
REHABILITATION DEVICES AND SYSTEMS

Received 28 May 2018; revised 4 September 2018; accepted 30 September 2018. Date of publication 10 October 2018;
date of current version 20 November 2018.

Digital Object Identifier 10.1109/JTEHM.2018.2875464

Patient-Specific Pose Estimation
in Clinical Environments

KENNY CHEN 1, PAOLO GABRIEL1, ABDULWAHAB ALASFOUR1, CHENGHAO GONG1,
WERNER K. DOYLE2, ORRIN DEVINSKY2, DANIEL FRIEDMAN2, PATRICIA DUGAN2,

LUCIA MELLONI2, THOMAS THESEN2, DAVID GONDA3,4, SHIFTEH SATTAR3,4,
SONYA WANG5, AND VIKASH GILJA1

1Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093, USA
2Comprehensive Epilepsy Center, NYU Langone Medical Center, New York, NY 10016, USA

3Rady Children’s Hospital of San Diego, San Diego, CA 92123, USA
4Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093, USA

5Department of Neurology, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA

CORRESPONDING AUTHOR: V. GILJA (vgilja@eng.ucsd.edu)

This work was supported in part by the Hellman Fellowship, in part by the UCSD ECE Department Medical Devices & Systems Initiative, in
part by the UCSD Centers for Human Brain Activity Mapping (CHBAM) and Brain Activity Mapping (CBAM), in part by the UCSD Frontiers of

Innovation Scholars Program, and in part by the Qualcomm Institute Calit2 Strategic Research Opportunities (CSRO) Program.

ABSTRACT Reliable posture labels in hospital environments can augment research studies on neural
correlates to natural behaviors and clinical applications that monitor patient activity. However, many existing
pose estimation frameworks are not calibrated for these unpredictable settings. In this paper, we propose a
semi-automated approach for improving upper-body pose estimation in noisy clinical environments, whereby
we adapt and build around an existing joint tracking framework to improve its robustness to environmental
uncertainties. The proposed framework uses subject-specific convolutional neural network models trained
on a subset of a patient’s RGB video recording chosen to maximize the feature variance of each joint.
Furthermore, by compensating for scene lighting changes and by refining the predicted joint trajectories
through a Kalman filter with fitted noise parameters, the extended system yields more consistent and accurate
posture annotations when compared with the two state-of-the-art generalized pose tracking algorithms for
three hospital patients recorded in two research clinics.

INDEX TERMS Clinical environments, convolutional neural networks, Kalman filter, patient monitoring,
pose estimation.

I. INTRODUCTION
Accurate patient joint tracking and posture estimates pro-
vide quantitative data that can be experimentally and clin-
ically informative. Upper-body annotations for long-term
continuous video of patients in the epilepsy monitoring
unit (EMU), for example, can be used to further explore
the relationship between neural activity and unconstrained
human movement when combined with a neural recording
system [1], [2]. Analysis of neural correlates to behavioral
labels extracted from long duration naturalistic datasets col-
lected in the hospital could then provide a pathway for
more robust brain-computer interfaces (BCI’s). These include
assistive robotic arms [3]–[5] and neural prostheses [6], [7]
for those with limb loss or total paralysis. Alternatively,
posture annotations can be used to objectively score

patient motor capabilities to enhance current subjective
assessments. For instance, the Unified Parkinson’s disease
rating scale (UPDRS) [8] is the current standard for eval-
uating the severity of motor impairment associated with
Parkinson’s disease, but it involves a qualitative evalua-
tion by interview and clinical observation. The outcome of
this process is limited to the clinician’s interpretation dur-
ing examination and can be inconsistent between evalua-
tors. Combining such assessments with additional insight
from objective motion analysis could help improve the effi-
cacy of treatment protocols. Other motor scoring assess-
ments (e.g., BOT-2 [9], FMA [10], MAS [11]) would benefit
similarly.

