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Genomic selection has been increasingly implemented in the animal breeding industry, and
it is becoming a routine method in many livestock breeding contexts. However, its use is
still limited in several small-population local breeds, which are, nonetheless, an important
source of genetic variability of great economic value. A major roadblock for their genomic
selection is accuracy when population size is limited: to improve breeding value accuracy,
variable selection models that assume heterogenous variance have been proposed over
the last few years. However, while these models might outperform traditional and genomic
predictions in terms of accuracy, they also carry a proportional increase of breeding value
bias and dispersion. These mutual increases are especially striking when genomic
selection is performed with a low number of phenotypes and high shrinkage
value—which is precisely the situation that happens with small local breeds. In our
study, we tested several alternative methods to improve the accuracy of genomic
selection in a small population. First, we investigated the impact of using only a subset
of informative markers regarding prediction accuracy, bias, and dispersion. We used
different algorithms to select them, such as recursive feature eliminations, penalized
regression, and XGBoost. We compared our results with the predictions of pedigree-
based BLUP, single-step genomic BLUP, and weighted single-step genomic BLUP in
different simulated populations obtained by combining various parameters in terms of
number of QTLs and effective population size. We also investigated these approaches on a
real data set belonging to the small local Rendena breed. Our results show that the
accuracy of GBLUP in small-sized populations increased when performed with SNPs
selected via variable selection methods both in simulated and real data sets. In addition,
the use of variable selection models—especially those using XGBoost—in our real data set
did not impact bias and the dispersion of estimated breeding values. We have discussed
possible explanations for our results and how our study can help estimate breeding values
for future genomic selection in small breeds.
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INTRODUCTION

Genomic information has been successfully implemented in
animal breeding due to its effectiveness in bringing significant
improvements in accuracy (Blasco and Toro, 2014). These
improvements in accuracy can lead to an increase in the rate
of genetic gains and have reduced the cost of progeny testing by
allowing to preselect animals with great genetic merit early
(Meuwissen et al., 2001). Combining these advancements with
the progressively reduced cost of genotyping makes single-
nucleotide polymorphism (SNP) panels a promising tool to
select small local breeds (Biscarini et al., 2015).

SNP marker information allows for better modeling of
Mendelian sampling than the traditional pedigree-based best
linear unbiased prediction (PBLUP) (VanRaden, 2008a), which
used only pedigree information. The genomic BLUP (GBLUP)
method was developed to replace the pedigree-based
relationships for genomic relationships estimated from SNP
markers, which captured the genomic similarity between
animals but are limited to the use of only genotyped animals
(Habier et al., 2013). In addition, Legarra et al. (2009) proposed a
naive method, single-step GBLUP (ssGBLUP), in which
genotyped and non-genotyped animals are jointly combined
under the assumption that the genomic and pedigree
relationship matrixes are multivariate and normally
distributed. Due to its straightforward computational approach
(Misztal et al., 2013) and unbiased breeding values predictions,
compared to the GBLUP with its multistep approach (Masuda
et al., 2018), the ssGBLUP has become a routine method for
genomic evaluations in many livestock breeds and species
(Aguilar et al., 2010; Christensen and Lund, 2010).

However, one major challenge in using (ss)GBLUP remains
the accuracy of estimation when phenotyped animals are limited
in number, such as in local breeds (Meuwissen et al., 2001). For
example, Karaman et al. (2016) reported that GBLUP showed
lower performance than that of models using only SNPs selected
through a Bayesian hierarchical model as Bayes B and Bayes C,
but only when phenotyped animals were few. Indeed, when
presented with a small number of animals and many SNP
markers (n < p), models that select a number of priority SNPs
(variable selection models) and models that assume heterogenous
variance can lead to improvements in EBV accuracy. These
models can accomplish this by reducing the number of
variables to estimate and by preventing overfitting linked to
high-dimensional data (Gianola 2013). Frouin et al. (2020)
went as far as deriving the prediction accuracy of GBLUP as a
function of the ratio n/p, while Pocrnic et al. (2019) regarded the
accuracy of GBLUP as not only strictly dependent on the number
of SNPs but also on the number of independent chromosome
segments.

Several studies thus focused on relaxing the assumption of
ssGBLUP that all SNPs must show a common variance by
applying different weights to the SNPs when the G matrix is
calculated. Methods such as weighted ssGBLUP (WssGBLUP)
(Wang et al., 2014) were widely reported to outperform
ssGBLUP’s accuracy of prediction (Gualdrón Duarte et al.,
2014; Gualdrón Duarte et al., 2020; Mehrban et al., 2021; Ren

et al., 2021), but their use led to a proportional increase of
breeding value bias and dispersion (Mancin et al., 2021b;
Botelho et al., 2021; Cesarani et al., 2021; Mehrban et al., 2021).

Moreover, it is unclear how models considering heterogenous
variances account for selection since only k-fold cross-validation
is usually applied (Zhu et al., 2021). In real-life breeding
scenarios, time cross-validation should be considered (Liu,
2010) because this validation method mimics the true
accumulation of information across time. The estimated
breeding values (EBVs) are in fact used to select young bulls,
and after 3–5 years, the bulls will receive daughter information; it
is thus desirable that EBVs would highly correlate to the final
EBVs. However, the few studies that evaluated the impact of
WssGBLUP using time cross-validation with small samples of
individuals (e.g., Cesarani et al., 2021) found higher bias and
overdispersion. These mutual increases are relevant when a low
number of phenotypes and high shrinkage values are present, and
the reasons behind the loss of these unbiased properties in
heterogenous SNP regression or GBLUP are still not
entirely clear.

This issue is not trivial as the bias and the slope of the
regression (dispersion) need to be considered, especially when
proven, and young animals are mixed in the population as young
candidates will have unfair EBVs (Legarra and Reverter, 2017).

Thus, the abovementioned issues of lack of accuracy of
ssGBLUP when used in contexts with a few animals have not
been conclusively resolved. For this reason, in the present study,
we intend to explore alternative methods to improve accuracy in
small populations within a single-step framework. A possible
solution could come from implementing a naïve approach, where
instead of giving each SNP a specific weight, we removed the non-
informative ones or variable selection models. Thus, we aimed to
investigate the impact, in terms of accuracy of predictions,
dispersion, and bias, of reducing the dimensionality of the G
matrix by constructing it using only a subset of informative
markers.

In order to accomplish this, we tried different machine
learning and variable selection algorithms with the aim to
identify the most informative SNPs by indirect prediction.
These algorithms were as follows: least absolute shrinkage and
selection operator (LASSO), spike-and-slab LASSO (SSLASSO),
recursive feature elimination using ridge regression (RfeRR),
recursive feature elimination using support vector machine
regression (RfeSVM), and extreme gradient boost (XGBoost).

