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Short Communication
An Unknown Non-denitrifier Bacterium Isolated from Soil Actively Reduces
Nitrous Oxide under High pH Conditions
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A nitrous oxide (N2O)-consuming bacterium isolated from farmland soil actively consumed N2O under high pH
conditions. An acetylene inhibition assay did not show the denitrification of N2 to N2O by this bacterium. When N2O was
injected as the only nitrogen source, this bacterium did not assimilate N2O. A polymerase chain reaction demonstrated that
this bacterium did not have the typical nosZ gene. This bacterium belonged to Chitinophagaceae, but did not belong to
known families that include bacteria with the atypical nosZ. This is the first study to show that a non-denitrifier actively
reduces N2O, even under high pH conditions.
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Although carbon dioxide is a well-known greenhouse gas
(GHG), other GHG also influence climate change (Montzka
et al., 2011). Among these GHG, nitrous oxide (N2O) has a
major impact on global warming. N2O absorbs infrared radi‐
ation, and its potential to cause global warming is 298-fold
that of carbon dioxide and, thus, is regarded as the most
important ozone-depleting substance in this century
(Ravishankara et al., 2009; Montzka et al., 2011). The emis‐
sion of N2O from agricultural soil is accelerated by the addi‐
tion of large amounts of nitrogen-containing fertilizers to
farmlands, and accounts for 60% of the atmosphere (Mosier
et al., 1998; Zhou et al., 2015). Various methods have been
attempted to mitigate N2O emissions. Recent studies
reported that N2O emissions may be suppressed by the addi‐
tion of a substance used as an agrochemical (Obia et al.,
2015; Abbruzzini et al., 2019; Takatsu et al., 2019). How‐
ever, the use of agrochemicals is associated with a number
of issues, such as the loss of soil biodiversity and the persis‐
tence of soil chemicals (Stolte et al., 2016; Silva et al.,
2018), thereby necessitating other methods. Therefore, N2O-
reducing microorganisms have been attracting increasing
attention (Hallin et al., 2018).

N2O is emitted from soil into the atmosphere through the
processes of nitrification and denitrification by soil microor‐
ganisms, which are major sources of N2O in soil (Skiba and
Rees, 2014). In the denitrification pathway, complete deni‐

–trifiers (NO3
–/NO2 → NO → N2O → N2) and incomplete

–denitrifiers (NO3
–/NO2 → NO → N2O) contribute to the

emission of N2O. Complete denitrifiers possess the nosZ
gene, which encodes N2O reductase (Zumft, 1997; Wunsch
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and Zumft, 2005). Furthermore, some non-denitrifying N2O-
reducing microorganisms lack the pathway for the conver‐
sion of NO3 to N2O, but have the capacity to convert N2O to
N2 (Payne et al., 1982; Simon et al., 2004). Therefore, non-
denitrifying N2O-reducing microorganisms have the poten‐
tial to be true N2O sinks without contributing to N2O
production (Hallin et al., 2018). NosZ protein phylogeny
has two distinct groups, clade I and II nosZ (Hallin et al.,
2018). These clades have been reported as typical and atypi‐
cal nosZ (Sanford et al., 2012). Clade I nosZ comprises
alpha-, beta-, or gamma-proteobacteria, while clade II nosZ
consists of a large range of archaeal and bacterial phyla
(Jones et al., 2013). Non-denitrifying N2O-reducing micro‐
organisms belong to clade II and possess abundant diversity
in all ecosystems (Hallin et al., 2018).

Complete denitrifiers utilize the N2O present in soil gas as
the final electron acceptor in the nitrate respiratory system
and emit N2 as the final product into the atmosphere
(Hutchins, 1991; Wunsch and Zumft, 2005). N2O is used to
promote cell survival, even in the absence of oxygen (Park
et al., 2017). Based on the assimilation of N as a nutrient,
when N2O is abundant, from the perspective of activation
energy, it is more efficient in the assimilation of N2O than
N2 fixation (Kryachko et al., 2001). Available N (NO3

– and
NH4

+) in soil is limited, even in relatively fertile soils
because these nitrogen sources are competitively assimilated
by plants and other microorganisms (Kaye and Hart, 1997).
In terms of a survival strategy for bacteria, the assimilation
of N2O is advantageous when N2O is abundant. Therefore,
some bacteria that positively absorb N2O for assimilation
may exist; however, this has not yet been demonstrated.

