * ± 0.03 13.89 * ± 0.11 22.45 ** ± 0.13
120 11.31 * ± 0.11 14.73 * ± 0.09 23.38 ** ± 0.08

All storage time, for each temperature, presented significant differences (p < 0.05). *Appreciable color changes to
the human eye. ** Presence of brown color.

The samples stored at 35 ◦C and 45 ◦C did not show an appreciable brown color
during the storage period. These results indicate that the loss of color from magenta to
brown is related to temperature; hence, at storage conditions below 35 ◦C, it is possible to
estimate that the color would be stable for longer, due to the preservation of anthocyanins,
as described in the previous section.

2.5.3. Oxidative Stability Measured by FRAP

The antioxidant capacity of the powder stored at different temperatures was measured
using FRAP, a very simple and sensitive methodology that is based on the ability of an
antioxidant to react with the Fe3+–TPTZ complex and, thus, reduce iron to Fe2+, which
forms a bright-blue complex that can be measured photometrically at 593 nm. The FRAP
results are summarized in Figure 12. The behavior of the reducing capacity was similar
in the first 120 days of storage for the three temperatures evaluated, with no statistically
significant changes observed. Thereafter, a significant decline in the reducing capacity of the
powder was observed. This situation has been frequently reported in thermal degradation
tests of matrices containing anthocyanins [68]. Patras et al. [67] proposed that the thermal
degradation of anthocyanins during storage can form different intermediates, including
phenolic acids, which explains the slight increase in FRAP values. When the storage time
exceeded 72 days, it was observed that the antioxidant capacity was reduced, indicating
the degradation of phenolic compounds and other antioxidant or reducing substances.
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Figure 12. Effect of storage time at different temperatures on the antioxidant capacity measured
using FRAP of H. macrocarpa and nanocellulose powder. Bars with different letters (a to d) for the
each temperature treatment, are significantly different (p < 0.05).

3. Materials and Methods
3.1. Vegetal Material

Hyeronima macrocarpa berries were obtained in El Encano, city of Pasto (Nariño, Colom-
bia), with a mean temperature of 11 ◦C and a height above the mean sea level of 2800 m.
Ripe dark violet fruits were selected. The samples were transported to the laboratory in
properly refrigerated airtight containers, washed with distilled water, and stored frozen at
−20 ◦C until the different analyses were carried out.

3.2. Extract Preparation

The fruits were cut into halves and pulped manually. A quantity of pulp was ade-
quately weighed and put into the different extraction systems. These methods are com-
monly used to obtain anthocyanin-rich and polyphenol-rich extracts from vegetable raw ma-
terials. Each of the extraction methods was carried out in triplicate in independent experiments.

3.2.1. Extraction with HCl/Ethanol (1:99 v/v)

A 5 g portion of pulp was homogenized for 15 s in ultraturrax (IKA-Werk, Staufen,
Germany) with 200 mL of acidified ethanol prepared according to the following proportion:
HCl/ethanol (1:99 v/v). The mixture was left to stand for 12 h, after which it was filtered
and concentrated in a vacuum rotary evaporator (Laborota 4011, Heidolph, Schwabach,
Germany) under the following conditions: water bath at 45 ◦C, steam temperature from
40 to 45 ◦C, cooling bath at 18 ◦C, and rotation speed of 120 rpm, to a final volume of
100 mL [68]. This extraction was named ethanol 1%.

3.2.2. Extraction with HCl/Water (1:99 v/v)

A 5 g portion of pulp was homogenized for 15 s in ultraturrax (IKA-Werk) with
200 mL of acidified water prepared according to the following proportion: HCl/water
(1:99 v/v). The mixture was left to stand for 12 h, filtered, and concentrated in a vacuum
rotary evaporator under the following conditions: water bath at 45 ◦C, steam temperature
from 40 to 45 ◦C, cooling bath at 18 ◦C, and rotation speed of 120 rpm, to a final volume of
100 mL [69]. This extraction was named water 1%.
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3.2.3. Water at 70 ◦C

A 5 g portion of pulp was homogenized for 15 s in ultraturrax (IKA-Werk) with 200 mL
of distilled water. The mixture was heated in a water bath at 70 ◦C ± 1 ◦C for 20 min. The
mixture was filtered and concentrated in a vacuum rotary evaporator under the following
conditions: water bath at 45 ◦C, steam temperature from 40 to 45 ◦C, cooling bath at 18 ◦C,
and rotation speed of 120 rpm, to a final volume of 100 mL [70]. This extraction was named
water (70 ◦C).