We aimed to test suitable procedures for genomic estimation
by considering both the abovementioned variable selection
models ssGBLUP and the predictions of BLUP, classical
ssGBLUP, and WssGBLUP. To do that, we created different
simulated populations and also considered a local population,
the Rendena cattle. We then used different cross-validation
methods to assess our results.

MATERIALS AND METHODS

For a graphical representation of our methodology for testing
BLUP models, see Figure 1.
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Data sets
Simulated Data sets
Simulations were performed with the QMSim simulation
program (Sargolzaei and Schenkel, 2009). A total of four
different populations were simulated based on various
combinations of quantitative trait locus (QTL) number and
effective population size (Ne). Each simulation was replicated
five times.

All simulations were generated starting from the historical
population using a similar structure to that used by Pocrnic et al.
(2019): we created an initial bottleneck contracting the historical
population size from 5,000 to 1,000 animals in 1,250 generations
and then expanded it to 25,000. In the first generation, 10 bovine
autosomes were simulated, placing evenly spaced 80,000 ca.
biallelic SNPs with equal allele frequencies and a recurrent
mutation rate of 2.5e−5 per generation. The number of SNPs
per chromosome was set to 8,000, while the QTL number
changed according to different simulation strategies. In two of
the four simulations, one biallelic and randomly distributed QTL
per chromosome was sampled from a gamma distribution with a
shape parameter equal to 0.4 (oligogenic scenarios). In the other

two simulations, 100 QTLs per chromosome were generated
using the same parameter (polygenic scenarios). In all these
simulations, 10 discrete generations were created by randomly
mating 750 females and a different number of sires according to
the simulation strategies. In two scenarios, one oligogenic and
one polygenic, we assumed a large Ne, with 100 males per
generation used as sires, while in simulations with a low Ne,
only 10 males per generation were used as sires. The following
four populations were, thus, created by mixing different numbers
of QTL and different Ne values, and five replicates for each
population were generated:

FIGURE 1 | Graphical representation of our methodology for testing model predictions both in simulated and real populations. Each replicate of a simulated
population is represented with a circle; SIM1 is polygenic with lowMe, SIM2 polygenic with high Me, SIM3 is oligogenic with lowMe, and SIM4 is oligogenic with high Me.
Each phenotype (both real and simulated) is represented with an arrow.

TABLE 1 | Number of QTLs and effective population size in the four different
simulated populations.

QTL Ne

SIM1 1,000 40
SIM2 10 350
SIM3 1,000 40
SIM4 10 350
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• SIM1 polygenic population with small Ne
• SIM2 polygenic population with large Ne
• SIM3 oligogenic population with small Ne
• SIM4 oligogenic population with large Ne

The effective population size and number of QTLs in the four
different simulated populations are reported in Table 1, and
numbers of -genotyped animals are reported in Table 2 (2,250
animals). We simulated a single trait with heritability of 0.3, close to
the heritability of the traits in the real data set further described. To
do that, we obtained a single phenotype record per animal by adding
an overall mean of 1.0 to the sum of the QTL effects together with a
residual effect. As in the study by Pocrnic et al. (2019), only
phenotypes from generations 8 to 9 were retrieved, and genomic
information of animals belonging to generations 8 to 10 was used for
further analysis (750 × 3 = 2,250 animals). The structure of simulated
populations is reported in Table 2. Before proceeding with genomic
prediction, SNPs with a minor allele frequency (MAF <0.01) and
with high linkage disequilibrium (LD > 80) were removed using the
SNPrune program (Calus and Vandenplas, 2018).

Real Data set
A real data set containing information from the performance test
evaluations of young bulls belonging to the Rendena cattle breed was
provided by the National Breeders Association of Rendena
(ANARE). ANARE also provided herdbook information about
the whole population traced back to the 1950s, whereas genomic
data of bulls were, in part, provided by ANARE (PSRN
DualBreeding, www.dualbreeding.it) and, in part, obtained under
academic funding (SID Project, BIRD183281). Rendena is a small
local population (6,384 heads for 249 breeding males and 6,135
breeding females belonging to 202 herds censed on 31.12.2020; fao/
dad.is.org) bred for the dual-purpose attitude of milk and meat.
Rendena is native to the Northeastern Alps in Italy but is now
widespread also in the adjacent lowland territory on the right side of
the Brenta River in the Veneto region (Po Valley; Guzzo et al., 2018).

The real phenotypes considered in this study were single
individual records of average daily gain (ADG), in vivo estimates
of carcass fleshiness (CF) and dressing percentage (DP) collected in
the years 1985–2020. These traits have been extensively described in
Guzzo et al. (2019) and Mancin et al. (2021b). The Illumina Bovine
LD GGP v3, comprising 26,497 SNP markers (low-density panel:
LD), and Bovine 150K Array GGP v3 Bead Chip, including 138,974
SNPs (Illumina Inc, San Diego, CA, United States; high-density
panel: HD), were used for genotyping Rendena cattle.

The LD panel belonging to 1,416 individuals with 26,497
SNPs was imputed on the HD panel with 138,974 SNPs
belonging to 554 bulls. The overlap between the two panels
was about 60%. Information about data quality control and
imputation is reported in greater detail by Mancin et al. (2022).
In addition to the previous study, further quality control was
performed by removing SNPs with high linkage disequilibrium
(>80), using SNPrune (Calus and Vandenplas, 2018): this
removed a total of 28,049 SNPs. An amount of 85,331 SNPs
was finally retained for analysis. Overall, the study considered
1,691 young bulls with only phenotypic information, 1,739
animals with only genotypic information, and 687 animals
with both phenotypic and genotypic information. The data
structure of the real data set used for genomic prediction is
reported in Table 2.

Prediction Models
The breeding values for the single trait of the four simulated
populations and the three performance test traits of the real
Rendena data set were estimated using several BLUP models.
First, we used four ‘classical’ BLUP models:

1) standard pedigree best linear unbiased prediction (PBLUP,
described in Pedigree Best Linear Unbiased Predictor);

2) single-step genomic BLUP (ssGBLUP, described in Single-Step
Genomic Best Linear Unbiased Predictor);

3) small shrinkage weighted single-step genomic BLUP
(WssGBLUP1, described in Weighted Single-Step Genomic
Best Linear Unbiased Predictor);

4) high shrinkage weighted single-step genomic BLUP
(WssGBLUP2, described in Weighted Single-Step Genomic
Best Linear Unbiased Predictor).