Therefore, the purpose of the present study was to search
for a bacterium in soil that consumes N2O. We hypothesized
that some bacteria among N2O-consuming microorganisms
in farmland soil may assimilate N2O when it is abundant
through the denitrification process. By detecting changes in
N2O concentrations in gas chromatography vials injected
with N2O before incubations, strains with the potential to
consume N2O were screened among bacteria isolated from
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farmland soil. Furthermore, an acetylene inhibition assay
was conducted to establish whether the decrease in N2O
concentrations was due to assimilation or reduction. We
herein report the taxonomic affiliation and optimal pH con‐
ditions required for N2O reduction by this isolated N2O-
reducing bacterium.

Andisol was collected on April 14, 2016 from a pasture
farmland and the maize field at the Hokkaido University
Shizunai Experimental Livestock Farm (Shinhidaka,
Hokkaido, Japan [42°25'9"N, 142°29'1"E]) (Katayanagi et
al., 2008). Soil samples were collected at a depth of 0–
10 cm and used in the N2O reduction assay and the isolation
of microorganisms. We used soil from the maize field. The
soil suspension was prepared as described previously
(Hashidoko et al., 2008).

Winograsky’s mineral solution containing 0.5% (w/v)
sucrose and 5 mM KNO3 (0.52 g L–1) was used as the
medium in the culture-based N2O reduction assay (Hara et
al., 2009; Nie et al., 2015). Since pH plays a key role in the
emission of N2O (Nie et al., 2015), the pH of the solution
was adjusted to various values (4.5, 5.0, 5.5, 6.0, 6.5, 7.0,
7.5, 8.0, 8.5, and 9.0) using 2 M H2SO4 and 1 M KOH that
was gelled with 0.5% (w/v) gellan gum and then autoclaved.
The same medium was used in subsequent experiments.
N2O levels were measured as described in a previous study
(Nie et al., 2015). N2O was emitted in the culture at pH 4.5–
7.5 (Fig. 1). However, N2O emissions decreased in the cul‐
ture at pH 8.5. This decrease in N2O emissions indicated the
presence of N2O-consuming microorganisms. Therefore, we
focused on this culture and isolated the bacterium from
N2O-consuming microorganisms. 

To screen for N2O-consuming microorganisms, colonies
were isolated as described in a previous study (Nie et al.,
2015). Fifteen distinguishable bacterial colonies, marked A
to O, were identified. Standard N2O gas (GL Sciences) was
injected using a gas-tight syringe into the headspace of

gas chromatography vials to a final concentration of
2,000 ppmv. After incubations for 0, 1, and 4 days at pH
8.5, N2O concentrations in the headspace gas were meas‐
ured. The results obtained showed that strain A (Sac-f1)
exhibited the greatest consumption of N2O (Fig. 2). 

To examine the potential of N2O reducers to reduce N2O
to N2, 10% volume (2.25 mL) acetylene gas and N2O
(12,000 ppmv) were injected into the headspace of the assay
vials immediately after the inoculation of the isolated bacte‐
rium, and media were then incubated at 25°C for 0, 1, 2, 3,
and 6 weeks. The concentration of N2O was measured after
these incubation periods. N2O concentrations did not
decrease with the acetylene gas treatment, which confirmed
that the bacterium reduced N2O (Fig. 3). Based on the
results of OD660 measurements in the medium, when N2O
was injected into gas chromatography vials as the only
nitrogen source, this bacterium displayed no growth. This
result indicated that this bacterium did not use N2O as a
nutrient. Furthermore, N2O concentrations did not increase
during the incubation with the acetylene gas treatment (Fig.
3). Therefore, the bacterium reduced, but did not assimilate,

–N2O and did not denitrify NO3  to N2O. 
The DNA of this bacterium was extracted using an Iso‐

plant II DNA Extraction kit (Nippon Gene), and the nosZ
gene was subjected to a polymerase chain reaction (PCR)
using nosZ gene-specific primers (nosZ-1111F and
nosZ-1773R) (Scala and Kerkhof, 1998). The 16S rRNA
region was amplified with PCR using the primers 27F and
1525R (Lane, 1991; Weisburg et al., 1991). PCR amplicons
using the specific primers were purified by agarose gel elec‐
trophoresis. Pseudomonas denitrificans NBRC 12442 was
used as the positive control. This bacterium did not have a
nosZ gene (Fig. 4), and the region of 16S rRNA was suc‐
cessfully amplified from the DNA template. 