Several studies in automated motor scoring incor-
porate wearable devices (such as inertial measurement
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FIGURE 1. Comparison of pose estimation models. Upper-body posture annotations and their corresponding probability heatmaps
using (a) a prepackaged model and (b) our patient-specific model. Both models were developed using the Caffe-Heatmap architecture. Our proposed
framework accounts for variability in clinical environments to improve pose estimates and can be more confident and accurate than generalized
methods. Subject 1 is depicted in these images.

units [12], [13], accelerometers [14]–[16], and internet-
connected personalized healthcare systems (PHS) [17]) that
collect kinematic data of subject appendages, but may risk
complications from prolonged wear of physical sensors [18].
These systems can be complemented with less invasive
video-based tracking methods that supplant physical sensors
when they are temporarily removed for relief. Additionally,
for patients who are unable to wear such sensors due to
injuries at the wrists or at other attachment areas, video-based
joint tracking can create a nonintrusivemeans tomonitor their
safety and well-beings.

To this end, we introduce PatientPose, an adaptation of
Caffe-Heatmap [19] for semi-automated pose estimation in
clinical environments. Our additions to the existing pose
estimation framework include three key elements that enable
more accurate and consistent patient posture tracking than
before: 1) a preprocessing step to accommodate for the
frequent scene lighting changes found in hospital rooms;
2) a training technique that targets separate convolutional
neural network (CNN) models specifically to each patient
to capture the high variance of postures a subject can real-
ize during their hospital stay; and 3) a Kalman filter with
tuned noise parameters which refines the predicted joint tra-
jectories. We show that for three subjects recorded in two
research clinics, the extended system provides an increase in
tracking performance when compared to two state-of-the-art
generalized frameworks (Fig. 1).

RELATED WORK
The importance and potential impact of human pose esti-
mation is supported by the substantial history of research in
this field. Recent work in computer vision [19]–[27] suggests
using deep CNN’s to automatically estimate joint locations
in long-term recording sessions. Toshev and Szegedy [25]
were the first to use CNN’s for human pose estimation and
regressed joint coordinates directly from a cascade of deep
CNN regressors. More recently, Pfister et al. [19] instead
regressed confidence heatmaps for the joint positions of each

input frame and improved estimates by aligning and pooling
heatmaps with neighboring frames. This framework was then
extended by Charles et al. [26] who recursively processed
the estimates for further improvements. Cao et al. [27] used
a two-branch multi-stage CNN architecture to encode the
location and orientation of body parts into a set of 2D vector
fields and achieved real-time multi-person pose estimation.

While general pose estimation frameworks are effective
when subjects are located in uncluttered settings, they can
be unreliable when applied to noisy environments such as
epilepsy monitoring and intensive care units. Such loca-
tions present several visual challenges that these generic
frameworks do not account for, including variance in light-
ing conditions throughout a recording session, non-subject
(e.g., clinician, nurse, visitor) interferences, and environmen-
tal occlusions (e.g., bed blankets, head wrapping, hospital
gown). As a result, joint confidence heatmaps generated from
hospital video using all-inclusive pose estimators may either
be weak and distributed across the whole image, or confi-
dently confused with another object in the room (Fig. 1a).

Previous works on improving pose estimation performance
in complex clinical environments take advantage of a wide
range of available sensors [28]–[33]. Achilles et al. [28] used
a single depth camera to regress joint coordinates specifically
for body tracking under blanket occlusion, and Liu et al. [29]
relied on a novel infrared image acquisition technique using a
bird’s-eye view in order to monitor patient sleeping postures.
Belagiannis et al. [30] combined information from multiple
RGB cameras to track surgeons andmedical staff in operating
rooms, and Kadkhodamohammadi et al. [31] improved upon
pose estimation in operating rooms by using depth sensors
in tandem with multiple RGB cameras. Chaaraoui et al. [32]
also used a multi-camera setup but for vision-based mon-
itoring and action recognition by learning subject activity
patterns from estimated silhouettes. However, none have
attempted to extract high-quality joint estimates to track
freely-behaving patients in hospitals across hours of data
using a single RGB camera. Capturing RGB video is trivial
with the current state of consumer technology, and to our

2101111 VOLUME 6, 2018



K. Chen et al.: Patient-Specific Pose Estimation in Clinical Environments

FIGURE 2. Pipeline of proposed framework. The proposed framework
extends Caffe-Heatmap to improve pose estimation of patient video
recorded in clinical environments. Prior to estimation, a new
patient-specific CNN model is trained using a subset of preprocessed
video frames that maximizes feature variance (À). This model is then
used to estimate the joint positions of the same patient from additional
video, which are then refined using a Kalman filter with noise parameters
trained using another subset of preprocessed frames (Á). This work used
2,000 frames for À and 500 frames for Á.

knowledge this work is the first to create a pose estimation
framework that specifically targets subjects in clinical envi-
ronments using only one angle of recorded RGB video.
Additionally, the proposed extensions to Pfister et al.’s
Caffe-Heatmap [19] do not modify the original framework’s
central CNN architecture and could potentially be adopted
to improve other general pose estimators (Fig. 2), and our
framework is capable of a real-time implementation after a
patient’s initial training procedure.

