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Background. Although microsatellite instability (MSI) is an indicator for active immunotherapy response, only 15% of colon
adenocarcinoma (COAD) patients are with MSI. An investigation into the immune profiles in low MSI (MSI-L) and
microsatellite stable (MSS) COAD remains lacking, whereas such exploration may provide new insights into COAD immunity.
Methods. We hierarchically clustered MSI-L/MSS COAD based on the enrichment levels of 28 immune signatures to identify
its immune-specific subtypes. We also comprehensively compared molecular and clinicopathologic profiles among these
subtypes. Results. We identified three immune subtypes of MSI-L/MSS COAD (IM-H, IM-M, and IM-L), which had high,
medium, and low immune signature scores, respectively. We demonstrated that this subtyping method was reproducible and
predictable by analyzing five different datasets, including four bulk tumor datasets and one single-cell dataset. IM-H was
characterized by high immunity, high stemness, strong potential of proliferation, invasion and metastasis, epithelial-
mesenchymal transition, elevated expression of oncogenic pathways, low tumor purity, low intratumor heterogeneity (ITH),
genomic instability, inferior response to chemotherapy, and unfavorable prognosis. IM-M was characterized by the highest
ratio of immunostimulatory to immunosuppressive signatures, the best response to chemotherapy, and favorable prognosis.
IM-L was characterized by low immunity, high tumor purity, high ITH, and genomic stability. Conclusion. The immune-
specific subtyping of MSI-L/MSS COAD may provide new insights into the tumor immunity as well as clinical implications for
immunotherapy of the COAD patients who lack MSI.

1. Introduction

Colorectal cancer (CRC), including colon cancer and rectal
cancer, is the third most common cancer and the fourth
leading cause of cancer deaths worldwide [1]. Although
early-stage CRCs are often curative by surgical resection
alone, late-stage CRCs have a poor prognosis due to recur-
rence or metastasis [2]. In CRC, colon cancer or colon ade-
nocarcinoma (COAD) is more common than rectal cancer
[3]. Previous studies have shown that COAD is highly het-
erogeneous in molecular profiles [4, 5]. For example, the

TCGA Research Network identified three molecular sub-
types of COAD, including chromosomal instability (CIN),
microsatellite instability (MSI), and CpG island methylator
phenotype (CIMP) [6]. MSI, resulting from inactivation of
the mismatch repair (MMR) system by either MMR gene
mutations or hypermethylation of the MLH1 promoter,
occurs in around 15% of colon cancers [7]. Based on the
MSI status, COAD can be divided into three subgroups:
MSI-H (high-frequency microsatellite instability), MSI-L
(low-frequency microsatellite instability), and MSS (micro-
satellite stable). Major clinicopathologic and molecular
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features show no significant difference between MSI-L and
MSS tumors, although they are significantly different
between MSI-H and MSI-L/MSS tumors [8]. MSI-H tumors
are characterized by the strong lymphocyte infiltration, high
tumor mutation burden (TMB), and high expression of
immune checkpoint molecules, e.g., PD-L1 [9], and are thus
more responsive to immunotherapies. As a result, MSI-H
COAD patients have a more favorable prognosis than
MSI-L/MSS patients [10].

Antitumor immunotherapies have recently been shown
to be effective in treating various cancers [11]. Particularly,
immune checkpoint inhibitors (ICIs) targeting cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4) and the pro-
grammed cell death protein 1 pathway (PD-1/PD-L1) have
demonstrated successes in treatment of many refractory
malignancies [12]. Nevertheless, currently, only a subset of
cancer patients respond to ICIs [13]. To improve the
response rate to ICIs in cancer patients, certain biomarkers
have been identified, including PD-L1 expression [14],
TMB [15], and DNA damage repair deficiency or MSI
[16]. In fact, besides its predictive value in the response to
classic therapy with 5-FU [17], MSI is an indicator for the
active response to immunotherapy [16]. Notably, the US
Food and Drug Administration (FDA) have approved ICIs
for treating solid tumors with high MSI [18]. Nevertheless,
the immunotherapeutic efficiency for the majority of colon
cancers, which are MSI-L/MSS, remains unclear or unex-
plored. Therefore, it is crucial to stratify MSI-L/MSS COAD
patients responsive to immunotherapies.