The 16S rRNA sequence of the isolated bacterium was
highly homologous to those of the species belonging to
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Fig. 1. Responses of N2O-consuming communities in the soil suspension to optimal pH.
The soft gel medium for the culture-based N2O reduction assay was adjusted to alternative pH values (4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5,
and 9.0), and the soil suspension was incubated at 25°C for 3 weeks. Error bars indicate SE (n=3).
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Fig. 2. N2O-consuming activities of the isolated bacterium in the N2O reduction assay.
The N2O reduction activities of 15 isolates were tested together with a blank in the soft gel medium for the culture-based N2O reduction assay (pH
8.5). Among those tested, one isolate (marked as A) reduced the concentration of N2O from the background levels of N2O (2,000 ppmv) and
media were incubated at 25°C for 4 days before N2O (approximately 2,000 ppmv) was injected into gas chromatography vials. Blank indicates no
bacterial inoculation treatment. The arrow indicates the greatest consumption of N2O (A=Sac-f1).
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Fig. 3. Responses of N2O reducers to 10% acetylene gas.
The soft gel medium for the culture-based N2O reduction assay was
adjusted to pH 8.5, and media were incubated at 25°C for 6 weeks
before N2O (about 10,000 ppmv) was injected into gas
chromatography vials. Control indicates no acetylene treatment, and
+10% acetylene indicates the acetylene treatment. Blank indicates no
bacterial inoculation treatment. Error bars indicate SE (n=3).
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Fig. 4. Agarose gel showing the species-specific amplification of the
662-bp fragment.
Fluorescence and related species obtained using the primers nosZ 1111
F and nosZ 1773 R. Lane 1: marker gene, lane 2: Pseudomonas
denitrificans NBRC 12442 (positive control), lane 3: isolated
bacterium, and lane 4: Blank.

Chitinophagaceae. The closest species to the isolated bacte‐
rium was Chitinophaga eiseniae (96.35% similarity). A
phylogenetic analysis was performed based on the neighbor-
joining method using MEGA X (Kumar et al., 2018). The
sequences of the species belonging to Chitinophagaceae
were retrieved from the GenBank database. A similar phylo‐
genetic analysis was performed using the 16S rRNA
sequence data of previously characterized bacteria showing
an atypical nosZ gene (Liu et al., 2008; Sanford et al., 2012;

Jones et al., 2013; Park et al., 2017; Hallin et al., 2018) to
identify the taxonomic group of the isolated bacterium. We
reviewed these studies for species with an atypical nosZ
gene in cases where 16S rRNA sequence data were not
available. Consequently, this isolated bacterium belonged to
the genus Chitinophaga (Fig. 5A). However, it was not
reported whether the bacteria from this family belonged to
clade II nosZ (Fig. 5B). 

To assess the effects of pH on N2O reduction by the iso‐
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Chitinophaga arvensicola NBRC 14973(NR 113715)
Chitinophaga arvensicola M64 (NR 042512)
Chitinophaga ginsengisegetis Gsoil 040 (NR 041486)
Chitinophaga niastensis JS16-4 (NR 044560)

Chitinophaga taiwanensis CC-ALB-1 (NR 133721)
Chitinophaga polysaccharea MRP-15 (NR 125662)

isolated bacterium (LC554186)
Chitinophaga eiseniae YC6729 (NR 116796)

Chitinophaga jiangningensis JN53 (NR 118590)
Chitinophaga terrae Kim and Jung 2007 (NR 041540)

Chitinophaga dinghuensis DHOC24 (NR 145914)
Chitinophaga pinensis DSM 2588 (AF078775)

Segetibacter koreensis (AB267478)
Flavihumibacter petaseus NBRC 106054 (EU854577)

Parasegetibacter luojiensis (EU877263)
Niastella koreensis GR20-10 (DQ244077)

Filimonas lacunae (AB362776)
Heliimonas saccharivorans (JX458466)

Ferruginibacter alkalilentus (FJ177530)
Flavisolibacter ginsengiterrae (AB267476)
Flavitalea populi (HM130561)

Niabella aurantiaca (DQ457019)
Terrimonas ferruginea (AM230484)

Sediminibacterium salmoneum (EF407879)
Asinibacterium lactis (JQ638910)
Hydrotalea flava (FN665659)

Lacibacter cauensis (EU521690)
Taibaiella smilacinae (KC571459)

Aureispira marina (AB245933)
Haliscomenobacter hydrossis (AJ784892)

Lewinella cohaerens (AF039292)90
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A)

