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Abstract: Although aging is considered a normal process, there are cellular and molecular changes
that occur with aging that may be detrimental to health. Osteoporosis is one of the most common
age-related degenerative diseases, and its progression correlates with aging and decreased capacity
for stem cell differentiation and proliferation in both men and women. Tryptophan metabolism
through the kynurenine pathway appears to be a key factor in promoting bone-aging phenotypes,
promoting bone breakdown and interfering with stem cell function and osteogenesis; however, little
data is available on the impact of tryptophan metabolites downstream of kynurenine. Here we review
available data on the impact of these tryptophan breakdown products on the body in general and,
when available, the existing evidence of their impact on bone. A number of tryptophan metabolites
(e.g., 3-hydroxykynurenine (3HKYN), kynurenic acid (KYNA) and anthranilic acid (AA)) have a
detrimental effect on bone, decreasing bone mineral density (BMD) and increasing fracture risk. Other
metabolites (e.g., 3-hydroxyAA, xanthurenic acid (XA), picolinic acid (PIA), quinolinic acid (QA),
and NAD+) promote an increase in bone mineral density and are associated with lower fracture risk.
Furthermore, the effects of other tryptophan breakdown products (e.g., serotonin) are complex, with
either anabolic or catabolic actions on bone depending on their source. The mechanisms involved in
the cellular actions of these tryptophan metabolites on bone are not yet fully known and will require
further research as they are potential therapeutic targets. The current review is meant as a brief
overview of existing English language literature on tryptophan and its metabolites and their effects on
stem cells and musculoskeletal systems. The search terms used for a Medline database search were:
kynurenine, mesenchymal stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress.

Keywords: stem cells; kynurenine; tryptophan metabolites

1. Introduction

The size of the aging population (65 years or more) is projected to increase by about 60% by 2030 [1].
This poses a challenge to the healthcare system because of the associated increase in age-related chronic
diseases. There is an urgent need for new treatments to address these issues, requiring an increase in
research on aging and the aging process. Dementia, cardiovascular diseases, frailty, sarcopenia, and
osteoporosis are examples of different conditions that significantly impact the lives of this population
and for whom age is a major risk factor. Specifically, osteoporosis was estimated to affect almost 54
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million Americans aged 50 years or older in 2010 [2]. Osteoporosis is characterized by a decrease
in bone mineral density (BMD) and structural deterioration of the bone. The frequently associated
condition of physical frailty predisposes falling and the combination of frailty and osteoporosis results
in an increased risk of fractures [3]. Treatment for bone fractures represent an economic burden for
patients as the average incremental direct cost increase in the 6 months following a long bone fracture
ranged from $5707 to $39,041 in 2012 [4].

Mesenchymal stem cells (MSCs) are multipotent progenitor cells mainly found in the bone marrow
(BM) that can differentiate into osteoblasts and thus promote bone formation [5]. Hypoxic conditions
within healthy BM are thought to influence the proliferation and cell-fate commitment of hematopoietic
stem cells (HSCs) and MSCs [6–8]. However, with age, there is a marked increase in oxidative stress
within the BM and a loss of the normal microarchitectural niches because of osteoporosis, which alters
the hypoxic environment and, thus, impairs normal stem cell function [9]. This increase in reactive
oxygen species (ROS) and its associated damage to MSCs contributes to the pathogenesis of many
age-related diseases. An increase in ROS has been associated with decreased Wnt, Hedgehog, BMP,
and ERK signaling pathways, all of which are important for bone formation [10]. Furthermore, an
impairment of MSC differentiation into osteoblasts has been found in patients with osteoporosis due
to an imbalance of bone deposition and resorption [11]. The specific pro-oxidative agents that cause
such downregulation remain unclear and represent an area for further investigation.

Aromatic amino acids (tryptophan, phenylalanine, and tyrosine) are generally known to have
antioxidant properties and to play a role in MSC survival and proliferation. Tryptophan (Trp) in
particular has been shown to upregulate ERK phosphorylation/activation in bone marrow stromal
cells (BMSCs); ERK activation is involved in the cell response to extracellular proliferation signals [12].
Additionally, Trp was found to upregulate the Akt pathway and FOXM1 of an aging BM under
normoxic conditions (21% O2). The Akt pathway promotes cell cycle progression and proliferation,
whereas FOXM1 is a transcription factor known to protect cells against oxidative stress [13]. Trp
metabolism through the kynurenine pathway has also been associated with modulation of age-related
chronic inflammation, known as inflammaging [14]. As a result, the kynurenine (Kyn)/Trp ratio has
been used as a biomarker to detect inflammaging and the onset of age-related diseases. With age, this
ratio has been reported to increase, either due to an age-dependent decrease in Trp levels and/or an
increase in Kyn [14,15]. Evidence suggests that elevated levels of Kyn with age are linked to a higher
incidence of chronic diseases and with a lower life expectancy in several adult mammals [16,17]. In
this review, we will discuss in detail different Trp metabolites with a particular focus on those of the
Kyn pathway (Figure 1). Specifically, we will focus on what is the known about the impact of Kyn
pathway metabolites, including serotonin and melatonin, on bone. Although the kynurenine pathway
has been previously studied in relation to CNS abnormalities, its role in musculoskeletal disorders is an
emerging area of research. The current review is meant as a brief overview of existing English language
literature on tryptophan and its metabolites and their effects on stem cells and musculoskeletal systems.
The search terms used for a Medline database search were: kynurenine metabolites, mesenchymal
stem cells, bone loss, tryptophan metabolism, aging, and oxidative stress and although the major
emphasis was on more recent articles (2010–2020), the search extended back to 1984.
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Figure 1. Tryptophan metabolism. 