It has been shown that the tumor immune microenvi-
ronment (TIME) plays a critical role in mediating antitumor
immune response and immunotherapeutic response [19].
Thus, classification of MSI-L/MSS COADs based on the
TIME may identify their subtypes responsive to immuno-
therapies. To this end, we aimed to identify subtypes of
MSI-L/MSS COADs on the basis of the enrichment levels
of 28 immune cells. We further analyzed molecular and clin-
icopathologic features of these subtypes, including pathway
enrichment, genomic features, tumor phenotypes, and clini-
cal outcomes. The identification of immune-specific sub-
types may provide new insights into the pathogenesis of
MSI-L/MSS COAD and potential clinical implications for
immunotherapy of this disease.

2. Materials and Methods

2.1. Data Acquisition and Processing. We downloaded The
Cancer Genome Atlas Colon Adenocarcinoma (TCGA-
COAD) dataset, including RNA-Seq gene expression profiles
(RSEM normalized), somatic mutation profiles (“maf” file),
somatic copy number alterations (SCNAs) (“SNP6” files),
protein expression profiles (Reverse Phase Protein Array
(RPPA), normalized), pathological slides data, and clinical
data, from the genomic data commons (GDC) data portal
(https://portal.gdc.cancer.gov/). We obtained other COAD
transcriptomic datasets (GSE39582, GSE41258, and
GSE143985) from the NCBI gene expression omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/). We also down-
loaded a single-cell RNA sequencing (scRNA-seq) dataset

(GSE132465 [20]) for COAD from the NCBI GEO. A sum-
mary of these datasets is shown in Supplementary Table S1.

2.2. Single-Sample Gene Set Enrichment Analysis. Based on
gene expression profiles, the single-sample gene set enrich-
ment analysis (ssGSEA) [21] calculates the enrichment score
of a gene set in a sample, which represents the degree to
which the genes in the gene set are coordinately up- or
downregulated in the sample. We used the ssGSEA to eval-
uate the enrichment of immune cells, biological processes,
and pathways in tumors based on the expression profiles
of their marker or pathway genes. The marker or pathway
genes are presented in Supplementary Table S2. We
performed the ssGSEA with the R package “GSVA.”

2.3. Clustering Analysis. We hierarchically clustered MSI-L/
MSS COAD to uncover its immune subtypes based on the
enrichment scores of 28 immune cell types. These cell types
included CD56-bright natural killer (NK) cells, effector
memory CD4 T cells, eosinophil, CD56-dim NK cells, type
17 T helper cells, activated B cells, monocytes, memory B
cells, activated CD4 T cells, type 2 T helper cells, plasmacy-
toid dendritic cells, neutrophils, macrophages, effector mem-
ory CD8 T cells, myeloid-derived suppressor cell (MDSC),
immature B cells, T follicular helper cells, NK cells, imma-
ture dendritic cells, mast cells, type 1 T helper cells, activated
dendritic cells, central memory CD4 T cells, gamma delta T
cells, central memory CD8 T cells, regulatory T cells, acti-
vated CD8 T cells, and natural killer T cells [22]. The enrich-
ment score of an immune cell type in a tumor was the
ssGSEA score of its marker gene set in the tumor. Before
clustering, we normalized the ssGSEA scores by z-score
and transformed them into distance matrices by the R func-
tion “dist” with the parameter method= “Euclidean.” We
performed hierarchical clustering using the function “hclust”
in the R package “Stats” with the parameters method= “-
ward.D2” and members =NULL.

2.4. Class Prediction. To predict the immune subtypes of
MSI-L/MSS COAD by the immune cell types, we first nor-
malized attribute values (ssGSEA scores of immune cell
types) by z-score. We used the random forest (RF) algorithm
to perform the class prediction. In the RF, the number of
trees was set to 100, and the attributes included all 28
immune cell types. We reported the accuracy and weighted
F-score as the prediction performance. We implemented
the class prediction by Weka (version 3.8.5) [23].

2.5. Survival Analysis. We used the Kaplan-Meier (K-M)
model [24] to compare overall survival (OS) and disease-
free survival (DFS) time among different groups of cancer
patients. K-M curves were used to display the survival time
differences, and log-rank tests were utilized to evaluate the
significance of survival time differences. We performed sur-
vival analyses in TCGA-COAD and GSE39582 in which
related data were available.

2.6. Evaluation of TMB, SCNA, ITH, Immune Scores, and
Tumor Purity in Tumors. TMB was defined as the total
count of somatic mutations in the tumor. We used GISTIC2
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[25] to calculate G-scores in tumors with the input of
“SNP6” files. The G-score indicates the amplitude of the
SCNA and the frequency of its occurrence across a group
of samples [25]. We used the DITHER algorithm [26] to
evaluate ITH levels, which scores ITH at the DNA level.
We utilized ESTIMATE [27] to evaluate immune scores
and tumor purity for bulk tumors. The immune score indi-
cates the tumor immune infiltration level and tumor purity
the proportion of tumor cells in a bulk tumor.