3.2.4. Aqueous Two-Phase Extraction (ATPE)

A 5 g portion of pulp was homogenized for 1 h with 200 mL of an aqueous solution
containing 30% (v/v) ethanol and 19% (w/v) ammonium sulfate, after which the mixture
was filtered and concentrated in a vacuum rotary evaporator under the following conditions:
water bath at 45 ◦C, steam temperature from 40 to 45 ◦C, cooling bath at 18 ◦C, and rotation
speed of 120 rpm, to a final volume of 100 mL [71]. This extraction was named ATPE.

3.3. Analysis of Bioactive Compounds
3.3.1. Total Anthocyanin Content

The estimation of the total anthocyanin content was carried out using the pH differ-
ential method. This analysis consists of placing the different extracts in contact with two
buffer solutions of pH 1.0 (a potassium chloride 25 mM solution adjust pH to 1.0 with HCl
(37%, v/v)) and 4.5 (a sodium acetate 0.4 M solution adjust pH to 1.0 with (HCl 37%, v/v)).
The change in absorbance was recorded at two wavelengths (530 nm and 700 nm) in a
Multiskan Spectrum spectrophotometer (Thermo-Scientific, Waltham, MA, USA). The total
anthocyanin content was calculated using Equation (1), and cyanidin-3-glucoside was
used as a reference. The amount of total anthocyanins in the extracts was expressed as
milligrams equivalent of cyanidin-3-glucoside/100 g of pulp [72].

mg C3G
100 g

=
A × MW × 1000

ε × L × C
, (1)

where A = [pH 1.0 (A530 − A700) − pH 4.5 (A530 − A700)], MW = 449.2 g/mol (molecular
weight of cyanidin-3-glucoside), ε = 26,900 L/(mol·cm) (molar extinction coefficient of
cyanidin-3-glucoside), L = 1 cm (path of the light beam), and C is the concentration of the
different extracts in g/L.

3.3.2. Total Polyphenol Content (TPC)

The determination of the total polyphenolic content of H. macrocarpa extracts was
carried out using the Folin–Ciocâlteau colorimetric method described by Singleton and
Rossi (1965) [73]. In this assay, 50 µL of the samples were mixed with 125 µL of Folin–
Ciocâlteau reagent and 425 µL of sodium carbonate solution at a concentration of 7.1% w/v.
The final volume was adjusted to 1.0 mL with distilled water. The blank was prepared by
substituting distilled water for Folin’s reagent. The reaction was kept in the dark for 60 min.
Subsequently, the intensity of absorbance at 760 nm was determined using a Multiskan
Spectrum spectrophotometer (Thermo-Scientific, Waltham, MA, USA). To determine the
amount of polyphenols in the sample, a calibration curve was generated using gallic acid
as standard (Sigma-Aldrich, purity >98.0%); the results were expressed in mg of gallic acid
equivalent per 100 g of pulp (mg GAE/100 g FW).

3.3.3. Total Flavonoid Content

Total flavonoid quantification was performed using the method proposed by Pa-
poti et al. [74]. The method is based on forming a complex between flavonoids and
aluminum chloride. A volume of 100 µL of the extracts was mixed with 30 µL of 5% (w/v)
NaNO2, 30 µL of 10% (w/v) AlCl3, 200 µL of 1 M NaOH, and 640 µL of distilled water. Ab-
sorbance was measured at 510 nm on a Multiskan Spectrum (Thermo-Scientific, Waltham,
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MA, USA). The calibration curve was performed using different catechin dilutions as
standard, and the results were expressed as mg of catechin equivalent per 100 g of pulp
(mg catechin eq./100 g FW).

3.4. Free-Radical Scavenging and Reducing Capacity
3.4.1. ORAC Assay (Oxygen Radical Absorbance Capacity)

The capacity to trap peroxyl radicals (ROO•) was performed using the fluorometric
method reported by Prior et al. [75], under controlled conditions of temperature and pH
(37 ◦C and 7.4, respectively). Fluorescence decay readings were performed at an excitation
λ of 493 nm with an excitation slit of 10 nm, an emission λ of 515 nm, an emission slit of
15 nm, and a 1% attenuator. For the development of the technique, a volume of 30 µL
of samples was added to 2920 µL of fluorescein (70 nM) in a phosphate buffer (75 mM,
pH 7.4) and kept at 37 ± 1 ◦C in the holder of a LS55 Fluorescence Spectrometer (Perkin
Elmer, Waltham, Massachusetts, USA). Then, 50 µL of AAPH (0.6 mol/L) was added,
and the consumption of fluorescein, followed by fluorescence and the protective effect of
the samples, was calculated using the differences in areas under the curve (AUC) of the
fluorescein intensity decay between the control and the sample. Three readings were made
for each sample, including a negative control (using a pH 7.4 buffer solution instead of
sample). This was compared against the standard curve of the antioxidant Trolox. The
result was expressed as µmol Trolox/100 g sample, according to Equation (2).