Then, we performed five ssGBLUPs with preselected SNPs
(described in 2.2.4). SNP selection was achieved using the
following algorithms:

5a) least absolute shrinkage and selection operator [LASSO,
described in Least Absolute Shrinkage and Selection
Operator (LASSO)];

5b) spike-and-slab LASSO (SSLASSO, described in Spike-and-
Slab LASSO);

5c) recursive feature elimination using ridge regression [RfeRR,
described in Recursive Feature Elimination Using Ridge
Regression (RfeRR)];

TABLE 2 | Population structure of simulated and real data sets.

Simulated Real

SIM1–SIM3a SIM2–SIM4a

Number of records 1,500 1,500 1,691
Number of animals in the pedigree 3,413 3,794 6,926
Number of genotyped animals 2,250 2,250 1739
Number of genotyped animals with records 1,500 1,500 687
Inbreeding from pedigree 0.0126 0.0009 0.0316

aSince population structure is the same for SIM1 and SIM3 and for SIM2 and SIM4, populations were grouped together in pairs in the table.
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5d) recursive feature elimination using support vector machine
[RfeSVM, described in Recursive Feature Elimination Using
Support Vector Machine (RfeSVM)];

5e) extreme gradient boosting (XGBoost, described in Boosting
Ensemble).

Pedigree Best Linear Unbiased Predictor
PBLUP was the first method used to estimate predictors, and it is
described by the following equation (Henderson, 1975):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
X′X X′Z

Z′X Z′Z + A−1σ
2
e

σ2
a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ μ̂â] � [X′y
Z′y ]

where y is the vector of phenotypic observations, X is the matrix
of the incidence of fixed effects, and b is the vector of these effects.
In the real data set, fixed effects are represented by the
contemporary group (young bulls tested at the same period in
the same pen; 142 levels) and parity group of dams in four classes
(Guzzo et al., 2019). In the simulated data sets, X was substituted
by a vector of 1’s; thus, b stands for the mean of the models.
Matrix Z represents the incidence matrix that relates the random
genetic additive effect, included in vector a, to the phenotype. The
random residual error was included in a vector e showing normal
distribution N(0, Iσ2e), where σ2e is the residual variance. The
vector of additive genetic effects is distributed as N(0, Aσ2a),
where σ2a is the genetic variances and A is the identical by descent
(IBD) relationship matrix constructed from pedigree data.

Single-Step Genomic Best Linear Unbiased Predictor
We used ssGBLUP as a benchmark to evaluate the impact of other
models (see further, WssGBLUP and ssGBLUP with selected
SNPs). The ssGBLUP method presents the same structure of
equation as in 2.2.1, except for the (co)variance matrix of random
genetic effects, which is substituted byH, as described by Aguilar
et al. (2010):

H−1 � A−1 + [ 0 0
0 G−1 − A−1

22
]

where A and A−1
22 are the reverse of the IBD matrix for all animals

and for only genotyped animals, respectively, and G is the
genomic matrix including the genomic relationships among
animals.

The G matrix was built using the first methods proposed by
VanRaden (2008b):

G0 � MM′
2∑pi(1 − pi)

where p is the allele frequency of the ith locus andM is a matrix of
SNP content centered by twice the current allele frequencies.
Since the frequencies of the current genotyped population are
used to center G, pedigree and genomic matrices have different
bases, G was adjusted so the average diagonal and off-diagonal
matched the averages of diagonal and off-diagonal in A22, as
described by Vitezica et al. (2011).

Weighted Single-Step Genomic Best Linear Unbiased
Predictor
The WssGBLUP is the third method we used (two models, each
with a different CT value, as explained below). This approach is
equal to model 2.2.2, except for the matrix G, built following the
second method of VanRaden (2008a), as shown below:

G0 � MDM′
2∑pi(1 − pi)

where p is the allele frequency of the ith locus, M is a matrix of
SNP content centered by twice the current allele frequencies, and
D is the diagonal matrix in which SNP specific weights are
contained. The iterative algorithm reported by Zhang et al.
(2016) has been used as a weighting strategy. The SNP
weights presented in D were obtained as a function of the
estimated SNP effect (û). The weighting function used in this
study was called non-linear A, as reported by Fragomeni et al.
(2019). This method was preferred over other weighting strategies
due to its stability among the iterations. The iterative algorithm
applied followed the steps reported below:

1. The initial parameter was set as
t � 1, D(t) � I, G(t) � MD(t)M′

2∑ pi(1−pi)
, where I is an identity matrix;

2. GEBV (â) is obtained, where â is the vector of solutions of
additive genomic breeding value using the ssGBLUP
algorithm;

3. The SNP effect (û) is obtained, as in Gualdrón Duarte et al.
(2014):

û � 1
2∑p(1 − p)DM′[MDM′]−1â.

4. di(t+1), as in Fragomeni et al. (2019), is transformed in

CT
|ûi |
sd(û)−2, where CT is a shrinkage factor determining how

much the SNP effect distribution deviates from normality;
5. The weight of SNPs is standardized by maintaining a constant

genetic variance among iterations:

D(t+1) � tr(D(1))
tr(D(t+1)) tr(D(t+1)).

6. Matrix G is then recreated by including the new
weights: G(t+1) � MD(t+1)M′

2∑ pi(1−pi)
;

7. Set t � t + 1 and go to point 2 for a new iteration.

We created two different WssGBLUP models with two
different CT values: WssGBLUP1 had a CT value of 1.105,
while WssGBLUP2 had a CT value of 1.250. This process was
carried out to grant WssGBLUP1 the lowest possible shrinkage
effect and WssGBLUP2 the highest possible shrinkage effect. For
both models, the maximum number of iterations was set to five.
For simplicity, we reported only two WssGBLUP predictions
instead of the 10 analyzed in this study (combination of two CT
values and five iterations). Thus, we retained two opposite
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WssGBLUP scenarios: WssGBLUP1, which presents the lowest
SNPs shrinkage effect, and WssGBLUP2, which provides the
highest shrinkage effect.

Single-Step Linear Unbiased Predictor With Only
Informative SNPs
The last group of models (five models) consisted of ssGBLUP in
which the Gmatrix of 2.2.2 was constructed using SNPs obtained
after applying the different variable selection algorithms
(described below, Section 2.4). The number of columns in Z
is, thus, different for each trait and each data set.

Model Computations
A was built with the pedigree information tracking back up to
three generations in all models. In addition, according to Cesarani
et al. (2019), the variance components of each data set were
estimated under PBLUPmodels by tracing back all animals in the
pedigree. Variance components were estimated using the AIReml
algorithm (Gilmour et al., 1995). All genetic and genomic
prediction analyses were performed using the BLUPF90 family
of programs (Aguilar et al., 2018). The consistency of all this
information is reported in Table 2. Preliminary analysis, such as
LD calculation, was conducted using preGSf90 (Aguilar et al.,
2018, belonging to the BLUPF90 family of programs).

