
Introduction
Interest in the role of epigenetic processes in common 
complex diseases continues to increase [1,2]. Epigenetics 
is a potentially major mechanism by which environmental 
factors can affect physiological function and disease risk. 
Research into epigenetics promises to reveal many of the 
causes that remain undiscovered after extensive investi
gation of common genetic variation [3].

Epidemiological approaches can be used to identify 
whether epigenetic processes are involved in mediating 
the association between risk factors (environmental, 
genetic, lifestyle, socioeconomic and so on) and common 
complex disease [4,5]. For example, longitudinal cohort 
studies have been a cornerstone of observational epi
demio logy for many years. Longterm followup of adult 
cohorts has identified important risk factors for cardio
vascular disease, chronic bronchitis, and cancers, and 
followup of cohorts from birth or childhood has been 
equally successful at identifying the importance of early 
exposures (especially the childhood social environment) 
and developmental characteristics for adult health (for 
example, [610]). Longitudinal studies, particularly those 
that start in early life, can contribute to our understanding 

of how the epigenome changes over time, as a result of 
varying environmental exposures, and how disease 
pheno types evolve. Longitudinal studies are costly to 
instigate and maintain, and crosssectional studies (a less 
expensive alternative study design) have more often been 
used to assess the relationship between exposures and 
the epigenome and/or the epigenome and disease. How
ever, crosssectional studies cannot capture the dynamic 
nature of epigenetic mechanisms [11], making it difficult 
to identify the influences of the environment and/or 
disease state (or subclinical features of disease) on the 
epigenome and thus establish the direction of causality. 
As a result of this, study designs that make use of multiple 
time points are being increasingly recognized as the most 
suitable to analyze the epigenetics of common complex 
diseases. Because longitudinal studies track the same 
cohort at multiple time points throughout their lifetime, 
enabling the temporal relationship between exposure and 
disease to be established, they are ideally placed for 
exploitation in epigenetic investigations.

Advances in genomic technologies have opened up the 
possibility of largescale populationbased assessment of 
epigenetic patterns to help understand their influence on 
disease. How should such studies be conducted to maxi
mize their impact and what can epigenetics researchers 
learn from previous approaches to populationbased 
studies? Here we focus on how epidemiological approaches, 
including the design of cohort studies, can help investi
gate the role of epigenetic variation in common complex 
disease. Furthermore, the dynamic nature of epigenetic 
patterns means that they can be altered by disease
related factors (a process called ‘reverse causation’) as 
well as a host of confounding factors (such as age, sex, 
socioeconomic position, diet, or smoking). Many relevant 
approaches have been developed in the context of both 
genetic and life course epidemiology that could be 
fruitfully applied to epigenetics; examples are methods 
for dealing with biases, confounding, and reverse causa
tion and also longitudinal statistical modeling techniques 
[12,13]. We first assess what epigenetic markers have 
been measured within existing life course studies before 
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discussing how the epidemiologist’s toolkit can be 
applied to epigenomics.

epigenetic studies within longitudinal cohorts
Since 2010, 34 life course studies have included measure
ments of DNA methylation, and just four of these have 
included analysis of epigenetic features at more than one 
time point (Table  1). In line with the vast majority of 
other epigenetic studies, the focus is on DNA methylation 
as this is the most straightforward form of epigenetic 
modification to measure, and the only currently feasible 
option in archived DNA samples. Prospective sample 
collection will permit the analysis of chromatin modifica
tions and microRNA. Three of the studies analyzing 
more than one time point (Table 1) report findings relat
ing specifically to agerelated changes in childhood [14] 
or adulthood [15,16], and all three focus on genespecific 
DNA methylation of a small panel of (different) loci and 
report differences that were modest in size (generally 
<5%). A further study considers changes in DNA methy
la tion over a relatively short time period (28 to 180 days) 
in relation to air pollution exposure [17]. Although there 
was some indication of lower global DNA methylation in 
repetitive elements across the genome in this study [17] 
at 90 days of exposure, there was no evidence of a dose 
response, casting doubt on the biological importance of 
this association. In summary, very little has been done in 
this area.