2.7. Pathway and Gene Ontology (GO) Analysis. To identify
pathways highly enriched in one class versus another class,
we first identified upregulated genes in the class relative to
another class using Student’s t test with a threshold of false
discovery rate ðFDRÞ < 0:05 and fold change ðFCÞ > 2. By
inputting the upregulated genes into the GSEA web tool
[28], we obtained highly enriched KEGG [29] pathways with
a threshold of FDR < 0:05. In addition, we used the weighted
gene coexpression network analysis (WGCNA) [30] to iden-
tify the gene modules of coexpressed genes. Based on the
expression correlations between the hub genes in gene mod-
ules, we identified the GO terms having significant correla-
tions with specific traits. We performed the WGCNA
analysis with the R package “WGCNA” (version 1.68).

2.8. scRNA-Seq Data Analysis. We analyzed a scRNA-seq
dataset (GSE132465 [20]) for MSS COAD. The gene expres-
sion values have been normalized by natural log transforma-
tion of transcripts per million (TPM). We utilized the single-
cell consensus clustering (SC3) method [31] to perform
unsupervised clustering of cancer cells in each immune sub-
type. We used the inferCNV algorithm [32] to infer large-
scale DNA copy number variations (CNVs) in cancer cells
versus normal cells. We normalized the CNV values of cells
output by inferCNV by subtracting the average of the max-
imum and minimum values in the matrix of CNV values
to make the “0” representing the copy number in normal
cells. We defined the CNV score of each cell as the average
of quadratic sum of the CNV values for all genes.

2.9. Statistical Analysis. We used Student’s t test (two-tailed)
to compare two classes of normally distributed data, includ-
ing gene expression levels, protein expression levels, and the
ratios of two different immune signatures. The ratios were
the log2-transformed values of the average expression levels
of all marker genes in an immune signature divided by those
of all marker genes in another immune signature. In com-
parisons of two classes of nonnormally distributed data, such
as ssGSEA scores of gene sets, TMB, ITH, immune scores,
and tumor purity, we used the Mann–Whitney U test
(one-tailed). We utilized the Spearman method to evaluate
the correlation between pathway activities (ssGSEA scores)
and immune scores. The Fisher’s exact test was used to ana-
lyze contingency tables. To adjust for P values in multiple
tests, we calculated FDR with the Benjamini and Hochberg
method [33]. We performed all statistical analyses with the
R programming language (version 3.6.0).

3. Results

3.1. Clustering Analysis Identifies Three Immune Subtypes of
MSI-L/MSS COAD. Based on the enrichment scores of 28
immune cell types, we identified three subtypes of MSI-L/
MSS COAD by hierarchical clustering, consistently in the four
bulk transcriptome datasets (TCGA-COAD, GSE39582,
GSE41258, and GSE143985) (Figure 1). The three subtypes
had high, medium, and low enrichment scores of the immune
cells, termed IM-H, IM-M, and IM-L, respectively. The consis-
tent clustering results demonstrate the reproducibility of this
classification method. Furthermore, to explore whether this
classification is predictable, we used the TCGA-COAD dataset
as the training set and the other three datasets as test sets. The
10-fold cross-validation (CV) accuracy in the training set was
89.52%. The prediction accuracies were 82.88%, 72.93%, and
87.06% in GSE39582, GSE41258, and GSE143985, respec-
tively (Figure 1(b)). The weighted F-scores in these predic-
tions were 89.60%, 83.40%, 75.00%, and 87.30% for TCGA-
COAD, GSE39582, GSE41258, and GSE143985, respectively
(Figure 1(b)). Overall, these results demonstrate that the
immunological classification of MSI-L/MSS COAD is repro-
ducible and predictable.

Notably, both immunostimulatory signatures (such as
M1 macrophages, activated CD8 T cells, and NK cells) and
immunosuppressive signatures (such as M2 macrophages,
regulatory T cells, MDSCs, and PD-L1) showed the highest
enrichment scores in IM-H and the lowest enrichment
scores in IM-L (one-tailed Mann–Whitney U test or two-
tailed Student’s t test, P < 0:001) (Figure 2(a)). However,
the ratios of immunostimulatory to immunosuppressive sig-
natures (M1/M2 macrophages) were the highest in IM-M
among the three subtypes (two-tailed Student’s t test, P <
0:05) in TCGA-COAD (Figure 2(b)). We further compared
the percentages of tumor-infiltrating lymphocytes (TILs)
among the three subtypes provided by the pathology slide
data in TCGA-COAD. As expected, the percentages of TILs
were significantly higher in IM-H than in IM-M and IM-L
(P < 0:001) (Figure 2(c)). Taken together, these results con-
firmed that IM-H and IM-L had the highest and lowest
enrichment of immune signatures, respectively.