Featured Selection Algorithms
The EBVs of the target trait were used to map the major SNP
markers associated with the phenotype, using five different
statistical approaches. The genome content was considered a
covariance matrix, while EBVs of genotyped animals (â)
(estimated using models in 2.2.2) were considered as the
observed variable. The genome content was scaled in advance.
Hyperparameter search and the choice of best models were
performed by dividing the data set into a training group and a
test group. In the real data set, young animals born after 2015
belonged to the test group, while older animals belonged to the
training group. In the simulation, animals of 8th to 9th
generations were part of the training group, while animals of
the 10th generation belonged to the test group.

Least Absolute Shrinkage and Selection Operator
In the high-dimensional information literature, many penalized
likelihood approaches have been proposed. Given the baseline
yi � β0 + ∑p

j�1xijβj + ei, a variant of the penalized likelihood
approach can be described as follows:

β̂ � argmax − 1
2

����������∑
N

i�1

⎧⎨⎩yi − ⎛⎝β0 +∑p
j�1
xijβj⎞⎠

���������
2

2

+ penλ(β)
where N is the number of animals for each trait, β0 is model
mean, βj is SNP contribution, p is the number of columns in x, N
is the number of data, λ is the regularization parameter; and
penλ(β) is a penalty function. In LASSO (Tibshirani, 1996), the
penalty is as follows:

penλ(β) � − λ∑p
j�1

∣∣∣∣∣βj ∣∣∣∣∣

A grid search was performed to find the optimal values
obtained by testing values from 0 to 20 in increments of 0.1.
These values were used to maximize the LASSO model
performance, based on the highest coefficient of determination
and the lowest mean squared error (MSE) in the training set. To
carry out this calculation, we used the glmet R package (Friedman
et al., 2010).

Spike-and-Slab LASSO
Spike-and-slab LASSO (SSLASSO) was proposed by Ročková and
George (2018). It is based on the idea that every penalized
likelihood has a Bayesian interpretation (Bai et al., 2021). For
instance, the LASSO penalization is equivalent to a Laplace
distribution regulated by hyperparameter λ, where the
posterior mode of β is as follows:

p(β|λ) � ∏p
j�1

λ
2
e−λ
∣∣∣∣βj∣∣∣∣

The SSLASSO is the equivalent to a two-point mixture of
Laplace distributions defined as follows:

p(β|λ) �∏p
j�1
[(1 − γj)(λ2e−λ0

∣∣∣∣βj∣∣∣∣) + γj(λ2e−λ1
∣∣∣∣βj∣∣∣∣)]

wherep(γ|θ) � ∏p
j�1[θγj(1 − θ)1−γj ] and p(θ) ~ Beta[a, b].

The Bayesian prior can be rearranged in a penalized likelihood
context by taking this marginal logarithm as a prior (Bai et al.,
2021); after some derivation, the following can be obtained:

λθ(βj) � λ1pθ(βj) + λ0[1 − pθ(βj)]
where

pθ(βj) � 1

1 + (1−θ̂)
θ̂

λ0
λ1 exp[ − ∣∣∣∣∣βj∣∣∣∣∣(λ0 − λ1)]

SSLASSO was computed using the SSLASSO R package
(Ročková and George, 2018), error variances were assumed to
be unknown, and a self-adaptive penalty was set. In so doing, θ
was assumed to be random and different shrinkage was applied to
each βj.

Recursive Feature Elimination Using Ridge
Regression
Similar to LASSO, ridge regression is based on a principle of
penalized likelihood, with a penalty equal to λ∑p

j�1βj. Before
proceeding with recursive feature elimination, the optimal values
of λ were obtained as in LASSO selection. The glmet R package
was used (Friedman et al., 2010).

After that, a recursive feature elimination using penalized
ridge regression was performed as follows. In each iteration,
the SNP effect βj was estimated based on training data. Then,
10% of the variable with lowest |βj| was removed from the
subsequent iterations. The variable (SNP) present in the
iteration with the lowest mean squared error (MSE) was
considered for the prediction. MSE was calculated as
(ytest − ŷtest)2, where ytest is the EBV which belongs to the
test database and ytest is the predicted one.
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Recursive Feature Elimination Using the Support
Vector Machine
The SVM is a kernel-based supervised learning technique, often
used for regression analysis. Depending on the kernel function
considered, the SVM can map linear or nonlinear relationships
between phenotypes and SNP markers. The best kernel function
to map genotype to phenotype was determined in different
training subsets: a five-fold split was used to determine which
kernel function was a better fit for the data, either with linear,
polynomial, or radial basis. We found that performing the SVM
with a linear basis function outperformed the polynomial and
radial basis function of about 12.5% in predictive ability.

The general model for the SVM (Evgeniou and Pontil, 2005;
Hastie et al., 2009) can be described as follows:

ypi � b + h(m)pw + e

where h(m) represents the linear kernel basis function
(h(m) � m’m) used to transform the original predictor
variables (i.e., SNP marker information (m)), b denotes model
bias, and w represents the unknown weight vector. In the SVM
model, the learn function h(m) was given by minimizing the loss
function as follows: C∑N

i�1L(yp
i − ŷp

i ) + 1
2‖w‖2. The C represents a

regularization parameter, which controls the trade-off between
predictor error and model complexity, and w2 denotes the
squared norm under a Hilbert space. The SVM model was
fitted using an epsilon-support vector regression that ignores
residual absolute value (|yp

i − ŷp
i |) smaller than some constant (ε)

and penalizes larger residuals (Vapnik, 2000). The parameters C
and ε were defined using the training data set as proposed by
Cherkassky and Ma (2004): C � max(|yp + 3σyp |, |yp − 3σyp |)
and ε � 3σyp( ������

ln(n)/n√ ), where yp and σyp are the mean and
standard deviation of the target EBV for the traits on the training
population, respectively, and n represents the number of animals
in the training set. The SVM was performed using the e1071 R
package (Meyer et al., 2020).

After that, recursive feature elimination using the SVM was
performed using the same procedure described for RfeRR in the
study by Sanz et al. (2018).