Table 2 summarizes additional examples in which case
control studies of DNA methylation have been nested 
within existing largescale longitudinal cohorts; this 
approach has been applied so far exclusively in the 
context of cancer. Analyses in this instance have been 
limited to gene panels (generally established tumor sup
pressor or oncogenes) and have been undertaken either 
(i)  to assess the utility of epigenetic signatures as early 
biomarkers of cancer risk [1820] or (ii)  to consider the 
determinants of a perturbed methylation state (methy
lator phenotype), which has been implicated in numerous 
cancers [2125]. With improved knowledge of methyla
tion variable regions associated with diseases other than 
cancer (for example, cardiovascular disease, dementia, 
and rheumatoid arthritis), the same approach could be 
adopted in the context of longitudinal cohort studies.

The paucity of DNA methylation measurements under
taken in cohorts that have collected serial samples from 
the same individuals is clear, indicating that the potential 
richness of longitudinal data and sampling in these 
studies has yet to be fully exploited. Few studies have 
routinely collected serial samples from the same indivi
duals at multiple points in the life course (for example, 
the Avon Longitudinal study of Parents and Children 
(ALSPAC) [26,27], and the Normative Aging Study 
[17,2832]), but others are planning serial sampling in 

light of the interest in epigenetics (such as the Medical 
Research Council National Survey of Health and 
Develop ment [33] and the Southall And Brent REvisited 
(SABRE) cohort [34]). Given the temporal variation in 
epigenetic patterns, serial sampling of any longitudinal 
cohort would be advised where possible.

Of the studies published so far, the variety of tissues 
analyzed is limited mainly to easily accessible peripheral 
blood, cord blood or buccal cells, the studies are modest 
in size compared with those used for genetic research, 
and the range of different methods that have been used to 
quantify DNA methylation have led to an overall lack of 
comparability between studies. It is clear from these 
observations that more can be done with respect to the 
collection and analysis of biological samples from 
longitudinal cohorts so that they are optimal for 
epigenetic studies.

Attributes of longitudinal cohort studies
Ideally, longitudinal epigenetic studies should include 
extensive, prospectively collected data and biological 
samples at multiple time points across the life course. 
Many existing longitudinal cohort studies are population
based, although some focus on a specific subgroup of 
the general population. For example, the SABRE cohort 
focuses on groups that are first or second generation 
migrants to the UK of nonEuropean ethnicity to 
examine particular health issues, in this case the marked 
discordance in disease risk observed in migrant groups 
compared with Europeans living in the UK [34]. 
Longitudinal epigenetic studies can add value to existing 
resources, such as data from genomewide association 
studies  for example, ALSPAC [26,27] and the Relation
ship between Insulin Sensitivity and Cardiovascular 
disease (RISC) cohort [35]. Exposures commonly cap
tured in longitudinal studies include lifestyle factors, such 
as smoking, alcohol intake, diet, and physical activity 
patterns, and also socioeconomic measures across the life 
course. Common phenotypes on which longitudinal 
studies tend to focus include physical and anthropometric 
measures, cognitive, cardiovascular, metabolic, respira
tory, and musculoskeletal function, and a range of blood
based intermediate biomarkers. Of particular value are 
birth cohorts with transgenerational and acrosslife 
samples from birth onwards, allowing an appraisal of 
epigenetic changes associated with in utero and early life 
exposures, a period when the epigenome is believed to be 
particularly plastic.