II. METHODS AND PROCEDURES
A. SUBJECT RECORDING AND DATASET DESCRIPTION
In this study, we conducted our experiments using a novel
dataset. Three patients with intractable epilepsywere enrolled
according to protocols approved by the Institutional Review
Board (IRB) at the New York University (NYU) Langone
Comprehensive Epilepsy Center and the Rady Children’s
Hospital (RCH), San Diego, Pediatric Epilepsy Center. Video
was recorded using a Microsoft Kinect v2 during each
patient’s stay, targeting 1–2 days post-implant of electrodes
when the subjects were expected to be most active. Video
was recorded using multiple modalities (i.e., RGB, depth,
infrared), but only the RGB images were considered for
this study. Specific details regarding the duration of each
subject’s recording session and the number of frames used
for framework training/evaluation are provided in Table 1.
Note that the Kinect v2 RGB camera samples at either
15 or 30 frames-per-second (fps) depending on room lumi-
nance and horizontally flips all images when saving to disk.
Our data acquisition systemwas fit onto a custom-built mount
that stood five feet tall and was placed about 20 degrees to the
left of Subjects 1 and 3 (S1 and S3) and 45 degrees to the left
of Subject 2 (S2).

TABLE 1. Dataset summary.

FIGURE 3. Scene lighting normalization. Raw patient images (left) during
daytime (top) and evening (bottom) were significantly different in lighting
conditions for the same clinic. However, after applying contrast-limited
histogram equalization (CLAHE, right), the frames across a dataset
became more consistent in brightness. Subject 3 is depicted in
these images.

B. IMAGE PREPROCESSING
1) CROPPING
To maintain memory efficiency during GPU training,
recorded RGB frames were cropped and resized from
1920x1080 to 256x256 pixels in width and height. The
location of cropping was centered around the patient and
manually selected once per patient dataset.

2) SCENE LIGHTING NORMALIZATION
To account for the fluctuations in lighting conditions often
found in hospital rooms, image brightness was normalized
by first transforming each frame to the Hue-Saturation-
Value (HSV) color space and then applying contrast-limited
adaptive histogram equalization (CLAHE) [34] onto the
value layer with an 8x8 tile size. Regions with similar sur-
roundings (e.g., bed sheets) were susceptible to noise ampli-
fication when normalized using global or regular adaptive
equalization [35], and CLAHE limited the amount those
regions could increase in contrast (Fig. 3).

C. CONVOLUTIONAL NEURAL NETWORK MODELS
1) MOTIVATION
Convolutional neural networks can be used to build mod-
els that predict subsequent data by learning and extracting
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patterns from a training set; this machine learning technique
is used in a wide range of applications aside from pose
estimation, such as human action recognition [36], predicting
blood glucose levels [37], natural language processing [38],
and more [39]–[42]. However, the performance of a trained
model is heavily reliant on the quality of its training
data. In human pose estimation, prepackaged CNN models
trained using movie or video frames work well against other
generic pose estimation datasets (e.g., British Broadcasting
Corporation (BBC) Pose [43], Common Objects in Cont-
ext (COCO) [44], Frames Labeled in Cinema (FLIC) [45],
Max Planck Institute for Informatics (MPII) Human
Pose [46]), but can be less reliable when applied to videos
of hospital patients due to various challenges unique to the
clinical setting. Therefore, we trained a separate CNN model
for each of our subjects using an extracted subset of frames
held out from the test set (Fig. 2). These high-quality training
sets were designed to capture the wide range of postures the
corresponding patient may naturally take on throughout a
recording session.