Boosting Ensemble
The boosting approach (XGBoost) is an ensemble technique that
combines gradient descent error minimization with boosting,
aiming to convert weak regression tree models into strong
learners (Hastie et al., 2009; Natekin and Knoll, 2013). This
ensemble process combines different predictor variables
sequentially in the regression tree model, using regularization
via selection and shrinkage of the predictors to control the
residual from the previous model (Friedman, 2002). In
addition, the XGBoost can use parallel computation to use
more regularized models to prevent overfitting. The XGBoost
approach can be described as follows:

y � ∑W
w�1

βwh(x, γw) + e

where y is the vector of the target EBV; W is the number of
iterations (expansion coefficients); βw is shrinkage factor, also

known as “boost”; h(x, γw) is base learner, a function of the
multivariate argument x with a set of parameters
γw � {γ1, γ2, . . . , γw}; and e is the vector of the residuals.
Expansions of the coefficients {βw}W1 and parameters {γw}W1
are used to map the predictor variables (x), that is, SNP
markers to the target EBV (y) considering the joint
distribution of all values (y, x) and minimizing the loss
function L{yi, F(x)} given as [y, Fw−1(xi) + h(yi;xi, pw)],
where pw is the predictor to minimize ∑n

i�1L[y, Fm−1(xi) +
h(yi;xi, pm)]. Our XGBoost follows the algorithm specified by
Chen and Guestrin, 2016. In the XGBoost method, a
regularization term is added in the loss function, representing
the weight vectors learned in the loss function: this term penalizes
the ponderation of large weights. This regularization term is
defined as follows: ∑n

i�1L[y, Fm−1(xi) + h(yi;xi, pm)] +∑
n
Ω(fn), where L is the error between the true value of the

target trait and the predicted value and Ω(fn) is the
regularization function used to prevent overfitting: Ω(fn) �
γT + 0.5λω2, where T is the number of leaves in the regression
tree fn and ω represents the weight for the leaves in each tree
(i.e., the predicted values stored at the leaf nodes). Including in
the objective function makes the tree less complex, which
minimizes the loss function and helps reduce overfitting; γT is
a constant penalty for each additional tree leaf, and λω2 penalizes
extreme weights. The γ and λ are the regularization terms L1 and
L2, respectively (Mitchell and Frank, 2017). The random search
for XGBoost was performed considering the four most important
parameters able to increase prediction accuracy and minimize the
prediction error. These hyperparameters were Ntree (total
number of trees in the sequence used in the model), learning
rate (determines the contribution of each tree to the final model
and performs shrinkage to avoid variable overfitting), maximum
tree depth (controls the depth of the individual trees to be
considered in the model), and minimum samples per leaf
(controls the complexity of each tree). The Ntree values
ranged from 600 to 5,000 in intervals of 200; the learning rate
was in the range of 0.05–1 in intervals of 0.05; the maximum tree
depth was determined with a value ranging from 5 to 80 in
intervals of 5; the minimum sample per leaf was set from 5 to 100
in intervals of 5 and considering lambda and alpha regularization
values ranging from 0 to 1 in intervals of 0.05. The random grid
search XGBoost was performed using the h2o.grid function of the
h2o R package (https://cran.r-project.org/web/packages/h2o),
considering as fixed parameter a maximum of 150 models
with random combinations of the hyperparameters over 60 min.

Effective Population Size Calculations
The effective population size (Ne) has been computed from the
individual increase in inbreeding (ΔF) (Falconer and Mackay,
1996) to compare real and simulated data properly. Individual ΔF
was calculated as follows:

ΔF � Fn − Fn−1
1 − Fn−1

Ne � 1
2ΔF
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where Fn is the inbreeding in the nth generation. Ne was
calculated using the purge R package (https://cran.r-project.
org/web/packages/purgeR).

Validation
Validation in the Simulated Data set
Quality of prediction was measured as the correlation and MSE
between the genomic breeding values estimated under different
models and the true breeding values for animals belonging to the
10th generation, that is, the last generation of animals, including
individuals without phenotypes but with genotype.

Validation in the Real Data set
In the real data set, two different cross-validation methods were
applied. The first method we used to cross validate predictive
ability was to calculate both the correlation and MSE between
predicted and observed phenotypes. In this case, five-fold cross-
validation with 10 iterations was performed. Since not all animals
were genotyped in each iteration, 1/5 of non-genotyped and 1/5
of genotyped animals were masked. The current study considered
predictive ability metrics only for genotyped animals; however,
results about non-genotyped animals were also obtained
(Supplementary Figure S1).

Linear regression (LR) (Legarra and Reverter, 2018) was used
as the second cross-validationmethod. It compares the prediction
performances of different models on groups of focal individuals
born after a given date, in this case, the young bulls. LR is
particularly suited to the specific needs of the Rendena
population since predicting the future performance of young
bulls without phenotype is one of the main objectives of the
breeding plans for performance tests (Mancin et al., 2021a).

The LR method evaluates the goodness of a model by
comparing its performance in a complete data set and a
partial data set. The complete data set contains the whole
amount of information or it is the data set used for
prediction. A partial data set is referred to as the complete
data set with some animals with the phenotype removed,
usually young animals known as candidates to selection.
According to Macedo et al. (2020), we built partial data sets
by excluding phenotypes since a target recent birth year of young
bulls (since 2012–2020; since 2014–2020; and since 2017–2020)
to describe possible variations and random deviations of the
estimator; consistencies are reported on Table 3. LR considered
the following three parameters: bias, dispersion, and accuracy.
Bias is the difference between the expected breeding values

estimated under the complete and partial data sets. Dispersion
was calculated as the regression coefficient considering the
breeding values from the complete data set on the ones
estimated from the partial data and accuracy as correlations
between the two breeding values.

RESULTS

Genomic Structure
Genomic Structure in Simulated Data sets
Figure 2 highlights the different genomic assets of small Ne
populations (SIM1 and SIM3; 10 sires per generation) and large
Ne populations (SIM2 and SIM4; 200 sires per generation). Since
the different number of QTLs assumed for the populations with
the same Ne (that is, 10 vs. 1000 QTL) did not impact G matrix
dimensionality, only SIM1 and SIM2 were plotted for simplicity.
In SIM1, 193 eigenvalues were necessary to explain 98% of G
matrix variance, while in SIM2, 795 eigenvalues were necessary to
explain 98% of G matrix variance. When only ten sires per
generation were used, it was possible to observe different
subpopulations (Supplementary Figure S2); however, no
population structure was found when plotting the first two
eigenvalues. On the other hand, SIM2 appeared homogenous,
and individuals seemed almost unrelated. In addition, when LD
per chromosome was calculated, a greater value was observed in
SIM1 (0.161 ± 0.076) than that in SIM2 (0.067 ± 0.054; data not
shown). An Ne value of 81.18 ± 4 was determined for SIM1 and
SIM3 and 1869 ± 546 for SIM2 and SIM4.

Genomic Structure in the Real Data set
We also investigatedG’s dimensionality on the real data set of the
Rendena cattle population (Figure 3). The real data set presented
a situation closer to SIM1 and SIM3 than to SIM2 and SIM4. It
showed, indeed, an average Ne value of 108.2 ± 0.74 calculated
from pedigree data. It is possible to observe a few clusters in the
genomic relationship matrix (Figure 3); however, they are not as

TABLE 3 | Description of different validation sets used in cross-validation. The first
and last years of birth of animals in the training data set and the number of
animals (individuals) used in the validation cohort are reported.