The epidemiological toolkit
Applying principles of life course epidemiology to 
epigenetic research
Research in life course epidemiology investigates develop
mental, aging, and risk factor trajectories and how 
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dynamic relationships unfold over time, and takes into 
account potential confounding, mediating, or interactive 
effects of lifetime biological, psychological, and social 
risk factors [36]. This conceptual framework is relevant 
for epigeneticists investigating longterm associations 
that may be biased, confounded or due to reverse causa
tion. Life course epidemiologists have investigated various 
different methods for modeling risk factor trajec tories 
(particularly growth trajectories) in relation to later 
health outcomes and have developed a novel structured 
approach [37] to distinguish critical, sensitive, and accu
mu lation life course models [38]. They use a range of 
approaches for modeling repeat continuous and binary 
outcome measures, such generalized estimating equa
tions or mixed models that consider correlated data such 
as repeat measures from the same individuals over time, 
and for modeling time to an event, such as survival and 
event history analysis. This toolkit is relevant to epi
geneticists, whether studying lifetime environmental 
exposures that promote particular epigenetic signatures 
over time or how these signatures themselves may affect 
not just the level (intercept) of function (such as blood 
pressure) at a point in time but also its rate of change 
(slope) over time. Such statistical approaches have not 
been widely applied to epigenetic data, although exam
ples can be found in Madrigano et al. [16,17], who illus
trate the use of mixed models to analyze changes in 
methylation over time while accounting for the corre la
tion among measurements within the same individual. 
Further discussion of this subject is provided below in 
the section on data analysis considerations.

Several research collaborations involving cohort studies, 
such as HALCyon (Healthy Aging across the Life Course) 
[39], FALCon (Function Across the Life Course) [40] and 
GEoCoDE (Genomic and Epigenomic Complex Disease 
Epidemiology) [41] have been formed. These have 
increased the sample size and power to investigate lifetime 
risk factors on longitudinal phenotypes and to test whether 
findings are replicated across cohorts in a systematic way, 
and they will be useful to epigenetics research. The 
collaborations have developed experience in data har mo
ni zation to derive comparable phenotypes across the 
cohorts, and in crosscohort methods (for example, [42]). 
Those running epigenetic studies may want to make use of 
these collaborations for similar reasons, and a coordinated 
approach is likely to advance the science and be appealing 
to funders. Coordinating the cohorts has led to more 
effective ways of gaining knowledge of the various datasets 
and metadata as well as facilitating data sharing and 
encouraging good practice in data management.

From genetic to epigenetic epidemiology
Incorporating epigenetic measures into epidemiological 
studies is often done in the context of genetic epidemiology 

resources. However, studying epigenetic factors   which 
are, partly at least, phenotypic   is more similar to 
conventional epidemiology than it is to genetic epidemi
ology. Several aspects of germline genetic variation lead 
to specialcase conditions that allow relaxation of usual 
epidemiological principles: reverse causation (disease 
influencing the variable being measured rather than vice 
versa) is clearly not an issue in genetic epidemiology, and 
confounding   which often vitiates conventional epide
miology   generally relates only to ancestry in genetic 
epidemiology [43], and this can be accounted for by using 
principal components from genomewide data as control 
variables. Germline genetic variation can be assessed on 
samples taken at any stage of life, does not change over 
time, and can be assayed with high precision and low 
measurement error. Effect sizes for the influence of 
common genetic variants on common complex diseases 
tend to be small, which means that very large sample 
sizes are required. Given these circumstances, the genetic 
epidemiology study design of choice became large case
control studies, with the controls not being carefully 
selected to represent the source population  and some
times (as in the case of the landmark Wellcome Trust 
Case Control Consortium (WTCCC) [44]) control 
groups shared for comparison with several disease groups. 
For example, in the WTCCC the common control groups 
consisted of blood donors (who are very unrepresentative 
in terms of factors that would be important confounders 
in conventional epidemiological studies, such as health
related behaviors and social class) and participants in the 
1958 birth cohort   all of the same age, which in some 
cases barely overlapped with the age of the cases.