ORAC =
AUC − AUC

◦

AUCTrolox − AUC◦ f
[

µM
g/L

]
, (2)

where AUC is the area under the curve for the sample, AUC◦ is the area under the curve
for the control, AUCTrolox is the area under the curve for Trolox, and f is the ratio of the
concentrations of Trolox and extracts.

3.4.2. Superoxide Radical (O2
−•)

Superoxide radicals are generated by the NADH/PMS system. The reaction mixture
consisted of 15 µL of the different diluted extracts, 60 µL of NBT solution (156 µM), 60 µL
of NADH solution (468 µM), and 165 µL of phenazine methosulfate (PMS) (10 µM). The
reaction mixture was incubated at 37 ◦C for 5 min. After this time, the absorbance was
measured at a wavelength of 560 nm. The ability to trap superoxide radicals was calculated
according to Equation (3) [76].

% Superoxide radical activity =

( Acontrol − Asample

Acontrol

)
× 100, (3)

where Acontrol is the reaction mixture replacing the sample with distilled water, and Asample
corresponds to the reaction mixture with the sample.

3.4.3. Hydroxyl Radical (OH•)

In vitro generation of the hydroxyl radical was carried out using the Fenton reaction
involving Fe2+-EDTA/H2O2, during which peroxide decomposition to OH• occurs [77].
These radicals react with terephthalic acid to form 2-hydroxyterephthalate acid, which has a
high fluorescence. The reaction mixture consisted of 100 µL of the different extracts diluted
in water, 300 µL of a 1 × 10−4 M sodium terephthalate solution, 2420 µL of phosphate
buffer (0.2 M and pH 7.4), 90 µL of an EDTA (ethylenediaminetetraacetic acid disodium
salt dihydrate) solution (1 × 10−2 M), and 90 µL of Fe2+ (1 × 10−2 M). The kinetics of the
reaction was followed for 6 min in a LS-55 fluorometer (Perkin-Elmer, Waltham, MA, USA)
at an excitation λ of 326 nm and an emission λ of 432 nm, with slits of 10 nm, without
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attenuation [78]. The results were presented as the ability to scavenge hydroxyl radicals,
using Equation (4).

% Hydroxyl radical activity =

(
A2 − A0

A1 − A0

)
× 100, (4)

where A0 is the absorbance of the blank, A1 is the absorbance of the control (without
sample), and A2 is the absorbance of the samples.

3.4.4. Reducing Capacity by FRAP Method (Ferric Reducing Antioxidant Power)

The reducing power of extracts was evaluated by measuring their ability to reduce
ferric iron (Fe+3) complexed with TPTZ (2,4,6-tris(2-pyridyl)-s-triazine) to ferrous iron
(Fe+2). For this, 50 µL of the different diluted extracts were taken and mixed with 900 µL of
a solution of acetate buffer (0.1 M and pH 3.4), TPTZ solution (10 mM), and FeCl3 (20 mM),
in a ratio of 10:1:1. After 30 min of reaction, the absorbance at a wavelength of 593 nm was
measured. The results were expressed as TEAC equivalent (Trolox equivalent antioxidant
capacity; µmol of Trolox/100 g FW), using Trolox as the reference antioxidant [79].

3.5. Nanocellulose from Banana Pseudo-Stem Waste

The pseudo-stems were washed, dried, and cut into pieces of 1 cm on each side. A
total of 1 kg of the material was placed in a drying oven at 80 ◦C for 24 h. Once dry,
the material was crushed and sieved to a size of 2 mm. A portion of 200 g of powdered
material was treated with a 1.5 L of a mixture composed of hexane, ethanol, and ethyl
acetate in a 2:1:1 ratio to eliminate the lipid components of the material, followed by
treatment with 500 mL of a NaOH solution (10 %, m/v) for 7 h at 45◦C. The biomass was
washed with plenty of water and dried at 80 ◦C for a further 12 h. Then, the pulp was
treated with a mixture of acetic and nitric acid (80% v/v and 65% v/v, respectively), in a
ratio of 10:1 at 110 ◦C for 20 min with constant stirring in a hotplate stirrer (Benchmark
Scientific, Sayreville, NJ, USA). The cellulose formed was separated from the acid solution
by decantation and washed with a mixture of ethanol and water. Finally, the material was
kept at 80 ◦C for 12 h of drying [80].