2) EXTRACTING HIGH-QUALITY TRAINING DATA
To maximize posture diversity and therefore feature vari-
ance in a patient’s training data, frames were selected from
both movement and non-movement periods. This was accom-
plished by first applying the Gunnar-Farnebäck dense optical
flow algorithm [47] onto the raw RGB video of the same
patient to calculate the average magnitude of scene move-
ment between adjacent frames. A threshold on this average
flow empirically set to 0.15 pixels per frame then partitioned
patient RGB video into periods of movement and idleness.
Afterwards, a subset of frames was uniformly sampled from
the segmented video such that frames drawn from movement
and rest periods were distributed 70%/30%. Using this strat-
egy, 2,000 frames for model training were selected across the
entire span of each patient’s dataset which captured different
postures the patient may take on during their stay. Frames
with significant patient occlusions were manually excluded.

3) PATIENT-SPECIFIC MODEL TRAINING
Ground truth (x, y) coordinates of the seven joints (i.e., head,
left/right hands, elbows, and shoulders) were manually
marked for each training set using a custom labeling script.
A CNN model was then trained for each patient using
the Caffe-Heatmap model training architecture [19] on an
NVIDIA GeForce GTX 1080 Ti GPU with the annotated
images. One million iterations of batch size 14 were used
with a learning rate of 10−8 and momentum of 0.95, and
each iteration took approximately 0.75 seconds for a total
of nine days of training per model; these hyperparameter
values were chosen to match those of the original Caffe-
Heatmap. The resulting models learned features specific to
each patient through the high-quality training set. Using the
same hardware and configurations, training a generic model
on the FLIC dataset with about 4,500 frames would span
around twelve days.

D. INFERENCE VIA PATIENT-SPECIFIC MODEL
To enable easy adoption of our augmentations onto other pose
estimators, we did not directly modify the Caffe-Heatmap
framework. We therefore treated it as a black box, with the
inputs as the patient-specific Caffe [48] model and N num-
ber of frames, and an output of seven 256x256 confidence
heatmaps for each frame. Each joint location was then taken
to be at the argmax of its corresponding heatmap, resulting
in a 2x7xN structure of (x, y) ∈ [0, 256] joint coordinates.
For each frame, inference spanned∼0.03 secondswhen using
the same NVIDIA GeForce GTX 1080 Ti (compared to
∼10 seconds per frame on an Intel Xeon CPU E5-2630),
enabling the potential for a real-time implementation. Spe-
cific details of the Caffe-Heatmap architecture can be found
in [19].

E. KALMAN FILTER
1) MOTIVATION
Joint locations estimated by a patient-specific CNN model
were generally reasonable, but occasionally contained jit-
ter or large jumps when a patient moved quickly or was
occluded. Therefore, a standard Kalman filter [49] was used
as a post-processing step to leverage the temporal infor-
mation found between frames in order to refine any noisy
measurements. The Kalman filter consists of two primary
components (a state transition function and a measurement
function) that model the underlying physics of a system to
predict its state over time, making it an appropriate choice for
denoising estimated joint trajectories. In addition, we chose
to use a Kalman filter (as opposed to a non-causal Kalman
smoother [50]) to preserve our framework’s potential to be
implemented in real-time due to the filter’s causality.

2) GENERAL EQUATIONS
The Kalman filter is a recursive two-step process which
iteratively predicts a system’s next state using past infor-
mation and a predefined model, then updates its predictions
using external sensor measurements. These two functions
are defined by the linear state transition and measurement
matrices A and H . In addition, the estimated state µt at
each t th iteration is accompanied with a covariance 6t that
measures the accuracy of the estimate at that time step. In the
Kalman filter’s prediction step, we have:

µ̂t = Aµt−1 , (1)

6̂t = A6t−1A> + Q , (2)

where the hat indicates that these values are purely estimates
by the filter without considering any outside measurements
yet. The Q term above is the covariance of the process noise
that captures the error between the transition model and the
true dynamics of the system, and it is assumed to be Gaussian
distributed in this work. In the update step, we have:

Kt = 6̂tH>(H6̂tH> + R)−1 , (3)

µt = µ̂t + Kt (zt − H µ̂t ) , (4)

6t = 6̂t − KtH6̂t , (5)
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where Kt is the Kalman gain that adjusts the next predicted
state µt and covariance 6t depending on the accuracy of
the model. In this step, external sensor measurements zt
provide the filter with additional information on the system’s
next possible state, and the R term captures the noise in
thesemeasurements (also assumed to beGaussian). Complete
derivations of these equations can be found in [51]–[53].