We compared OS and DFS rates among the immune
subtypes of MSI-L/MSS COAD in TCGA-COAD and
GSE39582, in which related data were available. Survival
analyses showed that IM-M had better DFS than IM-H
and IM-L (log-rank test, P < 0:05) in TCGA-COAD, while
there was no significant difference of DFS between IM-H
and IM-L in this cohort (P = 0:49) (Figure 2(d)). Moreover,
IM-M displayed better OS than IM-L in TCGA-COAD
(P < 0:05) (Figure 2(d)). In GSE39582, IM-M showed better
OS than IM-H (P = 0:01), and IM-L had better DFS than
IM-H (P < 0:05) (Figure 2(d)). Taken together, these results
indicate that IM-M and IM-H likely have the best and worst
survival, respectively. In addition, we compared the response
rate to chemotherapy among the three immune subtypes in
TCGA-COAD. We found that the response (complete or par-
tial response) rate to chemotherapy followed the pattern IM-
M (77.78%)> IM-L (70.59%)> IM-H (50.00%) (Figure 2(e)),
supporting the results of prognostic analysis.
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Figure 1: Continued.
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3.2. The Immune Subtypes of MSI-L/MSS COAD Have
Significantly Different Phenotypic and Molecular Features.
We observed that the phenotypic or molecular features
indicative of tumor progression, such as stemness,
epithelial-mesenchymal transition (EMT), proliferation,
invasion, and metastasis, were significantly more enriched
in IM-H compared to IM-M and IM-L (P < 0:05) (Figure 3
(a)). Furthermore, numerous oncogenic pathways displayed
significantly higher enrichment in IM-H versus IM-M and
IM-L (P < 0:001), including the pathways of PI3K-Akt,
VEGF, JAK-STAT, RAS, HIF-1, and MAPK signaling
(Figure 3(b)). In contrast, tumor purity was significantly
lower in IM-H than in IM-M and IM-L (P < 0:001)
(Figure 3(c)); ITH scores followed the pattern IM-H< IM-
M< IM-L (P < 0:05) (Figure 3(d)).

There was no significant difference of TMB among the
three immune subtypes of MSI-L/MSS COAD (Kruskal–
Wallis test, P = 0:568). However, tumor aneuploidy, namely,
copy number alteration (CNA), showed significant differ-
ence among the subtypes, as evidenced by that the G
-scores of copy number amplifications and deletions were
the highest in IM-L and the lowest in IM-H (Figure 3(e)).
Since the G-score represents the amplitude of CNA and
the frequency of its occurrence across a group of samples
[25], it indicated that IM-L and IM-H had the highest and
lowest CNA, respectively. This result is in agreement with
the previous studies showing that tumor aneuploidy corre-
lates with reduced antitumor immune response [34]. Fur-
thermore, we compared the enrichment scores of nine
major DNA damage repair (DDR) pathways among the sub-
types. These pathways included mismatch repair, base exci-
sion repair, nucleotide excision repair, the Fanconi anemia

(FA) pathway, homology-dependent recombination, nonho-
mologous DNA end joining, direct damage reversal/repair,
translesion DNA synthesis, and damage sensor [35]. Nota-
bly, the enrichment scores of nine DDR pathways followed
the pattern IM-L> IM-M> IM-H (P < 0:05) (Figure 3(f)).
Together, these results indicated that IM-L and IM-H had
the highest and lowest genomic instability, respectively.