First Last Individuals

2012 2020 178
2013 2020 154
2014 2020 130
2015 2020 109
2016 2020 106
2017 2020 72
2018 2020 45

FIGURE 2 | Cumulative explained variance of all eigenvalues of the
genomic relationship matrix of two representative simulated populations.
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straightforward as in SIM. We, therefore, can note that no
population structure is present in Rendena breed (i.e., no
subpopulations), which is in line with previous research
(Mancin et al., 2022). Only 633 eigenvalues explained 98% of
G variance; thus, the scenario was closer to SIM2 than SIM1. In
addition, we observed an average LD of 0.187 ± 0.107 per
chromosome (Mancin et al., 2022).

SNPs Retained by Variable Selection
Models
SNPs Retained in Simulated Data sets
Figure 4 reports the impact of the different algorithms in terms of
the number of informative markers retained. Specifically, we were
interested in identifying the impact that different G matrix
dimensionality and number of QTLs had on the number of
SNPs considered informative. In all simulations, LASSO and
SSLASSO retained the lowest number of SNPs (roughly 2,000
SNPs averaged across simulations), and they presented lower
intra- and between-scenario variability. On the contrary, RfeSVM
and RfeRR algorithms retained higher numbers of SNPs, on
average 12,000 for RfeRR and 7,000 for RfeSVM. RfeSVM also
presented an extreme variability across scenarios (Figure 4).
XGBoost retained an intermediate number of SNPs, with an
average of 3,000 SNPs retained across simulations. As shown in
Figure 4, different numbers of QTLs did not affect the number of
SNPs retained by each algorithm. In fact, no difference was
observed between SIM1 vs. SIM3 and SIM2 vs. SIM4; only
LASSO and SSLASSO algorithms seem to be slightly affected
by the number of QTLs. Interestingly, the dimensionality of theG
matrix seems to be more influential as scenarios with higher Ne
presented a higher number of SNPs (SIM1 and SIM2). The
XGBoost is the only algorithm where this trend was not seen.
Crucially, we observed that the negative gap in model accuracy
present in simulations with lower QTL (SIM3 and SIM4) fades
when variable selection models are introduced.

SNPs Retained in the Real Data set
We showed the impact of variable selection methods regarding
the number of informative markers retained in the Rendena
population in Figure 5. Although the number of initial SNPs
was similar to that of the simulated populations, in general, the
algorithms retained a higher number of SNPs in the real data set.
Similar to what was reported in the simulated data, LASSO and
SSLASSO were the most restrictive algorithms of SNP selection,
with an average of 2,000 SNPs retained across the simulations.
The XGBoost was the second most restrictive algorithm in terms
of SNPs retained by the models, about 3,000 on average. RfeSVM
and RfeRR algorithms retained almost half of the SNPs presented
in the panels (40,000 SNPs). No clear patterns were identified
across different phenotypes: some algorithms found a greater
number of SNPs in certain traits and some in others. For example,
the lowest number of informative markers retained by RFE
algorithms was identified on the DP trait, but the opposite
situation occurred for XGBoost, where the number of
informative SNPs retained for DP was almost twice the
number of informative SNPs retained for other traits.

Breeding Value Prediction
We compared the prediction accuracy of four ‘classical’ models
for BLUP and ssGBLUP with five different SNP preselection
strategies. The models are detailed inMaterials and Methods and
summarized as follows: 1) PBLUP; 2) single ssGBLUP; 3)
WssGBLUP1; 4) WssGBLUP2; 5a) ssGBLUP with SNPs
preselected via LASSO; 5b) ssGBLUP with SNPs preselected
via SSLASSO; 5c) ssGBLUP with SNPs preselected via RfeRR;
5d) ssGBLUP with SNPs preselected via RfeSVM; and 5e)
ssGBLUP with SNPs preselected via XGBoost. Table 4
provides a qualitative summary of the results, described in the
following paragraphs.

Breeding Value Prediction in Simulated Data sets
Different prediction model accuracies are reported in Figure 6,
with correlation and MSE as comparison metrics. MSE values
were comparable to those obtained for correlations. Standard
BLUP models achieved the lowest accuracy. A substantial
increase in accuracy was observed in ssGBLUP models, that is,
when genomic data were integrated: this increase of accuracy was
more relevant for populations with small Ne (SIM1 and SIM3).

A slightly greater accuracy than that in ssGBLUPwas observed
when a heterogenous distribution of SNPs was considered within
the matrix G (WssGBLUP). The gap in accuracy was greater in
the populations with few QTLs (SIM3 and SIM4), especially for
WssGBLUP2. On the other hand, the increase in accuracy for
SIM1 and SIM2 under WssGBLUP was almost close to zero. A
substantial variation in accuracy values was observed when
ssGBLUP was performed with G matrixes constructed with
selected SNPs; however, the accuracy of the prediction
performance of each variable selection model changed
according to the simulation structure. Generally, SSLASSO
presented the highest increase in accuracy among the genetic
models in all simulations, except for SIM2, where we observed a
dramatic drop in accuracy. On the other hand, LASSO achieved

FIGURE 3 | Cumulative explained variance of all eigenvalues of the
genomic relationship matrix of Rendena populations.
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greater accuracy on both SIM1 and SIM2. Other algorithms
presented an intermediate increase in accuracy among the
genetic models in all simulations, namely, RfeRR, RfeSVM,
and XGBoost, with different rankings in different scenarios.

Breeding Value Prediction in Real Data set
With our real data sets, we were first interested in evaluating the
performance of these models in terms of prediction; then, we
wanted to evaluate the feasibility of introducing them in a real
breeding plan scenario. This point was achieved using LR cross-
validation methods (Legarra and Reverter, 2018). Figure 7
presents the results of repeated five-fold cross-validation. The
integrations of genomic data led again to a substantial increase in
accuracy: the PBLUP presented the overall lowest correlation (r)
values (r from 0.36 to 0.53). The ssGBLUP presented the lowest
correlation values among genomic models (r from 0.46 to 0.62),
while a slight increment was observed for WssGBLUP1 (from
0.55 to 0.67) and for WssGBLUP2 (from 0.67 to 0.75). As with

simulated data, variable selection models improved model
accuracy substantially. Again, the highest correlations were
found for LASSO and SSLASSO, with values of r ranging from
0.83 to 0.92, while other algorithms presented intermediate values
(r around 0.70). This pattern was observed across all traits. MSE
reflected the results obtained with correlations.

LR methods evaluated dispersion and bias in addition to
accuracy. Figure 8 represents the different results obtained
using LR cross-validation methods in various validation sets
from 2015–2020. This set of years was chosen as
representative of all seven validation cohorts. Figure 9 reports
the summary statistics of all seven validation cohorts.