2. Kynurenine Impacts MSCs and Causes Age-Related Bone Loss 

We have previously shown that with aging, both MSC number and differentiation capacity 
decrease. The mechanism responsible for these changes is not known [18]. Kyn is produced from Trp 
breakdown through either tryptophan 2,3-dioxygenase (TDO), mostly in the liver, or via indoleamine 
2,3-dioxygenase (IDO) −1 or −2, occurring in most tissues [19]. Specifically, IDO is readily activated 
by pro-inflammatory cytokines, with interferon-gamma (IFN-γ) being the most potent [20,21]. IDO-
dependent activation of the Kyn metabolic pathway has been found to inhibit osteogenesis and bone 
formation [19]. This enzyme is expressed in macrophages and to a lesser extent in MSCs [19]. As 
osteoclasts are derived from macrophages, one could infer that they are the principal IDO-expressing 
cells in bone and play a major role in Kyn production. Within bone, Kyn has been associated with 
multiple age-related phenotypes seen in patients with osteoporosis. In a study by El Refaey et al. [19], 
feeding 12-month-old mice increasing Kyn concentrations (50 μM and 100 μM) mimicked the bone 
aging process resulting in bone parameters comparable to those of a 24-month-old mouse. These 
authors reported lower bone volume (BV), lower bone volume over total volume (BV/TV), increased 
number of TRAP-labeled osteoclasts, greater bone resorption marker levels, and decreased Hdac3 
expression, with Kyn feeding [19]. Such parameters are similar to those observed in aged bone. 
Reduction in Hdac3 expression was linked to higher BM adiposity, which is also seen with aging [22]. 

Recently, a number of studies have focused on the potential mechanisms through which Kyn 
could induce an aging phenotype in bone. These include: enhanced MSC senescence, decreased 
autophagy, increased oxidative stress, reduced osteogenic factors, and altered miRNA expression, 
among others [23–25]. Although much of the bone-related research focuses on Kyn, not much is 
known about other Trp metabolites, specifically those downstream of Kyn. Further research in this 
area would help in targeting specific pathways in Trp metabolism for pharmacological treatment of 
bone loss. 

2.1. Kynurenic Acid Antagonizes NMDA Receptors Found on Osteoclasts 

Kynurenine can be further catabolized into various downstream products such as kynurenic 
acid (KYNA). This metabolite is well-known for its neuroprotective role in the central nervous system 
(CNS) because of its antagonism of glutamate receptors such as the NMDA, AMPA, and kainate 
receptors [26]. Thus, increased KYNA levels are associated with amelioration of the excitotoxic 
conditions seen in age-related disorders like Alzheimer’s (AD) and Parkinson’s disease. Moroni et al. 
[27] found that there was an increase in the KYNA content in the brain and blood of 18-month-old 
rats, compared to 3-month-old rats. However, KYNA levels failed to increase in the liver and kidneys 
of aged rats [27]. This suggests an organ-specific increase in KYNA with age. On the other hand, the 
effects of KYNA on bone are not completely clear. One study confirmed the presence of ionotropic 
glutamate receptors in osteoblasts, osteocytes, and osteoclasts, the latter having the highest 
concentration. They also found that blocking the NMDA receptor in osteoclasts inhibited bone 
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2. Kynurenine Impacts MSCs and Causes Age-Related Bone Loss