We found 14 genes more frequently mutated in IM-H
than in IM-L (Fisher’s exact test, P < 0:05; odds ratio ðORÞ
> 3). These genes included USH2A, HMCN1, PTPRT,
ADAMTSL3, TDRD6, TRO, TCHH, ATP8A2, CCDC9,
DCDC5, FADS3, LRRC7, NOTCH3, and SPG20. Notably,
the mutations in each of these genes were correlated with
significantly higher immune scores in MSI-L/MSS COAD
(P < 0:05) (Supplementary Table S3). On the contrary,
seven genes showed a significantly higher mutation rate in
IM-L than in IM-H (P < 0:04; OR > 7), including APC,
CHD5, DCLK1, FBXL7, COL6A6, KRTAP10-10, and
PCDHGA5. APC is a tumor suppressor gene involved in
the regulation of WNT signaling, whose mutations are
prevalent in nonhypermutated tumors [36]. The APC
mutations in IM-L were mainly truncating mutations
(Figure 3(g)), which may initiate chromosome instability
[37, 38]. This could partially explain why IM-L had higher
genomic instability than IM-H. Furthermore, we compared
gene mutation profiles between IM-M and IM-H/L.
Notably, IM-H/L displayed a significantly higher frequency
of CUBN mutations than IM-M (P = 0:037; OR = 7:15). A
previous study has demonstrated that CUBN mutations
might promote the malignancy of CRC [39]. There were
28 genes showing a significantly higher mutation rate in
IM-M than in IM-H/L (P < 0:05; OR > 2). Noticeably, the

89.52
89.60

82.88
83.40

72.93
75.00

87.06
87.30

TCGA-COAD
(Training set)

GSE39582

GSE41258

GSE143985

0 100

Accuracy

F-score

20 40 60 80

Classification performance (%)

(b)

Figure 1: Hierarchical clustering of MSI-L/MSS COAD bulk tumors based on the enrichment of 28 immune cell types. (a) Clustering
analyses uncovering three immune subtypes of MSI-L/MSS COAD, IM-H, IM-M, and IM-L, which have high, medium, and low
immune cell enrichment scores, respectively, consistently in four datasets. (b) Prediction of the three immune subtypes of MSI-L/MSS
COAD by random forest based on the enrichment scores of 28 immune cell types. TCGA-COAD dataset as the training set and the
other three datasets as test sets. The 10-fold cross-validation results in the training set and prediction results in the other datasets are shown.
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mutation frequency of NOTCH3 was significantly higher in
IM-M than in IM-H/L (P = 0:011; OR = 5:16), and its
mutation was associated with a higher OS rate in MSI-L/
MSS COAD (P = 0:033) (Figure 3(h)).

We compared the expression of 226 proteins among the
subtypes. We found 45 proteins significantly upregulated in
IM-H relative to IM-L (two-tailed Student’s t test, FDR <
0:05) (Figure 3(i) and Supplementary Table S4). Many of
these proteins were protein kinases involved in signal

transduction, such as p38_MAPK, MEK1, MAPK_pT202_
Y204, and Lck. Several cluster of differentiation CD
molecules were also in the list of the 45 proteins, such as
CD20, CD26, and CD31, supporting the higher tumor
immunity in IM-H versus IM-L. The 45 proteins also
included some molecules involved in immune regulation,
such as ETS1 [40], Annexin-1 [41, 42], and Lck [43]. In
contrast, 48 proteins showed significantly higher
expression levels in IM-L than in IM-H (Figure 3(i) and
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Figure 2: Comparisons of immune signature enrichment and clinical outcomes among the three immune subtypes. Comparisons of the
enrichment scores of immunostimulatory signatures (M1 macrophages, activated CD8 T cells, and NK cells) and immunosuppressive
signatures (M2 macrophages, regulatory T cells, myeloid-derived suppressor cells (MDSCs), and PD-L1) (a), ratios of
immunostimulatory to immunosuppressive signatures (M1/M2 macrophages) (b), and the percentage of tumor-infiltrating lymphocytes
(TILs) (c) among the three immune subtypes. The Kruskal–Wallis test (a), one-way ANOVA (b), and one-tailed Mann–Whitney U test
(c). P values are shown. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗ P < 0:001, and nsP ≥ 0:05. It also applies to the following figures. (d) Comparisons of
overall survival (OS) and disease-free survival (DFS) rates among the immune subtypes by the Kaplan–Meier curves. The log-rank test P
values are shown. (e) Comparisons of the response (complete or partial response) rates to chemotherapy among the three immune
subtypes in TCGA-COAD. The chi-square test P value is shown.
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Figure 3: Continued.
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Figure 3: Comparisons of phenotypic and molecular features among the immune subtypes. Comparisons of the tumor progressive
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Supplementary Table S4). Notably, two DNA mismatch
repair proteins (MSH2 and MSH6) were in the list of the
48 proteins. In addition, several tumor suppressors, such as
Rb, tuberin, and E-cadherin, were upregulated in IM-L
relative to IM-H. The higher enrichment of these tumor
suppressors in IM-L could explain why IM-L had a better
relapse-free survival rate than IM-H.