Accuracy trends of the real data set measured with the LR
method were similar to the accuracies obtained with five-fold
cross-validation. However, looking at the other statistics (slope
and bias), we can observe that LASSO, SSLASSO RfeRR, and
RfeSVM cannot be considered suitable variable selection
approaches in real breeding plans due to their higher bias and

FIGURE 4 | Bar plot representing the number of SNPs retained by each algorithm on the four simulated population; error bars represent standard deviation.
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dispersion values, especially if compared with ssGBLUP.
Conversely, XGBoost was the only model with similar or even
lower bias and dispersion values than ssGBLUP but with greater
accuracy. As seen in Figure 9, we demonstrate that these trends
are consistent over different validation cohorts.

DISCUSSION

The present study had two objectives: testing if reducing the
number of SNPs used to construct G could lead to an increase in

the accuracy of (ss)GBLUP and whether this method could be
introduced in genomic evaluations of a real population with a
small size, such as the Rendena breed.

In our study, using both simulated and real data sets, we
demonstrated that the accuracy of (ss)GBLUP increases when it is
performed when the number of SNPs to constructGwas reduced.
This finding agrees with that of the extensive literature supporting
the increased accuracy of Bayesian variable selection models in
many different species (Lourenco et al., 2014; Mehrban et al.,
2021; Yoshida et al., 2018; Zhu et al., 2021). For example,
Akbarzadeh et al. (2021) integrated only a subset of chosen

FIGURE 5 | Bar plot representing the number of SNPs retained by each algorithm on the three phenotypes of the Rendena population.

TABLE 4 | Summary of results obtained using the nine models considered in the study and the cross-validations applied.

Method name Accuracy across simulations
(Correlation/MSE)

Accuracy in real data set
(Correlation/MSE)

Bias/Slope in LR cross-validation in real
data set

PBLUP Poor Poor Good
ssGBLUP Medium Medium Best
WssGBLUP1 Medium Medium Good
WssGBLUP2 Medium Good Poor
LASSO-selected ssGBLUP Best Best Poor
SSLASSO-selected
ssGBLUP

Best Best Poor

RfeRR-selected ssGBLUP Good Good Poor
RfeSVM-selected
ssGBLUP

Good Good Poor
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SNPs into the GBLUP framework based on a classical GWAS
analysis (i.e., 1, 5, 10, and 50% of significant SNPs). A slightly
greater accuracy than that in the canonical GBLUP was observed
when G was constructed using only the best 10 and 50% SNPs;
contrariwise, models using the 1 and 5% of the SNP prediction
underperformed. Furthermore, Akbarzadeh et al. (2021) reported
a dramatic decline in performance when the same percentage of
SNPs was randomly chosen. We tried preliminary tests of a
similar approach—construction of the G matrix using the top
500, 1,000, and 50,000 SNPs ranked by their absolute SNP effect
values calculated through back solutions—in Rendena breed;
however, we immediately discarded this approach because of
the extreme bias and inflated breeding value predictions (these
findings are reported by Mancin et al., 2022 in press). In addition,
choosing so few and unrepresentative SNPs reduced a lot the
compatibility between A and G matrices, and thus ssGBLUP
properties were affected (Misztal et al., 2013).

Li et al. (2018) and then Piles et al. (2021) showed how using
different methods to select the most informative SNPs could

significantly improve the performance of the variable selection
models. Li et al. (2018) constructed the G matrix using the best
400, 1,000, and 3,000 SNPs, ranking SNPs effects by three
different machine learning models. As in the previous case, an
increase in accuracy was obtained only with a certain number of
selected SNPs (1,000 SNPs), while a lower accuracy than that in
the canonical GBLUPwas observed with a lower number of SNPs.
In addition, Piles et al. (2021) and Azodi et al. (2019) showed that
by combining different variable selection algorithms with various
parametric and nonparametric prediction models (i.e., ensemble
predictions), it is possible to obtain a consistent increase in
accuracy compared to models without variable selection.
However, our study has not explored these scenarios since
prediction methods other than ssGBLUP or ssSNP-BLUP
(Fernando et al., 2017) do not seem to bring any concrete
improvement for livestock traits (Abdollahi-Arpanahi et al.,
2020). Furthermore, ssGBLUP and ssSNP-BLUP are the only
methods that allow combining straightforwardly non-genotyped
animals with genotyped ones—a crucial feature for a real-life

FIGURE 6 | Bar plot representing correlation (corr) and mean squared error (MSE) between predicted and true breeding values on the four different simulated
populations. Error bars represent standard deviations.
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routine selection plan and something that the other algorithms
cannot do.

Our result that reducing the number of parameters positively
impacts accuracy is also supported by Frouin et al. (2020). In that
study, it was demonstrated that the error of the prediction tends to
linearly increase when n > p until the “irreducible” error (1 − h2)
occurring when n ≫ p. In addition, Pocrnic et al. (2019),
demonstrated that the accuracy of (ss)GBLUP is connected by
the distribution of eigenvalues of G; thus, “n” becomes the
number of independent chromosome segments (Me) captured by
SNPs (Pocrnic et al., 2019). In highly related populations (small Ne),
higher accuracy values can be achieved than in populations with
larger Ne because fewer eigenvalues and thus a small “n” are
necessary to explain G. As a matter of fact, in large Ne
populations, more data are needed to increase accuracy. This
issue is also intuitive since prediction error accuracy (Henderson,
1975) is directly proportional to the coefficient Caa (defined below);
thus, in highly related populations, Caa tends to have lower values.
Caa is the inversion of the coefficient matrix of the mixed model
equation where aa is the block referring to the genetic effect of
animals. What was reported by Pocrnic et al. (2019) could explain
the lower performance identified by Akbarzadeh et al. (2021) when
subsets of 1 and 5% of SNPs were considered (Akbarzadeh et al.,
2021). Indeed, discarding toomany SNPs from the construction ofG

may omit the inclusion of important eigenvalues. From another
perspective, Fragomeni et al. (2017) demonstrated the positive
impact of removing non-informative SNPs on GBLUP. The
authors showed in a simulated data set that better accuracy was
found when the G was built by eliminating all SNPs outside the
windowwhere theQTLwas situated or using onlyQTL information.
However, a practical limit to this method is that knowing all the
QTLs within a genome is nearly impossible, especially when the
population is small (Mancin et al., 2021a).