To transform cellulose into NC, the protocol proposed by Fahma et al. [81] was used.
For this, 100 g of cellulose obtained was treated with 800 mL of sulfuric acid (64% v/v)
for 60 min at 45 ◦C with constant stirring. Successive washes with distilled water were
performed to remove excess acid, in addition to centrifugation for 20 min at 4 ◦C and
8000× g, and removal of supernatant acid water. When the pH reached 7.0, the suspension
was placed in an ultrasound bath (GT SONIC) to facilitate its dispersion. After removing
the remaining water, the NC was dehydrated at 105 ◦C for 12 h. The NC was characterized
using FT-IR, DLS SEM, TEM, TGA, and XRD, surface area and volume, and pore size
distribution analyses.

3.5.1. FT-IR Spectroscopy

NC was analyzed by Fourier-transform infrared spectroscopy, using Spectrum-Two
equipment (Perkin-Elmer, Waltham, MA, USA), with an Attenuated Total Reflection (ATR)
device. The spectra were analyzed using Spectrum 10 software (Perkin-Elmer, Waltham,
MA, USA) and were obtained in the wavenumber range of 4000–650 cm−1, with a resolution
of 4 cm−1 [82].

3.5.2. Particle Size Distribution Using DLS

Particle size distribution was determined by dynamic light scattering (DLS) using laser
diffractometry (Nanoplus Zeta/Nano, Particulate Systems, Norcross, GA, USA), under
the following conditions: particle refractive index, 1.59; absorption coefficient of particles,
0.01; water index of refraction, 1.33; water viscosity, 0.8872 cP; temperature, 25 ◦C, with a
general calculation model for irregular particles. Material suspensions from 5 to 25 mg/L
were prepared using distilled water as the solvent, which was kept under ultrasound for
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25 min. Measurements were performed in triplicate. The calculations and reporting of
the results were performed in the NanoPlus software (Version 5.23/3.00, Micromeritics,
Norcross, GA, USA).

3.5.3. SEM Microscopy

The morphology of the NC was analyzed by scanning electron microscopy in a
NanoSEM 430 equipment (FEI, Thermo-Fischer Scientific, Hillsboro, OR, USA) adjusted to
an acceleration voltage of 15 kV. A drop of the NC suspensions (0.2% w/v) was placed on
a glass grid and vacuum-dried prior to SEM analysis. Once the solvent was evaporated,
it was plated with gold on a sputter coater. Different areas of the grid were evaluated at
different magnifications. The best ones for imaging were chosen [83].

3.5.4. TEM Microscopy

The morphology of the NC was analyzed using a transmission electron microscope
(TEM; FEI, Tecnai G2 Thermo-Fischer Scientific, Hillsboro, OR, USA), operated at an energy
of 140 keV. The samples were dispersed in ethanol and then exposed to ultrasound for
30 min, to facilitate the material disintegration. A drop of dispersion was placed on a nickel
grid, and then uranyl acetate (2% w/v) was dropped onto the same grid. After 5 min of
drying, the analysis was performed [84].

3.5.5. Thermogravimetric Analysis (TGA)

The thermal stability of the NC samples, isolated from banana pseudo-stems, was
analyzed using TGA/DSC equipment (Q50, TA Instruments, Inc., New Castle, DE, USA).
Samples were dried overnight in a vacuum oven before analysis began. A portion of
5.0 mg of sample was analyzed under nitrogen atmosphere at a flow rate of 20 mL/min.
The heating temperature was between 30 and 750 ◦C, at a rate of 10 ◦C/min. The TGA
equipment was calibrated using nickel as the reference material [85].

3.5.6. Surface Area and Pore Volume

In a TriStar II PLUS gas sortometer, the surface area and pore volume were obtained.
The first was determined using the BET method (Brunauer–Emmett–Teller), and the sec-
ond was determined through the integration of the NLDFT (nonlocal density functional
theory) pore size distribution. For the analyses, the samples were previously degassed at a
temperature of −60 ◦C in the presence of N2 for 24 h [86].