3.3. Identification of Pathways and GO Highly Enriched in
the Immune Subtypes of MSI-L/MSS COAD. Pathway analy-
sis by GSEA [28] identified numerous KEGG pathways
highly enriched in IM-H versus IM-L in TCGA-COAD.
These pathways were mainly involved in immune, stromal,
oncogenic, and metabolic signatures (Figure 4(a)). The
immune-related pathways included cytokine-cytokine
receptor interaction, hematopoietic cell lineage, chemokine
signaling, intestinal immune network for IgA production,
leukocyte transendothelial migration, complement and
coagulation cascades, primary immunodeficiency, Toll-like
receptor signaling, T cell receptor signaling, natural killer
cell mediated cytotoxicity, B cell receptor signaling, Jak-
STAT signaling pathway, NOD-like receptor signaling, Fc
epsilon RI signaling, antigen processing and presentation,
Fc gamma R-mediated phagocytosis, and cytosolic DNA-
sensing pathway. It confirmed that IM-H had higher
immune activity than IM-L. The stromal signature-related
pathways included cell adhesion molecules, ECM-receptor
interaction, focal adhesion, regulation of actin cytoskeleton,
and tight junction. The cancer-related pathways included
pathways in cancer, MAPK, TGF-β, VEGF, and Hedgehog
signaling. The metabolism-related pathways included tryp-
tophan metabolism, renin-angiotensin system, purine
metabolism, tyrosine metabolism, ether lipid metabolism,
PPAR signaling, and phenylalanine metabolism. As
expected, in addition to the immune-related pathways, most
of the other pathways showed significantly positive correla-
tions of their enrichment scores with immune scores in
MSI-L/MSS COAD (Spearman’s correlation, P < 0:05)
(Figure 4(b)).

WGCNA [30] identified seven gene modules signifi-
cantly differentiating MSI-L/MSS COAD by the subtypes
and survival prognosis in TCGA-COAD (Figure 4(c)).
Notably, six gene modules (highlighted in blue, yellow,
brown, turquoise, black, and green, respectively) were sig-
nificantly upregulated in IM-H, while they were downreg-
ulated in IM-L (P < 0:001). Interestingly, these gene
modules’ enrichment was consistently and negatively cor-
related with OS and/or DFS time (P < 0:05) (Figure 4(c)).
The representative GO terms for these gene modules
included innate immune response, adaptive immune
response, binding, extracellular matrix, neuron part, and
muscle system process (Figure 4(c)). It is in agreement
with the previous results that immune and stromal path-
ways are upregulated in IM-H relative to IM-L. Besides,
there was a gene module (highlighted in red) significantly
upregulated in IM-M but downregulated in IM-L (P < 0:01
). The representative GO term for this gene module was
UDP-glycosyltransferase activity. UDP-glycosyltransferase
activity accelerates metabolic inactivation of drug therapies

to produce drug resistance and affects cancer progression
[44, 45]. That is, patients in the IM-L subtype are more
likely to benefit from drug treatment because of low drug
resistance.