Our simulated results support the abovementioned theory, as
simulations with lower Ne presented higher accuracy of ssGBLUP
(SIM1, SIM3). Furthermore, differences between scenarios emerge
when comparing simulations differing for their number of QTLs.
ssGBLUP showed lower performance in SIM3 and SIM4 (QTL10)
than in SIM1 and SIM2 (QTL1000); however, this discrepancy in
accuracy decreases by applying variable selection. This result agrees
with that by Daetwyler et al. (2010), which demonstrated that SNP
selection via Bayes B presents substantial advantages when the
number of QTLs is small compared to the number of
independent chromosome segments.

As mentioned above, Bayesian SNP regression, or (ss)GBLUP
using a weighted realized relationship matrix (Tiezzi and
Maltecca, 2015; Zhang et al., 2016), always provides higher
prediction accuracy than models assuming homogenous

FIGURE 7 | Box plot representing correlation (corr) and mean squared error (MSE) between predicted and true breeding values of phenotypes recorded in
Rendena performance testing stations. Target phenotypes are ADG: average daily gain; CF: in vivo carcass fleshiness; DP: in vivo dressing percentage.
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variance among SNPs (GBLUP or SNP-BLUP). However this
increase in accuracy is often connected with increases in bias,
especially when time cross-validation is used (Mehrban et al.,
2021), instead of five-fold or leave-one-out cross-validation (Zhu
et al., 2021). However, when the goal is to achieve the “best
predictor”, namely, a value closer as possible to real one, models
assuming heterogenous variances and models with variable
selection can be identified as the best models. They have,
indeed, the highest MSE, intended as bias-variance trade-off
(Gianola, 2013). In this regard, LASSO and SSLASSO, thus,
appeared as “best models” for both simulated and real data.
We showed that (SS)LASSO regression performs automatic
feature selection, especially in the presence of linearly
correlated features, such as SIM1 and SIM3, since their
simultaneous presence will increase the value of the cost
function. Thus, LASSO regression will try to shrink the
coefficient of the less important SNPs to 0 to select the best
features.

However, in real-life breeding scenarios, time cross-validation
must be considered (Liu, 2010; Legarra and Reverter, 2017) as this
procedure simulates the natural accumulation of information
across time. Only a few studies evaluated the impact of

heterogenous or variable selection models using time cross-
validation with small samples of individuals. Cesarani et al.
(2021) and Mancin et al. (2021b) found higher bias and
overdispersion values in WssGBLUP than in ssGBLUP.

The same pattern emerged when we performed LR cross-
validation (Mancin et al., 2021b; Cesarani et al., 2021), namely,
that higher shrinkages or selected SNPs have high accuracy but
carry higher bias and dispersion values. Specifically, (SS)LASSO
models showed the best accuracy in all three traits when
measured with LR. Conversely, other feature selection models
and WssGBLUP presented lower accuracy. Among the variable
selection models, we found slightly lower values of accuracy in the
XGBoost; however, we suggest that XGBoost could be regarded as
the best variable selection model among those tested as it is the
only model that presented higher accuracy than ssGBLUP, at a
net of better bias and dispersion.

Several questions persist about the use of these models in routine
evaluation. One of these issues concerns the implementation of
preselected SNPs in multitrait models. However, this is a recurring
problem not only when the Gmatrix is built with preselected SNPs
but also more in general whenever models take into account the
specific genomic architecture of traits, as WssGBLUP does. A

FIGURE 8 | Bar plots representing accuracy, dispersion, and bias of the Rendena data set estimated using LR cross-validation in the validation cohort of
2015–2020. Dispersion was defined as 1, the absolute value of dispersion, while bias as absolute values of bias divided by its genetic variance to improve assessment of
model rankings. Horizontal lines represent the values of ssGBLUP to permit easier comparison among models.
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possible solution to bypass this issue might be using multiple G
matrix prediction models, one for each trait: yet, this is not
computationally straightforward. A preliminary selection of SNPs
by multiobjective optimization framework algorithms, as in Garcia
(2019), could be a more concrete approach for future studies.

Another possible concern about the large-scale use of variable
selection ssGBLUP is the fluctuations of SNPs across generations.
Similarly to the issue with multitrait models, this regards all
genomic selections (Hidalgo et al., 2020); however, it is true that
with respect to other methods, such as Bayesian SNP regression,
generation-by-generation recalibration of SNP preselection
algorithms can be highly computationally demanding,
especially when algorithms such as XGBoost are chosen.
Finally, SNP preselection could be influenced by variability in
SNP frequency across animals or more in general in the presence
of population structure, as with subpopulations. Nonetheless, in
our study, the PCA plots referring to SIM1 (Supplementary
Materials S2), where some clusters are present, show that variable
selection models overcome this issue quite effectively. It would be
interesting to choose one or more variable selection models in
future studies and evaluate their impact on more stratified
populations.

Besides increasing the EBV accuracies, developing an optimal
strategy for SNP variable selection in high-density panels will be
particularly useful in local breeds. It would in fact allow the use of
informative but lower density and cheaper panels, accounting for
the best SNPs suitable for the target trait and population.
Furthermore, given that small breeds cannot attract the same

level of technological investment as their cosmopolitan
counterparts (e.g., Holstein), decreasing the costs of genomic
selection could be critical to help guarantee their selection, and
thus their survival.

Aside from the economic factors, the importance of
developing ad hoc selection methods for small-population
cattle, especially for local breeds, is of primary importance for
their conservation. Maintaining genetic progress for the
productive characters and at the same time keeping intact the
genetic variability and the distinct characteristics of the breeds
can be guaranteed through breeding plans implementing careful
selection (Biscarini et al., 2015). These plans are needed to
preserve genetic variability within livestock local populations, a
goal which, in the medium term, is critical for the animal
husbandry industry to ensure the conservation of native
breeds, their productive and reproductive efficiency, health,
survival, and overall resilience to future changing
environmental pressures (Mastrangelo et al., 2014).

CONCLUSION

Genomic information, especially the single-step GBLUP
technique, has brought great improvements to selection and
breeding decisions in livestock. However, these methods still
present methodological issues when applied to populations
with a small size, such as local and endemic cattle breeds. Our
rigorous testing of different algorithms for variable selection of

FIGURE 9 | Line plot representing accuracy, dispersion, and bias of Rendena data set estimated using LR cross-validation in the validation cohort of 2021.
Dispersion was represented as 1, absolute value of dispersion, while bias as absolute values of bias divided by its genetic variance.
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informative SNPs has highlighted that prediction accuracy of
variable selection ssGBLUP (especially that of XGBoost) was
greater than that of other ssGBLUP methods, without the
inflated bias and dispersion that accompany the weighted
ssGBLUP. Our use of machine learning models could thus
represent a solution to the issue of genomic selection in small
populations. Local cattle breeds are an often untapped resource of
genetic diversity and have great potential to adapt to varying
environmental conditions. The methods presented here might,
thus, be used in their conservation, study, and increase their
economic competitiveness.
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