In this work, we used a constant velocity model [54] to
define the state transition andmeasurementmatriciesA andH
in these equations, and we assumed independent move-
ment between the seven joints. Therefore, we ran a separate
Kalman filter on each joint, in which the 4D state estimates
µt contained a joint’s (x, y) pixel position and velocity at
time t . Additionally, we used the (x, y) coordinates pro-
vided by a patient’s CNN model as the external zt mea-
surements to update the filter’s predictions on the system’s
state. These Kalman filter equations recursively computed
a next-best-guess on a joint’s position using the prede-
fined constant velocity model and the pose estimates by the
CNN model.

3) LEARNING THE NOISE PARAMETERS
The Q and R process and measurement noise covariances are
critical components to the Kalman filter that model unfore-
seen perturbations on the system. In the context of this work,
the Q term captures how erroneous the constant velocity
model is to the real dynamics of a patient and the R term
captures the variability in the CNN’s pose estimates to the true
positions. However, these matrices are frequently difficult to
estimate and are often constructed using prior knowledge of
the problem, tediously tuned by hand, or assumed to be inde-
pendent between variables for convenience. Abbeel et al. [55]
demonstrated that Q and R can be learned by maximizing the
joint likelihood between the states and the measurements of a
training dataset. More specifically, for T number of training
datapoints, the optimal parameters Q j

MLE and R j
MLE for each

jth patient joint can be formulated as:

〈
Q j
MLE ,R

j
MLE

〉
= argmax

Q,R
log p(x j0:T , z

j
0:T ) . (6)

Here, the joint probability distribution between the sequence
of ground truth states x j0:T and CNN pose estimates z j0:T is:

p(x j0:T , z
j
0:T ) = p(x j0)

T∏
t=1

p(x jt | x
j
t−1)

T∏
t=0

p(z jt | x
j
t ) (7)

with some prior p(x j0), where the Gaussian motion and
observation models are:

p(x jt | x
j
t−1) = N (x jt ;Ax

j
t−1,Q) , (8)

p(z jt | x
j
t ) = N (z jt ;Hx

j
t ,R) . (9)

Substituting (7), (8), and (9) into (6) and then computing the
closed form solutions results in the equations:

Q j
MLE =

1
T

T∑
t=1

(x jt − Ax
j
t−1)(x

j
t − Ax

j
t−1)
> , (10)

R j
MLE =

1
T + 1

T∑
t=0

(z jt − Hx
j
t )(z

j
t − Hx

j
t )
> . (11)

4) PATIENT-SPECIFIC NOISE PARAMETER TRAINING
Equations (10) and (11) require ground truth states x jt and
CNN pose estimates z jt from a set of training data for each
patient joint. In addition, because (10) depends on states at
times t and t – 1, the training joints must be continuous over
time. Therefore, in an attempt to capture the process variabil-
ity across the entire span of a patient dataset, we constructed a
‘‘semi-continuous’’ training subset using the following steps.
First, we segmented a patient’s video into periods of move-
ment and idleness using the same optical flow method as
described in Section II.C.1. Afterwards, we extracted the
first 10 frames of a movement period for 50 periods chosen
uniformly across the span of the patient’s video. This resulted
in a set of 500 ‘‘semi-continuous’’ frames (50 discontinuous
movement periods of 10 continuous frames each) for each
patient which we used to train patient-specific noise param-
eters. Occluded segments, movements less than 10 frames
in length, and frames used for evaluation were excluded
during period selection. After extraction, these 500 frames
were manually annotated for ground truth joint positions.
To obtain the ground truth states x jt , joints were assumed
to have zero initial velocity at the start of each movement
period, and the remaining velocity values were calculated
as the difference in pixel position between adjacent frames
within the same period. The frames of each segment were
then sent through Caffe-Heatmap’s pose estimator along with
the corresponding patient-specific model to obtain z jt .

To calculate a patient’s set of measurement noise covari-
ances R∗, we directly implemented (11) for each joint
such that R j

∗ = R j
MLE using all 500 training datapoints.