Flavobacteriaceae bacterium 3519-10 (EU694411)
Cloacibacte-rium sp. (MN548413)
Riemerella anatipestifer DSM 15868 (U60101)
Cellulophaga algicola DSM 14237 (AF001366)
Gramella forsetii KT0803 (AF235117)
isolated bacterium (LC554186)

Haliscomenobacter hydrossis DSM 1100 (AJ784892)
Dyadobacter fermentans DSM 18053 (AF137029)

Pseudopedobacter saltans DSM 12145 (AF329958)
Prevotella denticola F0289 (GU470898)

Persephonella marina EX-H1 (AF188332)
Candidatus Accumulibacter phosphatis (AY957964)

Ferroglobus placidus DSM 10642 (AF220166)
Haloarcula marismortui ATCC 43049 (LT986729)

Dechloromonas sp. (MN559819)
Aromatoleum aromaticum EbN1 (X83531)
Photobacterium profundum SS9 (U91586)

Polymorphum gilvum SL003B-26A1 (GU125654)
Sulfurimonas denitrificans DSM 1251 (L40808)

Leptospira biflexa (Z26969)
Anaeromyxobacter dehalogenans 2CP-1 (AF382396)
Anaeromyxobacter dehalogenans 2CP-C (AF382399)
Sphaerobacter thermophilus (X53210)
Geobacillus thermodenitrificans NG80-2 (DQ243788)

Desulfotomaculum ruminis DSM 2154 (M34418)
Desulfitobacterium dehalogenans ATCC 51507 (L28946)
Desulfosporosinus meridiei DSM 13257 (AF076527)
Denitrovibrio acetiphilus DSM 12809 (AF146526)

calidifontis JCM 11548 (DD047312)
Wolinella succinogenes DSM 1740 (HB919206)

Thermomicrobium roseum DSM 5159 (HC753236)
Magnetospirillum magneticum AMB-1 (LF706901)

Gemmatimonas aurantiaca T-27 (DI355612)
Rhodothermus marinus DSM 4252 (DI249724)39
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Fig. 5. The neighbor-joining tree shows phylogenetic relationships of the isolated bacterium.
Similarity and distance matrices were calculated using MEGA X. The phylogenetic tree was constructed based on available 16S rRNA sequences.
A) Phylogenetic tree with references from Chitinophagaceae. B) Phylogenetic tree with references from the atypical nosZ clade. We used the
neighbor-joining method with 1,000 bootstrap replicates. The scale bar represents the expected number of changes per sequence position.
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Fig. 6. Responses of the isolated bacterium, a N2O reducer, to optimal pH.
The soft gel medium for the culture-based N2O reduction assay was adjusted to alternative pH values (4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5,
and 9.0), and media were incubated at 25°C for 3 weeks before N2O (approximately 10,000 ppmv) was injected into gas chromatography vials.
Blank indicates no bacterial inoculation treatment. Error bars indicate SE (n=3).

lated bacterium, the pH of the media was adjusted to various
values (4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, and 9.0), fol‐
lowed by incubations for 0, 1, 2, and 3 weeks. N2O was
injected as described earlier. This isolated bacterium
reduced N2O at pH in the range of 4.5 to 9.0, with the opti‐
mum pH being 8.5 (Fig. 6). Previous studies reported that
soil microorganisms belonging to clade II reduce N2O at pH
7.0–7.5 (Liu et al., 2008; Sanford et al., 2012; Jones et al.,
2013; Park et al., 2017; Hallin et al., 2018), whereas the iso‐
lated bacterium in the present study reduced N2O under
alkaline rather than neutral conditions (Fig. 6). 

The present results clearly demonstrated that the isolated
bacterium did not assimilate N2O, but reduced N2O to N2.
The results of the phylogenetic tree analysis revealed that
this bacterium was an unknown species belonging to
Chitinophagaceae and reduced N2O at high pH (8.5). Since
the application of nitrogen fertilizers, such as urea, to farm‐
lands results in the largest increase in pH (Black et al.,
1985) and accelerates N2O emissions (Zhou et al., 2015), a
fertilizer inoculated with this isolated bacterium may be
used to suppress the N2O flux from agricultural soil. Further
investigations, draft genome analyses, and measurements of
enzyme activity are needed to clarify the genetic back‐
ground of this isolated bacterium.

Nucleotide sequence accession number

The 16S rRNA sequence obtained in the present study
has been deposited under the following GenBank/ENE/
DDBJ accession number: LC554186.
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