3.4. Clustering Analysis Identifies Three Immune Subtypes of
MSI-L/MSS COAD Single Cells. We performed a similar
clustering analysis of MSI-L/MSS COAD single cells using
a scRNA-seq dataset (GSE132465). This dataset involved
gene expression profiles in 12,484 cancer cells from 16
MSS COAD patients. We hierarchically clustered these can-
cer cells based on the enrichment scores of four immune-
related pathways, including antigen processing and presen-
tation, apoptosis, JAK-STAT signaling, and PD-L1 expres-
sion pathway in cancer. We used these pathways instead of
the previous 28 immune cell types in clustering single cells
because these pathways are likely expressed in cancer cells
themselves. Likewise, we identified three clusters of these
cancer single cells (IM-H, IM-M, and IM-L), which had
high, medium, and low enrichment scores of these path-
ways (Figure 5(a)). As expected, PD-L1 expression levels
were the highest in IM-H and the lowest in IM-L
(P < 0:001) (Figure 5(b)). We further performed unsuper-
vised clustering of each subtype of these single cells by
SC3 [31] and identified 37, 29, and 41 cell clusters in
IM-H, IM-M, and IM-L, respectively (Figure 5(c)). It indi-
cated that IM-L and IM-M had the highest and lowest
heterogeneity of cancer cells. Furthermore, we observed
that the inferred CNVs by inferCNV [32] followed the
pattern IM-L> IM-M> IM-H (P < 0:001) (Figure 5(d)).
These results were consistent with those obtained in bulk
tumors, supporting that IM-L and IM-H had the highest
and lowest genomic instability, respectively, at the single-
cell level. Based on the cell clustering results, we calculated
the proportions of cancer cells of each patient in each sub-
type of IM-H, IM-M, and IM-L and assigned each patient
into the subtype which involved the highest proportion of
cancer cells of that patient. We further compared the
enrichment levels of several T cell subpopulations among
IM-H, IM-M, and IM-L patients, including CD4+ FOXP3
for regulatory CD4+ T cells, CD4+ IL7R for resting CD4+
T cells, CD4+ CXCL13 for activated CD4+ T cells, and
CD8+ GZMB T cells. The enrichment levels of these T cell
subpopulations were the average expression levels of their
marker genes (Supplementary Table S2). Interestingly, the
CD4+ FOXP3 T cell enrichment was the highest in IM-
H and the lowest in IM-M (P < 0:05) (Figure 5(e)).
However, the CD4+ CXCL13 T cell enrichment followed
an opposite pattern: IM-H< IM-L< IM-M (P < 0:001). In
addition, the CD4+ IL7R T cell enrichment was the
highest in IM-L and the lowest in IM-M (P < 0:001),
while the CD8+ GZMB T cell enrichment followed an
opposite pattern: IM-L< IM-H< IM-M (P<0.001). These
results indicated that immunostimulatory signatures were
the most enriched in IM-M, while immunosuppressive
signatures were the least enriched in this subtype. It is
consistent with the finding of the highest ratios of
immunostimulatory to immunosuppressive signatures in
IM-M among the three subtypes in bulk tumors.
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4. Discussion

Although MSI has been identified as an indicator for antitu-
mor immune response and immunotherapy response, only
15% of COAD patients are endowed with this feature. This
study focused on MSI-L/MSS COAD and identified its
immune subtypes based on the immune features displayed
in the TIME. We identified three immune subtypes of
MSI-L/MSS COAD (IM-H, IM-M, and IM-L), which had
high, medium, and low immune signature scores, respec-
tively. We demonstrated that this subtyping method was
reproducible and predictable by analyzing five different
datasets, including four bulk tumor datasets and one single
cell dataset. IM-H was characterized by high immunity, high
stemness, strong potential of proliferation, invasion and
metastasis, EMT, high expression of oncogenic pathways,
low tumor purity, low ITH, genomic instability, inferior
response to chemotherapy, and unfavorable survival prog-
nosis (Figure 6). IM-M was characterized by the highest
ratio of immunostimulatory to immunosuppressive signa-
tures, the best response to chemotherapy as well as survival
prognosis. IM-L was characterized by low immunity, high

tumor purity, high ITH, and genomic stability. It is interest-
ing to observe that IM-H has the worst survival among these
subtypes, although this subtype displays the “hottest” TIME.
The inverse association between tumor immune infiltration
levels and clinical outcomes has also been observed in some
other cancer types, such as glioma [46] and prostate cancer
[47]. The main reason for the inverse association between
tumor immune infiltration levels and clinical outcomes
could be that the strong immune infiltration leads to tumor
progression-promoting inflammation [48]. Our data indi-
cate that this inflammation is in fact antitumor immunosup-
pression as IM-H displays the highest expression of various
immunosuppressive signatures, including M2 macrophages,
regulatory T cells, MDSCs, and PD-L1. Another interesting
finding is that IM-M instead of IM-L has the best survival
prognosis. A possible explanation for the best prognosis in
IM-M could be that the immune-mediated tumor killing is
the strongest in this subtype, as evidenced by the highest
ratio of immunostimulatory to immunosuppressive signa-
tures in bulk tumors, as well as the highest enrichment of
immunostimulatory signatures (such as activated CD4+ T
cells and CD8+ GZMB T cells) and the lowest enrichment
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of immunosuppressive signatures (such as regulatory CD4+
T cells and resting CD4+ T cells) in single cells in IM-M. In
addition, previous studies [49, 50] have demonstrated that
relative proportions of M1 macrophages and M2 macro-
phages correlates positively with survival prognosis in
COAD. It is in line with the highest ratio of M1/M2 macro-
phages in IM-M. Nevertheless, by contrast, the association
between tumor immune infiltration levels and clinical out-
comes is positive in many other cancer types, such as gastric

cancer [51], head and neck squamous cell cancer [52], and
triple-negative breast cancer [53]. Hence, the association
between the TIME and malignancy is complex and cancer
type dependent.