However, such study designs are not appropriate for 
epigenetic epidemiology, as confounding, bias, and 
reverse causation are all serious problems when studying 
phenotypic exposures. It is important that the successes 
of genetic epidemiology are not translated into failures 
for epigenetic epidemiology [1,5,45]. Prospective studies 
are the ideal type of study, including documented 
exposure (epigenetic) measures collected before the 
outcomes and temporal changes, detailed assessment of 
confounding factors, and consideration of measurement 
error. Currently, the effect sizes of associations in epi
genetic studies are poorly delineated, but it is likely that, 
unlike the situation in the early days of molecular genetic 
epidemiology, the problem will not be one of relatively 
few robust associations, but rather many real obser
vational associations will exist and the issue will be the 
separation of causal associations from those generated by 
confounding and bias. Various methods that have been 
developed to strengthen causality in conventional epide
miology  including collaborative analysis of multiple 
cohorts in which confounding structures differ [46], 
comparisons of plausible and implausible associations 

Ng et al. Genome Biology 2012, 13:246 
http://genomebiology.com/2012/13/6/246

Page 6 of 13



[47,48], and the use of instrumental variables [47]   can 
be applied to epigenetic epidemiology studies.

An instrumental variables method that uses germline 
genetic variants as the instruments  Mendelian randomi
zation  is increasingly used to strengthen causality with 
respect to environmentally modifiable exposures for 
which genetic variants can serve as proxy measures 
[4951]. Mendelian randomization can be extended to 
the investigation of epigenetic profiles as the potentially 
modifiable exposure. This method  ‘two step epigenetic 
Mendelian randomization’   is currently under develop
ment, and details can be found elsewhere [5,52].

A further complexity of epigenetic studies is the tissue
specific nature of epigenetic patterns. Given that they are 
integrally involved in the process of cell and tissue 
differentiation, it is no surprise that epigenetic patterns 
differ between tissue sources. Genetic comparisons 
within and between studies can be made using a variety 
of sources of DNA to generate genotype data; however, 
this is not the case in an epigenetic context. Population
based studies often have to rely on easily accessible DNA 
sources (such as blood, saliva, buccal cells; Table  1). 
These serve as a surrogate for the target tissue involved in 
the disease of interest, but there is inevitable hetero
geneity in both specific cell type represented and sample 
processing, which may bias epigenetic measurement (see 
the section below on data analysis considerations). 
Despite these limitations, epigenetic epidemiological 
studies are emerging and include strategies such as 
Mendelian randomization approaches [53] or intertissue 
comparisons [15] to interrogate the functional relevance 
and casual nature of observations.

Inter-generational epigenetic studies
Familybased sampling of both siblings and multiple 
generations can have particular value in epigenetic 
studies. The fact that epigenetic states are often estab
lished in early (in particular antenatal) development 
makes birth cohorts with recruitment and sample collec
tion from pregnant women and sample collection on 
offspring from birth onwards of particular value [26,27]. 
There is considerable interest in the role of epigenetic 
mechanism in the developmental origins of adult disease, 
to which longitudinal cohort studies are making a 
valuable contribution [4,5359].

Data analysis considerations
Most research undertaking longitudinal analysis of mole
cular biomarker data assumes that there are predictable 
biological changes over time associated with a given 
exposure or disease process. However, in the context of 
epigenetic studies, change over time can be due to 
technical [60] or genetic factors [61], tissue type [62,63], 
changes with normal aging, and stochastic changes [64]. 

These sources of data ‘noise’ threaten the detection of the 
biological signal of interest. Thus, as is often the case, the 
first and most critical step to performing longitudinal 
DNA methylation analysis is careful study design and 
data collection with meticulous recording of technical 
factors and factors that vary between people. Given that 
data collection may occur months, years or even decades 
apart, the awareness and/or control of such sources of 
variability are paramount to making valid conclusions 
regarding withinindividual changes over time as it may 
be impossible to account for these factors after the fact. 
Preprocessing of data is often necessary to generate 
comparable data from samples between and within 
individuals over time. International initiatives to address 
and reach consensus on such issues are in progress [65]. 
Equally important is that many of these methods seek to 
optimize the signaltonoise ratio. These two considera
tions are critical to generating valid and reproducible 
results. Prudent use of preprocessing that matches the 
study design and data, and experimentation with several 
different methods are strongly encouraged. In addition, 
the threat of timevarying artifacts masquerading as 
biological signal is constantly present in longitudinal 
studies. This possibility should be formally tested as an 
automatic addition to the primary study hypothesis.