Equation (11) only depends on values at time t , and therefore
its training set need not be continuous. However, because (10)
depends on values at times t and t − 1, we first calculated
a separate Q j,m

MLE for each mth movement period of length
T = 10 frames in the semi-continuous set using (10). The
resulting M = 50 matrices per joint were the covariances
that maximized the data likelihood in their corresponding
movement sequence. A joint’s process noise parameter Q j

∗

was then taken to be the average of these covariances, such
that:

Q j
∗ =

1
M

M∑
m=1

Q j,m
MLE . (12)

These calculated parameters Q∗ ∈ R4x4x7 and R∗ ∈ R2x2x7

for each patient modeled any unforeseen perturbations on the
system throughout a patient’s dataset at runtime of the filter.
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FIGURE 4. Mean frame brightness before and after CLAHE
normalization. Overlaid distributions of the average image brightness
before (gray) and after (blue) CLAHE confirm that the lighting conditions
across images are more similar after equalization. Average brightness of
a frame was measured by taking the mean of a frame’s value-layer
intensity. Each histogram used the entire Subject 2 dataset (N =
625,127 frames).

III. RESULTS
In this section, we first provide an analysis of each compo-
nent to convince the reader that our additions to the original
framework are reasonable for improving pose estimation in
clinical environments. Then, to validate our methods as a
whole, we present pose estimation accuracy comparisons
between our framework and two state-of-the-art generalized
frameworks using selected test sets of patient data for three
subjects recorded in various clinical monitoring units. A rep-
resentative demo video of patient pose estimation can be
viewed at https://youtu.be/c3DZ5ojPa9k.1

A. ANALYSIS OF COMPONENTS
1) SCENE LIGHTING NORMALIZATION
After normalizing image brightness by applying CLAHE
onto the value layer of each HSV frame, we observed a
significant reduction in scene lighting variance throughout
each patient dataset. This reduction is depicted by the his-
tograms of the mean V-channel magnitude for each frame
in the S2 dataset using 0.005 bin widths before and after
lighting normalization (Fig. 4). The value-layer in the HSV
color space corresponds to image brightness, and therefore
the lower histogram variance after normalization indicates
a higher similarity in lighting conditions within the patient
dataset than before. This translates into joint features that are
more likely to be consistent in visibility.

2) HIGH-QUALITY TRAINING
To establish that our high-quality training strategy can cap-
ture a large variety of postures within a patient dataset,
we compared against another manually annotated subset
defined as the first 15 minutes of frames for the same
patient (∼13.5k frames at 15 fps). Patients were observed

1Video frames have been blurred for patient confidentiality

FIGURE 5. Visualization of posture varieties covered by training
strategies. Manually annotated postures from two training strategies
were projected onto a 2D space using t-SNE to provide a graphical
intuition of the various poses included in each set. ‘‘High-variance’’
training frames were selected from periods of movement and rest across
the entire span of the patient dataset, whereas ‘‘low-variance’’ training
frames were the first 15 minutes of recording. Note that the
‘‘high-variance’’ set initially contained twice as many unique postures
than ‘‘low-variance’’ but was uniformly downsampled to prevent bias in
the projection. Points within the same cluster resemble similar postures.

to engage in different postures depending on the time of
day (e.g., upright vs. rest), and we therefore inferred that
frames extracted using our ‘‘high-variance’’ (HV) training
strategy would contain greater posture diversity than frames
within this ‘‘low-variance’’ (LV) set. To investigate this,
we first defined each posture as a 14-dimensional vec-
tor containing the (x, y) pixel coordinates for each of the
seven joints. These vectors were then projected down to
2-dimensional space using t-distributed stochastic neighbor
embedding (t-SNE) [56] for a graphical intuition of the pos-
ture coverage between the two strategies. Only unique data-
points were considered in this analysis, and we observed that
the HV set initially contained twice as many unique postures
than the LV set. Therefore, prior to t-SNE dimensionality
reduction, we uniformly sampled the HV set to ensure an
equal number of datapoints that would have otherwise biased
the t-SNE manifold towards the more represented HV pos-
tures. In addition, the two sets were concatenated prior to
projection to ensure compatibility in the output space. In this
analysis, the exact t-SNE algorithm was implemented with
a standard Euclidean distance metric for 1,000 iterations at a
perplexity of 50 and a learning rate of 500, and the two subsets
were derived from S1.