3.5.7. X-Ray Diffraction (XRD)

Wide-angle XRD data were collected using an XPert Panalytical Empyrean Series
II-Alpha1 X-ray (Malvern Panalytical, Malvern, UK) diffractometer equipped with Cu/K
radiation at 30 kV and 15 mA to investigate the XRD spectra of the NC sample. Scattered
radiation was detected in the 2θ range of 5◦–60◦, with a step size of 0.05◦ and 50 s per step.
The degree of crystallinity was determined according to the empirical peak height method
developed by Segal (1959); the apparent crystallinity of the material (as a percentage) was
calculated from the height ratio between the intensity of the crystalline peak and the total
intensity, after the subtraction of the background signal (non-crystalline) according to
Equation (5) [44].

IC = 100 × I200 − Inc

I200
, (5)

where IC expresses the percentage of apparent crystallinity, I200 is the maximum intensity
of the peak corresponding to the plane in the sample with Miller 200 indices at 2θ = 22◦–24◦,
and Inc represents the diffraction intensity of the non-crystalline material, which is taken at
2θ ≈ 18◦ in the valley between the peaks.
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3.6. Loading of H. macrocarpa Bioactives onto Nanocellulose Using the Incipient Impregnation
Method

A weight of 25 g of NC was heated at 105 ◦C for 2 h in a forced convection oven to
remove the water. When the NC reached room temperature, it was uniformly dispersed at
the bottom of a 1 L beaker, and 100 mL of a solution of H. macrocarpa extract at 250 mg/mL
was very slowly added dropwise. The mixture was continuously stirred to avoid the
formation of lumps. After the dripping process, the mixture was left overnight in an oven at
60 ◦C to eliminate as much solvent as possible. The following day, the powder formed was
scraped from the bottom of the beaker and stored in a container for subsequent analyses.

Color Assay

CIELAB parameters (L* = lightness, a* = red/green value, b* = blue/yellow value)
were determined for the H. macrocarpa and NC powder, using a sphere spectrophotometer
SP-62 (X-Rite, Grand Rapids, MI, USA), equipped with D65 illuminant at an observer angle
of 10◦. The total color change (∆E) was determined using reference values of L*, a*, and b*
of the freshly prepared powder and compared with color of the powder samples storage at
different times and temperatures. The ∆E values were calculated according to Equation (6).

∆E =

√(
L∗ − L∗

0
)2

+ (a∗ − a∗0)
2 +

(
b∗ − b∗0

)2 (6)

where L*
0, a*

0, and b*
0 are the color powder values of the initial conditions.

3.7. Delivery of Bioactives

To know the release profile of the bioactive substances of H. macrocarpa extract sup-
ported on NC, 100 mg of the previously prepared powder (Section 3.6) was taken and
mixed with 10.0 mL of distilled water, and aliquots of 100 µL were taken every 2 min until
the concentration reached equilibrium. Release kinetics were carried out at 25 ◦C. The
release tests were expressed as a percentage of anthocyanins and polyphenols, according to
Equation (7).

% release compounds =
[

Cmax − Cd
Cmax

]
× 100, (7)

where Cmax is the concentration of polyphenols or anthocyanins in the powder in mg/L,
and Cd is the concentration of released compounds in mg/L. The assays were repeated in
triplicate in independent experiments.

3.8. Stability Assay of H. macrocarpa and Nanocellulose Powder
3.8.1. Kinetic Studies of Degradation of H. macrocarpa and Nanocellulose Powder

The change in the physicochemical attributes of the powder can be measured by
the appearance or disappearance of a quantifiable parameter P, i.e., the content of total
anthocyanins, FRAP antioxidant power, and powder color in this study. The degree of
appearance or disappearance of P is represented according to Equation (8).

rp = −dP
dt

= K[P]m, (8)

where K is the rate constant, and m is the apparent reaction order.
Depending on the value that m takes (0, 1, or 2), Equation (6) can be converted into

Equations (9)–(11).
P = Po − Kt m = 0. (9)

P = Poe−Kt m = 1. (10)

1
P
=

1
Po

− Kt m = 2. (11)
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To establish the reaction order, the p value for each parameter was plotted as a function
of time, and the most useful mathematical model representing the degradation kinetics of
H. macrocarpa powder was obtained [87].

3.8.2. Effect of Temperature on the H. macrocarpa Nanocellulose Powder Degradation

The powder stability was measured under controlled storage conditions at 35 ◦C ± 1 ◦C,
45 ◦C ± 1 ◦C, and 55 ◦C ± 1 ◦C. Anthocyanin quantification, FRAP, and CIELAB color
parameters were used as stability parameters. At a specific time, a portion of the powder
was taken and analyzed. The estimation of stability as a function of temperature was carried
out using the Arrhenius equation (Equation (12)) and its linearized form (Equation (13)).