An example of a ‘noise’ source that is just beginning to 
be understood is the role of genetic factors in determining 
the degree of variability in DNA methylation over time. 
This is suggested by familial clustering of DNA methy la
tion variability over time [61]. From the perspective of 
individual loci, there is also evidence of CpG site
dependent differential stability [15]. This indicates that 
loci should be carefully selected that demonstrate greater 
inter than intraindividual variation over time. The 
mecha nisms underlying this are unknown but could 
reasonably be related to overlying genetic architecture 
(for example, interaction with other epigenetic marks 
and possibly even the DNA itself ) or the cellular milieu, 
as suggested by tissuespecific difference in stability in 
the same loci [63]. With the success of nextgeneration 
sequencing and its falling costs, we can look forward to a 
clearer view of the effect of genetic factors on DNA 
methylation and timedependent variability.

As alluded to earlier, the vast majority of longitudinal 
cohort studies that are in a position to consider including 
epigenetic assessment have used biological specimens 
collected from peripheral blood. Reliance on leukocyte 
DNA extracted from peripheral blood introduces a 
potential source of measurement error [66]. Given the 
labile nature of leukocyte subtype populations over time, 
this variation may make an important contribution to 
intraindividual changes in DNA methylation. For 
instance, shifts in leukocyte populations can occur as a 
result of normal development and aging, inflammation 

Ng et al. Genome Biology 2012, 13:246 
http://genomebiology.com/2012/13/6/246

Page 7 of 13



from infectious, rheumatological, or oncological diseases, 
or normal response to medications (such as nonsteroidal 
antiinflammatory drugs). The most definitive solution is 
to isolate cell types (for example, through magnetic
activated or fluorescenceactivated cell sorting), so as to 
perform comparisons within relatively homogenous 
leukocyte populations. However, this is possible only 
with freshly collected samples; one of the advantages of 
prospective longitudinal studies is the potential to collect 
appropriate samples relevant for epigenetic studies.

When analysis of relatively homogeneous cell types was 
unavailable, Zhu and colleagues [67] used total and 
differ ential leukocyte count (from a sample drawn con
current with the methylation sample) to control for this 
variation in regression models. These researchers found 
that the proportion of leukocyte cell types correlated 
with levels of LINE1 methylation. Importantly though, 
statistical adjustment for this did not alter the association 
between LINE1 and Alu methylation levels and 
individual characteristics (age, gender, smoking habits, 
alcohol intake, and body mass index). Candidate gene 
studies of methylation have reached similar conclusions 
[15,16]. This could mean that leukocyte populations 
contribute a negligible amount of variance relative to the 
specified model factors. Alternatively, it may be that 
controlling for leukocyte population in this manner 
inadequately captures the effect of this noise. The possi
bility that using the direct measure of an unwanted 
variable in a regression equation may suboptimally 
reduce noise was explored by Teschendorff and colleagues 
[60]. Using Illumina HumanMethylation27 BeadChip data, 
they proposed a variation of surrogate variable analysis in 
which confounders are modeled as statistically inde
pendent components. Using these components instead of 
the original measures in regression analysis, they found a 
stronger association between methylation of Polycomb
family gene loci and their phenotype of interest, age. From 
this, they concluded that the effect of confounders on the 
DNA methylation data was better represented by 
independent components than the original covariates.

Lastly, in cases where no information on cell counts is 
available, a potential solution may arise from the DNA 
methylation data itself. Such a possibility is presented by 
Houseman and colleagues through their software 
methylSpectrum [68]. The authors propose an algorithm 
to infer the contribution of different leukocyte sub
populations to whole blood DNA methylation patterns. 
This software is not designed to examine changes over 
time and requires a suitable reference sample from which 
to make inferences, which would reasonably require 
multiple ageappropriate references in a longitudinal 
study setting.