The results after projecting the 14D postures onto a 2D
space (Fig. 5) represent a low-dimensional clustering of
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FIGURE 6. Comparison of trajectories. Estimated (x, y ) coordinates of
S1’s left hand during an example segment of movement before (blue) and
after (orange) using a Kalman filter with fitted noise parameters,
as compared to the ground truth (black). A filtered path using constant
velocity (CV) noise parameters (green) is also provided for reference.
Across all testing data for Subject 1’s left hand, the trained Kalman filter
produced a lower average prediction error of 8.23 ±5.19 pixels from the
ground truth, compared to the original path’s error of 10.42 ±5.85 pixels.

different patient postures extracted from the two training
strategies. Each color-coded datapoint represents a unique
set of seven joint coordinates, and points within the same
cluster resemble similar postures. Despite downsampling the
HV set to match the size of the LV set for an unbiased pro-
jection, the HV set still visually occupies a larger area in the
projected space. This suggests that our high-quality training
strategy can capture a diverse collection of patient postures.
In addition, the spread of the HV datapoints encompasses
nearly all of the LV points, indicating that there may be little
to no trade-off between posture diversity and coverage qual-
ity when extracting training frames from the entire span of
video. Therefore, our high-quality training strategy constructs
a more informative training set when compared to frames
extracted from a limited window of time and can provide the
CNN architecture with more representations of each joint to
train on.

3) KALMAN FILTER WITH TRAINED NOISE PARAMETERS
Immediate joint coordinates estimated by Caffe-Heatmap
using a patient-specific CNNmodel are still subject to incon-
sistencies during periods of quick movements or patient
occlusions. However, a Kalman filter with trained noise
parameters refines these predictions and reduces the jit-
ter and noise within estimated paths. Prior to optimizing
S1’s left hand in the testing data, the original trajectory
demonstrated reasonable tracking with an average error of

FIGURE 7. Spatial reference and S2 performance. (a) Example skeleton
and heatmap with a 15-pixel (3-inch) radius for spatial reference, and
(b) Subject 2 accuracy curves between 0 and 30 pixel tolerances from the
ground truth.

TABLE 2. Pose estimation accuracy rates @ 15px [%].

10.42 ± 5.85 pixels from the ground truth. In contrast,
a denoised trajectory using patient-specific parameters fol-
lowed the true path more closely at an average error of
8.23±5.19 pixels and exhibited less jitter at sharp turns. This
is illustrated in Fig. 6 which shows a segment of S1’s left hand
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FIGURE 8. Pose estimation comparison. Performance of our proposed method as compared to OpenPose and Caffe-Heatmap with FLIC (CH-FLIC) for
each subject is shown above. The left column provides the accuracies of each joint at various tolerances from the ground truth using our framework, and
the middle compares the error rates at 15 pixels. The right column compares the accuracies of each category of joints averaged between the left and right
body parts.

trajectory using the different Q and R noise parameters. For
reference, using stock constant velocity parameters resulted
in an average error of 9.94± 6.34 pixels within the same test
set. These observations were consistent throughout all joints
and subjects.

B. POSE ESTIMATION RESULTS
Performance was measured using the Euclidean distance of
estimated joint coordinates against an additional set of man-
ually annotated frames held out from the training set for
each patient. These frames were chosen for their variety in
postures, fluctuations in lighting conditions, and occasional
nurse appearances. For each patient test set, we compared
our framework’s pose estimation performance against two
state-of-the-art generic frameworks by evaluating joint esti-
mates from each method at distances between 0 and 30 pix-
els (px) from the ground truth. These methods included

Caffe-Heatmap by Pfister et al. [19] trained on FLIC and
OpenPose by Cao et al. [27] trained on COCO.2 Fig. 7a
provides a spatial reference of 15 pixels (approximately 3
inches) and Fig. 7b shows the joint accuracies at varying toler-
ances for Subject 2’s test set. For a progression of pose esti-
mation performance after each proposed contribution, refer
to Fig. 9.

At a tolerance of 15 pixels, our framework was more
accurate than Caffe-Heatmap by 42.4± 8.3% and OpenPose
by 11.4 ± 3.9% on average across our three patient test
sets (Table 2). Patient hands and elbows were typically the
most challenging joints to estimate for every method, but we
saw more consistent tracking in these categories using our
framework. Fig. 8 shows a complete performance comparison
against the two generalized methods for all three subjects.