K = KA e(
−Ea
RT ), (12)

lnK = lnKA − Ea

RT
, (13)

where K is the rate constant, KA represents the constant of the Arrhenius equation (days−1),
Ea is the activation energy (J/mol), R is the universal gas constant (8.3144 J/mol·K), and T is
the absolute temperature (K). To estimate the effect of temperature on reaction rate, K values
at different temperatures over the range of interest were calculated, whereby −ln(K) was
plotted against 1/T in a semi-log plot. A straight line with slope Ea/R was obtained [87].

The half-life, defined as the time necessary for the P parameter to decrease to 50% of
its initial value, was calculated using Equation (14).

t1/2 =
ln 2
K

. (14)

3.9. Statistical Analysis

Each analysis was performed in triplicate, and the results are presented as the mean ± standard
deviation. Statistically significant differences were determined by one-way analysis of vari-
ance (ANOVA) with Student’s t-test; p-values <0.05 were considered statistically significant
(STATGRAPHICS Centurion XVII (V17.2.07) software, Statgraphics Technologies Inc., The
Plains, VA, USA).

4. Conclusions

The extracts of Hyeronima macrocarpa berries presented a significant content of an-
tioxidant metabolites. The extraction with water (70 ◦C) offered the best conditions for
obtaining polyphenols and flavonoids, while the extraction with HCl/ethanol (1:99 v/v)
was more efficient with anthocyanins. The antioxidant capacity measured using various
techniques also showed better results with the water (70 ◦C) extraction, closely followed by
HCl/ethanol (1:99 v/v).

Since anthocyanins are highly valued metabolites for their bioactive and coloring
properties, a powder was prepared by incorporating HCl/ethanol (1:99 v/v) extract on
nanocellulose that was successfully extracted from banana pseudo-stems. The powder
product presented an intense magenta color that indicates adequate incorporation of the
extract in the porous material, in addition to important protection of the bioactives from
thermal deterioration, measured by thermogravimetry. The powder presented a capsular
morphology indicating that the nanocellulose was capable of adsorbing the substances
via simple impregnation and the formation of microcapsules similar to those obtained
in a spray-drying process. The stability tests over time at different storage temperatures
showed that, at 35 ◦C, the anthocyanins in the powder had a half-life of more than 300 days,
while color stability remained unchanged for up to 4 months.

The extract rich in anthocyanins managed to increase the shelf-life during storage,
due to the impregnation process on the nanocellulose, which, due to its surface properties,
protected the bioactive substances from the degradation process. In future research, it
is necessary to evaluate the potential of the powder as an ingredient or food additive.
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Additionally, in vitro and in vivo bioaccessibility tests are recommended to evaluate the
bioavailability that this system of antioxidant incorporation on nanocellulose can offer.
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a* red/green value
b* blue/yellow value
BET Brunauer–Emmett–Teller theory
C3G cyanidin-3-glucoside
DLS dynamic light scattering
EDTA ethylenediaminetetraacetic acid disodium salt dihydrate
FT-IR Fourier-transform infrared spectroscopy
L* lightness
NC nanocellulose
ROS reactive oxygen species
SEM scanning electronic microscopy
TEM transmission electronic microscopy
TGA thermogravimetric analysis
TPTZ 2,4,6-tris(2-pyridyl)-s-triazine
XRD X-ray diffraction analysis

References
1. Tineo, D.; Bustamante, D.E.; Calderon, M.S.; Huaman, E. Exploring the diversity of andean berries from northern Peru based on

molecular analyses. Heliyon 2022, 8, e08839. [CrossRef] [PubMed]
2. Vega-Polo, P.; Cobo, M.M.; Argudo, A.; Gutierrez, B.; Rowntree, J.; Torres, M.D.L. Characterizing the genetic diversity of the

Andean blueberry (Vaccinium floribundum Kunth.) across the Ecuadorian Highlands. PLoS ONE 2020, 15, e0243420. [CrossRef]
3. Da Costa, I.R.; Forni-Martins, E.R. Karyotype analysis in South American species of Myrtaceae. Bot. J. Linn. Soc. 2007, 155,