In summary, we need formal comparisons of these 
methods in heterogeneous and homogeneous samples 

from the same specimen. International efforts to create 
reference epigenomes from homogeneous cell samples 
will be highly beneficial [65]. However, variation due to 
cellular and tissue heterogeneity is just one example of 
the wide breadth of issues regarding noise that require 
detailed and systematic study.

Modeling epigenetic change over time
There are several issues that need to be considered when 
analyzing epigenetic change over time, such as the unit of 
DNA methylation change under examination (Box 1) and 
the analytic technique. The unit of analysis must consider 
several issues. For example, how is DNA methylation 
measured? What is the question under investigation? Is 
the research focused on testing sitespecific changes in 
DNA methylation related to exposures and/or outcomes 
or is it seeking to explore a network of gene regulation? 
What type of a priori information is available? How does 
this information contribute to understanding of error or 
covariance of methylation measurements? Are individuals 
compared using categorical or continuous variables?

Guided by the selected unit of DNA methylation change, 
we now turn to examples of modeling intraindividual 
variation over time that is due to disease and/or environ
mental factors. The selection of an appropriate modeling 
technique has important implications for study power 
and calculations of statistical significance. We limit this 
discussion to longitudinal studies with three or more 
time points, as two time points can at most infer a differ
ence rather than the nature of change. Much of this work 
is borrowed from other fields, particularly gene expres
sion studies, and uses datadriven or knowledgedriven 
techniques, or combinations of both.

Several techniques use comparisons between two groups 
(such as controls versus cases) to determine differential 
time courses [69,70]. Some of these methods can be 
extended to comparisons between more than two groups 
(for example, [71]). An alternative to this individual
based approach is to find time course patterns that distin
guish one group of individuals from another (for example, 
[72,73]). Methods that capitalize on other biological 
knowledge (such as genomes, transcriptomes, or nucleo
somes) may allow us to better infer the nature of 
methylation in the context of how functional regulation 
of the genome relates to exposures or disease processes. 
This is especially powerful to detect signals that are 
expected to be subtle but consistent among jointly regu
lated loci [74]. An example is longitudinal gene set 
analysis [75] using annotations from databases such as 
Gene Ontology. The parallel analysis of different sources 
of highthroughput data has so far only been explored in 
crosssectional methylation studies but could in theory 
be applied to longitudinal analysis. However, such longi
tudinal analysis will require advanced multidimensional 
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techniques (Box 2). These techniques require pre
processed data that are relatively free of noise. Another 
approach may use data reduction techniques to extract 
meaningful features from data noise while simultaneously 
considering the timevarying nature of DNA methylation. 
For example, groupindependent component analysis 
with temporal concatenation of microarray data would 
assume that there are common sites of epigenetic activity 
but that the course of change may be different for each 
individual. Most experience in this type of technique 
comes from the analysis of neuroimaging data, where the 
goal is to uncover areas of the brain that are activated 
similarly among individuals in an experimental group 
over time [76]. The translation of such ideas to molecular 
data, which often have far lower temporal resolution but 
higher ‘spatial’ resolution (gene loci as opposed to areas 
of the brain), would be a challenging but also potentially 
promising avenue.

The promise of epigenetic studies of longitudinal 
cohorts
Future longitudinal epigenetic studies will undoubtedly 
integrate greater levels of genomic, biologic and/or 
phenomic information. For example, our expanding know
ledge of factors influencing chromatin architecture may 
soon allow the analysis of methylation marks within 
context of the broader chromatin state. Examples of such 
data are nucleosome mapping [77], histone modifications 
[78], and chromosome conformation capture [79]. The 

influence of the underlying and overlying chromatin 
archi tecture (interaction with protein, RNA, and DNA 
primary and secondary ‘structure’ [80]) on differential 
locus stability over time remains to be elucidated. Analy
sis of DNA methylation is clearly only scratching the 
surface of the epigenetic information that regulates gene 
expression, but longitudinal cohort studies provide a 
tractable opportunity to contribute to our knowledge 
base in this area and, as our understanding of the wider 
epigenome improves, additional epigenetic features may 
also be added to such studies.