2Models were provided out-of-box by their respective authors
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FIGURE 9. Step-wise performance. A progression of pose estimation
performance after each contribution for all joints is shown above,
comparing combinations of high-variance training (HV), lighting
normalization (CLAHE), and Kalman filtering (KF) to low-variance
training (LV) and Caffe-Heatmap with FLIC (CH-FLIC). The results for
Subject 1’s test set are shown here.

With Subjects 1 and 2, we observed a considerable improve-
ment on tracking performance for all seven joints, and our
framework labeled at least 80% of frames for any joint within
15 pixels from the ground truth. In addition, our framework
provided∼50%more hand annotations at this tolerance when
compared to OpenPose for these two subjects.

In contrast to the test sets for Subjects 1 and 2, Subject 3’s
chosen test set contained more frequent hand occlusions in
which Subject 3 often placed their left and right hands behind
their head during rest. This decreased the overall tracking
consistency across all methods for these two joints. How-
ever, our framework still on average provided 22.0 ± 9.5%
and 9.8 ± 6.8% more hand labels than Caffe-Heatmap and
OpenPose, respectively. For Subject 3’s elbows, the second

most challenging category, we saw an overall increase in
performance by 38.2 ± 17.7% against Caffe-Heatmap and
11.3 ± 5.7% against OpenPose when using our framework.
This suggests that our framework can be more consistent
within reasonable spatial tolerances for particularly noisy
segments of video compared to general methods.

IV. CONCLUSION
In this paper, we presented several extensions onto an existing
pose estimation framework to improve posture tracking in
clinical environments. By extracting images from periods of
movement and idleness across the entire span of a patient’s
dataset, we can construct a subset of training frames that
captures a diverse collection of postures for a patient-specific
CNN model. Furthermore, by accounting for the frequent
lighting changes often found in these environments and by
refining the predicted trajectories through a Kalman filter
with trained noise parameters, our framework can provide
more reliable annotations on a patient’s pose in these settings
when compared to generic pose estimation frameworks.

Our framework relies solely on low-resolution RGB
images to be implemented and therefore can be used by
anyonewith ameans of recordingRGBvideo. In addition, our
augmentations can be potentially adopted to improve other
pose estimators, and our framework is capable of running in
real-time after training as a consequence of the Kalman fil-
ter’s causality. We have open-sourced our standalone Patient-
Pose toolbox,3 andwe encourage others to use our framework
for their own experimental or clinical studies or to apply
and build upon our methods. However, we suggest that the
trade-off between PatientPose and generalized frameworks
should be considered before use. In particular, although we
have demonstrated the potential to substantially improve pos-
ture estimation quality with our add-ons, we note that our
framework’s upfront cost of labeling and training a separate
CNN model for each patient is greater. Frameworks that
are built independent from subjects and environments are
often prepackaged with general models that can be applied
to patient data right away without any additional work, and
therefore may be the preferred choice for those seeking an
immediate solution. However, for others who require a more
custom approach which can result in a higher consistency
and accuracy of pose annotations in these environments,
we encourage them to look into PatientPose as a means to
extend beyond current general methods.

This trade-off directly motivates future work that could
explore the use of insights from generalized frameworks in
order to reduce the upfront efforts per patient, or to develop
a framework for ‘‘hospital-specific’’ models that generalize
across patients within the same hospital using techniques
such as transfer learning. Specifically, a reduction in training
time can be achieved by using more powerful hardware and
software solutions as this area of research and development
continues to mature, and a ‘‘hospital-specific’’ framework

3https://github.com/TNEL-UCSD/PatientPose
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which meets halfway between general and specific methods
could mitigate concerns of model overfitting in more varied
clinical environments. Work in this field will continue to
expand with the increasing desire for automated behavioral
labels, since these labels can be informative for both research
studies and clinical applications. Analysis of neural corre-
lates to natural behaviors extracted from pose estimates, for
example, could enable more robust brain-machine prostheses
that would benefit those with motor disabilities. In addition,
patient tracking can provide a way to automate patient safety
monitoring and could improve current motor scoring assess-
ments, overall patient management, and the effectiveness of
treatment protocols. Such studies and applications all seek to
improve the quality of our health care.
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