571–580. [CrossRef]
4. Olson, K.R.; Gao, Y.; Briggs, A.; Devireddy, M.; Iovino, N.A.; Licursi, M.; Straub, K.D. Antioxidant’berries, anthocyanins,

resveratrol and rosmarinic acid oxidize hydrogen sulfide to polysulfides and thiosulfate: A novel mechanism underlying their
biological actions. Free Radic. Biol. Med. 2021, 165, 67–78. [CrossRef] [PubMed]

5. Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144.
[CrossRef] [PubMed]

6. Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Uddin, M.S. Role of phenolic compounds in
human disease: Current knowledge and future prospects. Molecules 2021, 27, 233. [CrossRef] [PubMed]

7. Sanches-Silva, A.; Testai, L.; Nabavi, S.F.; Battino, M.; Devi, K.P.; Tejada, S.; Farzaei, M.H. Therapeutic potential of polyphenols in
cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol. Res. 2020, 152, 104626. [CrossRef] [PubMed]

8. Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim.
Nutr. 2020, 6, 115–123. [CrossRef] [PubMed]

9. Ghosh, S.; Sarkar, T.; Das, A.; Chakraborty, R. Natural colorants from plant pigments and their encapsulation: An emerging
window for the food industry. LWT Food Sci. Technol. 2022, 153, 112527. [CrossRef]

10. Braga, A.R.C.; Murador, D.C.; de Souza-Mesquita, L.M.; de Rosso, V.V. Bioavailability of anthocyanins: Gaps in knowledge,
challenges and future research. J. Food Compos. Anal. 2018, 68, 31–40. [CrossRef]

http://doi.org/10.1016/j.heliyon.2022.e08839
http://www.ncbi.nlm.nih.gov/pubmed/35169641
http://doi.org/10.1371/journal.pone.0243420
http://doi.org/10.1111/j.1095-8339.2007.00704.x
http://doi.org/10.1016/j.freeradbiomed.2021.01.035
http://www.ncbi.nlm.nih.gov/pubmed/33508425
http://doi.org/10.1016/j.nut.2013.04.007
http://www.ncbi.nlm.nih.gov/pubmed/24012283
http://doi.org/10.3390/molecules27010233
http://www.ncbi.nlm.nih.gov/pubmed/35011465
http://doi.org/10.1016/j.phrs.2019.104626
http://www.ncbi.nlm.nih.gov/pubmed/31904507
http://doi.org/10.1016/j.aninu.2020.01.001
http://www.ncbi.nlm.nih.gov/pubmed/32542190
http://doi.org/10.1016/j.lwt.2021.112527
http://doi.org/10.1016/j.jfca.2017.07.031


Molecules 2022, 27, 6661 22 of 24

11. Cai, D.; Li, X.; Chen, J.; Jiang, X.; Ma, X.; Sun, J.; Bai, W. A comprehensive review on innovative and advanced stabilization
approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem. 2022, 366, 130611.
[CrossRef] [PubMed]

12. Charmongkolpradit, S.; Somboon, T.; Phatchana, R.; Sang-aroon, W.; Tanwanichkul, B. Influence of drying temperature on
anthocyanin and moisture contents in purple waxy corn kernel using a tunnel dryer. Case Stud. Therm. Eng. 2021, 25, 100886.
[CrossRef]

13. Mazuco, R.A.; Cardoso, P.M.M.; Bindaco, É.S.; Scherer, R.; Castilho, R.O.; Faraco, A.A.G.; Endringer, D.C. Maltodextrin and gum
Arabic-based microencapsulation methods for anthocyanin preservation in Juçara palm (Euterpe edulis Martius) fruit pulp. Plant
Foods Hum. Nutr. 2018, 73, 209–215. [CrossRef]

14. Laokuldilok, T.; Kanha, N. Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran
anthocyanins produced by spray drying and freeze drying. LWT Food Sci. Technol. 2015, 64, 405–411. [CrossRef]

15. Tonon, R.V.; Brabet, C.; Hubinger, M.D. Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.)
juice produced with different carrier agents. Food Res. Int. 2010, 43, 907–914. [CrossRef]

16. Patil, T.V.; Patel, D.K.; Dutta, S.D.; Ganguly, K.; Santra, T.S.; Lim, K.T. Nanocellulose, a versatile platform: From the delivery of
active molecules to tissue engineering applications. Bioact. Mater. 2022, 9, 566–589. [CrossRef]

17. Wu, Y.; Liang, Y.; Mei, C.; Cai, L.; Nadda, A.; VanLe, Q.; Xia, C. Advanced nanocellulose-based gas barrier materials: Present
status and prospects. Chemosphere 2022, 286, 131891. [CrossRef]

18. Luna-Cabrera, G.C.; Delgado-Vargas, I.A.; Burgos-Ordóñez, L.C. Árboles Conocimiento Local en el Corregimiento de Morasurco,
Pasto-Nariño; Universidad de Nariño: Pasto, Colombia, 2022; pp. 18–106.