Increasingly, studies are pushing to provide a broader 
mechanistic picture of cellular function and regulation by 
juxtaposing data from two or more kinds of high
throughput data [81,82]. So far, these data are often 
extracted from different materials or individuals (such as 
DNA methylation from whole blood and RNA from cell 
culture). This limits interpretation of functional rele
vance. However, advances in biotechnology that reduce 
the amount of specimen required and increase automa
tion, in conjunction with falling costs, are likely to over
come this problem. Biobanked samples, such as plasma, 
DNA, and RNA from longitudinal cohorts, could make a 
valuable contribution to developments in this area. 
Furthermore, the development of nested recall studies for 
intensive phenotyping within established cohorts will 
greatly enhance research opportunities in this area.

As multidimensional datasets evolve and the ability to 
mine the information within them improves, it will be 
imperative that this information is made as accessible as 
possible to the wider scientific community. Although it is 
currently possible to access some information relating 
epigenetic data to common genetic variation and gene 
expression, providing an integrative approach, this is not 
available at multiple time points. Longitudinal studies 
can offer considerable added value in these settings and 
profiling using a comprehensive range of highthrough
put methods can be overlaid on a wealth of exposure and 
phenotypic data, allowing researchers to explore specific 
hypotheses in silico and thus helping to prioritize 
resources for more detailed investigations.

In summary, longitudinal cohorts can offer a great deal 
in the context of epigenetic epidemiology, including 
identification of the major determinants of epigenetic 
variation in populations and a better understanding of 
the relationship between genetic and epigenetic variation. 
They provide an unprecedented opportunity to increase 
our understanding of the dynamic nature of epigenetic 
patterns and how changes occur in response to a wide 
range of environmental, lifestyle, and behavioral factors. 
Populationbased studies will improve our knowledge of 
the extent and topography of interindividual variation in 
epigenetic patterns and permit assessment of effect sizes 
of shifts in epigenetic patterns on healthrelated 

Box 1: Potential units of change to examine epigenetic 
mechanisms

•	 A	single	gene	or	gene	region	of	interest

•	 Single	gene	loci	that	have	different	temporal	patterns	
between biological groups

•	 A	family	of	genes	of	known	biological	or	clinical	importance	
(such as those previously known to show exposure-related 
differential	methylation)

•	 A	group	of	functionally	related	genes	(for	example,	as	
identified by Gene Ontology or Kyoto Encyclopedia of Genes 
and Genomes (KEGG) terms)

•	 A	network	of	co-regulated	genes	(for	example,	using	
intersection with concurrent gene expression data or from 
previous literature)

•	 Genes	related	by	their	linear	proximity	on	the	DNA	strand	
(such	as	regional	grouping,	as	done	to	examine	differential	
methylation between and within individuals [70])

•	 Genes	related	to	the	overlying	chromatin	architecture	
(such as knowledge of nucleosome position or histone 
modifications)

•	 Genes	that	show	similar	patterns	of	change	(for	example,	
gene curve [71])
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outcomes. A wealth of statistical approaches can be 
borrowed and adapted from related fields and be applied 
to longitudinal epigenetic analysis  an area of bio
statistics that is likely to grow exponentially as high
throughput datasets become increasingly multidimen
sional. Insights into the temporal relationship between 
changes in epigenetic patterns and functional and health
related outcomes that can be gleaned from longitudinal 
studies will assist in defining causality. This, and other 
epidemiological methods to strengthen causal inference, 
will contribute to the identification of predictive epi
genetic biomarkers and modifiable targets for intervention.

The ultimate goal of observational data generated in 
epidemiological investigations is to feed forward into 
clinical practice or public health. There is already 
evidence of translation of longitudinal biological data to 
clinical applications [83]. The incorporation of epigenetic 
biomarkers to enhance clinical tools for prediction and 
prognosis is beginning to emerge [5] (Table  2), and 
longitudinal cohorts will undoubtedly help in this domain.
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