Among the three subtypes of COAD defined by TCGA
(MSI, GS, and CIN) [54], MSI-L/MSS constituted around
82% of CIN. Notably, IM-L harbored the highest proportion
of CIN cases (47.93% in IM-L versus 25.44% in IM-H and
26.63% in IM-M) (Fisher’s exact test, P < 0:05). CIN is
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Figure 5: Validation of the immune signature enrichment-based subtyping method in MSS COAD single cells. (a) Hierarchical clustering of
12484 cancer cells from 16 MSS COAD patients based on the enrichment scores of four immune-related pathways identifying three
subtypes. (b) Comparisons of PD-L1 expression levels among the subtypes of cancer cells. The one-way ANOVA test P value is shown.
(c) Unsupervised clustering of each subtype of single cells by SC3 [31] identifying 37, 29, and 41 clusters in IM-H, IM-M, and IM-L,
respectively. (d) Comparisons of the inferred copy number variations (CNVs) by inferCNV [32] among the three immune subtypes of
single cells. The one-tailed Mann–Whitney U test P values are shown. (e) Comparisons of the enrichment of T cell subpopulations
among the immune subtypes. The two-tailed Student’s t test P values are shown.
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characterized by marked aneuploidy that is consistent with
the highest CNA exhibited in IM-L. Furthermore, it con-
forms to the previous findings that aneuploidy correlates
with reduced antitumor immune response [34]. Another
previous study [55] identified four consensus subtypes of
CRC (CMS1, CMS2, CMS3, and CMS4), by integrating six
different classification systems. We found that 71.43% of
IM-H cases were included in CMS4, compared to 23.81%
of IM-M and 4.76% of IM-L in CMS4 (Fisher’s exact test,
P < 0:001). In fact, there were common features between
CMS4 and IM-H, including EMT upregulation, TGF-β sig-
naling pathway activation, stromal invasion, and worse
prognosis. Meanwhile, 66.23% of IM-L cases were involved
in CMS2, compared to 2.60% of IM-H and 31.17% of IM-
M in CMS2. Again, CMS2 shared several prominent charac-
teristics with IM-L, including high CIN, low immunogeni-
city, and decreased relapse rates. A previous study [56]
molecularly classified CRC based on the expression levels
of EMT-associated markers and identified three subtypes:
epithelial, mesenchymal, and hybrid. Among the MSI-L/
MSS COAD immune subtypes we identified, IM-H should
have the highest overlaps with the mesenchymal subtype
for its highest EMT scores, while IM-L should have the high-
est overlaps with the epithelial subtype for its lowest EMT
scores; IM-M likely has the highest overlaps with the hybrid
subtypes. That study [56] indicated that the EMT-based
classification of CRCs could identify the most aggressive
subtype showing a mesenchymal phenotype, consistent with
our results showing that IM-H has the worst clinical out-
comes among the three immune subtypes of MSI-L/MSS
COAD.

MSI-H is an established indicator for immunotherapy
response for its high TMB, PD-L1 expression, and TIL level.
However, we found that IM-H COADs likely had signifi-
cantly higher TIL levels than MSI-H COADs (P < 0:05).
Moreover, PD-L1 expression levels showed no significant
difference between MSI-H and IM-H COADs in two of the
three datasets (P > 0:35). These data indicate that a propor-
tion of non-MSI-H tumors could also be propitious to
immunotherapy. Thus, the immune signature enrichment-
based subtyping of MSI-L/MSS COAD may identify non-
MSI-H patients responding well to immunotherapy. In fact,
the immunotherapy of MSI-L/MSS COAD has been under
investigation by clinical trials [57]. In addition, the combina-
tion of immunotherapy with other therapies could be a
promising direction in treating MSI-L/MSS COADs.

This study has several limitations. First, the results pre-
sented in this study were obtained by bioinformatics analy-
ses but lack experimental validation. Our next step is to
validate the results by in vitro and in vivo experiments. Sec-
ond, although our classification has potential value in strat-
ifying COAD patients responsive to immunotherapies, it
needs to be verified with clinical data with immunotherapy
information. It is also an objective of our future research.

5. Conclusions

Based on the enrichment scores of immune signatures, MSI-
L/MSS COAD can be classified into three subtypes with

high, medium, and low enrichment of immune signatures
in the TIME. The immune-specific subtypes have signifi-
cantly different TIME, tumor purity, stemness, tumor pro-
gression phenotypes, ITH, genomic features, response to
chemotherapy, and survival prognosis. This study may pro-
vide new insights into COAD immunity, as well as identify
non-MSI patients responsive to immunotherapy.
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