19. Santacruz, L.; Carriazo, J.G.; Almanza, O.; Osorio, C. Anthocyanin composition of wild Colombian fruits and antioxidant capacity
measurement by electron paramagnetic resonance spectroscopy. J. Agric. Food Chem. 2012, 60, 1397–1404. [CrossRef]

20. Heffels, P.; Weber, F.; Schieber, A. Influence of accelerated solvent extraction and ultrasound-assisted extraction on the anthocyanin
profile of different Vaccinium species in the context of statistical models for authentication. J. Agric. Food Chem. 2015, 63, 7532–7538.
[CrossRef]

21. Nekoukar, Z.; Zakariaei, Z.; Taghizadeh, F.; Musavi, F.; Banimostafavi, E.S.; Sharifpour, A.; Safanavaei, S. Methanol poisoning as a
new world challenge: A review. Ann. Med. Surg. 2021, 66, 102445. [CrossRef]

22. Kafkas, E.Y. Comparison of Fruit Quality Characteristics of Berries. Agri. Sci. 2021, 12, 907–915. [CrossRef]
23. Mwaurah, P.W.; Kumar, S.; Kumar, N.; Attkan, A.K.; Panghal, A.; Singh, V.K.; Garg, M.K. Novel oil extraction technologies:

Process conditions, quality parameters, and optimization. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3–20. [CrossRef]
24. Fabien, A.; Lefebvre, G.; Calvignac, B.; Legout, P.; Badens, E.; Crampon, C. Interfacial tension of ethanol, water, and their mixtures

in high pressure carbon dioxide: Measurements and modeling. J. Colloid Interface Sci. 2022, 613, 847–856. [CrossRef] [PubMed]
25. Backes, E.; Pereira, C.; Barros, L.; Prieto, M.A.; Genena, A.K.; Barreiro, M.F.; Ferreira, I.C. Recovery of bioactive anthocyanin

pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Res. Int. 2018, 113,
197–209. [CrossRef]

26. Sang, J.; Dang, K.K.; Ma, Q.; Li, B.; Huang, Y.Y.; & Li, C.Q. Partition Behaviors of Different Polar Anthocyanins in Aqueous
Two-Phase Systems and Extraction of Anthocyanins from Nitraria tangutorun Bobr. and Lycium ruthenicum Murr. Food Anal.
Methods 2018, 11, 980–991. [CrossRef]

27. Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods
in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [CrossRef] [PubMed]

28. Cissé, M.; Bohuon, P.; Sambe, F.; Kane, C.; Sakho, M.; Dornier, M. Aqueous extraction of anthocyanins from Hibiscus sabdariffa:
Experimental kinetics and modeling. J. Food Eng. 2012, 109, 16–21. [CrossRef]

29. Bimakr, M.; Rahman, R.A.; Taip, F.S.; Ganjloo, A.; Salleh, L.M.; Selamat, J.; Zaidul, I.S.M. Comparison of different extraction
methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod.
Process. 2011, 89, 67–72. [CrossRef]

30. Xu, Q.; Shen, Y.; Wang, H.; Zhang, N.; Xu, S.; Zhang, L. Application of response surface methodology to optimise extraction of
flavonoids from Fructus sophorae. Food Chem. 2013, 138, 2122–2129. [CrossRef]

31. Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of
the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [CrossRef]

32. Guerrero, J.; Ciampi, L.; Castilla, A.; Medel, F.; Schalchli, H.; Hormazabal, E.; Alberdi, M. Antioxidant capacity, anthocyanins, and
total phenols of wild and cultivated berries in Chile. Chil. J. Agr. Res. 2010, 70, 537–544. [CrossRef]

33. Mira, L.; Tereza-Fernandez, M.; Santos, M.; Rocha, R.; Helena-Florêncio, M.; Jennings, K.R. Interactions of flavonoids with iron
and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [CrossRef] [PubMed]

34. Ghoora, M.D.; Haldipur, A.C.; Srividya, N. Comparative evaluation of phytochemical content, antioxidant capacities and overall
antioxidant potential of select culinary microgreens. J. Agric. Food Res. 2020, 2, 100046. [CrossRef]
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