We have previously shown that with aging, both MSC number and differentiation capacity
decrease. The mechanism responsible for these changes is not known [18]. Kyn is produced
from Trp breakdown through either tryptophan 2,3-dioxygenase (TDO), mostly in the liver, or via
indoleamine 2,3-dioxygenase (IDO) −1 or −2, occurring in most tissues [19]. Specifically, IDO is readily
activated by pro-inflammatory cytokines, with interferon-gamma (IFN-γ) being the most potent [20,21].
IDO-dependent activation of the Kyn metabolic pathway has been found to inhibit osteogenesis and
bone formation [19]. This enzyme is expressed in macrophages and to a lesser extent in MSCs [19]. As
osteoclasts are derived from macrophages, one could infer that they are the principal IDO-expressing
cells in bone and play a major role in Kyn production. Within bone, Kyn has been associated with
multiple age-related phenotypes seen in patients with osteoporosis. In a study by El Refaey et al. [19],
feeding 12-month-old mice increasing Kyn concentrations (50 µM and 100 µM) mimicked the bone
aging process resulting in bone parameters comparable to those of a 24-month-old mouse. These
authors reported lower bone volume (BV), lower bone volume over total volume (BV/TV), increased
number of TRAP-labeled osteoclasts, greater bone resorption marker levels, and decreased Hdac3
expression, with Kyn feeding [19]. Such parameters are similar to those observed in aged bone.
Reduction in Hdac3 expression was linked to higher BM adiposity, which is also seen with aging [22].

Recently, a number of studies have focused on the potential mechanisms through which Kyn
could induce an aging phenotype in bone. These include: enhanced MSC senescence, decreased
autophagy, increased oxidative stress, reduced osteogenic factors, and altered miRNA expression,
among others [23–25]. Although much of the bone-related research focuses on Kyn, not much is known
about other Trp metabolites, specifically those downstream of Kyn. Further research in this area would
help in targeting specific pathways in Trp metabolism for pharmacological treatment of bone loss.

2.1. Kynurenic Acid Antagonizes NMDA Receptors Found on Osteoclasts

Kynurenine can be further catabolized into various downstream products such as kynurenic acid
(KYNA). This metabolite is well-known for its neuroprotective role in the central nervous system (CNS)
because of its antagonism of glutamate receptors such as the NMDA, AMPA, and kainate receptors [26].
Thus, increased KYNA levels are associated with amelioration of the excitotoxic conditions seen in
age-related disorders like Alzheimer’s (AD) and Parkinson’s disease. Moroni et al. [27] found that
there was an increase in the KYNA content in the brain and blood of 18-month-old rats, compared to
3-month-old rats. However, KYNA levels failed to increase in the liver and kidneys of aged rats [27].
This suggests an organ-specific increase in KYNA with age. On the other hand, the effects of KYNA on
bone are not completely clear. One study confirmed the presence of ionotropic glutamate receptors
in osteoblasts, osteocytes, and osteoclasts, the latter having the highest concentration. They also



Int. J. Mol. Sci. 2020, 21, 6670 4 of 14

found that blocking the NMDA receptor in osteoclasts inhibited bone resorption [28]. These data
would suggest that KYNA should antagonize the resorptive action of osteoclasts in bone. Our group
conducted a study to explore the effects of this metabolite on bone and found that treatment with
KYNA resulted in bone loss in the periphery [29], although the mechanism responsible for this bone
loss is still to be elucidated. KYNA effects on MSCs, specifically, are not known.

2.2. 3-Hydroxykynurenine Increases Oxidative Stress and Leads to Cytotoxic Effects

Via the enzyme Kyn monooxygenase, 3-Hydroxykynurenine (3HKYN) is produced by
hydroxylation of Kyn. In contrast to KYNA, 3HKYN is mostly known for its cytotoxicity through
its ability to induce ROS leading to apoptosis [30,31]. This oxidation product has been associated
with several age-related diseases such as Huntington’s disease (HD) and cataracts [32,33]. Regarding
bone aging phenotypes, oxidative stress has been found to reduce osteogenic markers in MSCs [10].
In a study conducted by Fakondut et al. [33], the capacity of 3HKYN to reduce osteoblast-like cell
(MC3T3-E1 cells) viability due to its pro-oxidative nature was tested. These authors found that at doses
of 250 µM to 1 mM over a period of 60 h, 3HKYN reduced cell viability and further than blocking its
effects on oxidative stress resulted in restored cell viability [34]. However, the 3HKYN concentrations
used were much higher than those seen physiologically, and concentrations of 3HKYN that are usually
seen with aging were not studied. Nevertheless, in humans 3HKYN was associated with an increased
risk of hip fractures in elderly women over a 9 to 11-year period [35]. Further studies should address
the specific effects of 3HKYN within aging cells and whether its concentration increases in bone
with aging.

2.3. The 3-Hydroxyanthranilic Acid to Anthranilic Acid Ratio

Anthranilic acid (AA) is also part of the Kyn pathway and can be directly produced from Kyn
through the enzyme kynureninase. Not much is known about direct AA effects on the body, but
synthetic derivatives have been used as immunosuppressive and anti-inflammatory drugs [36,37].
3-Hydroxyanthranilic acid (3HAA) can be a product of either 3HKYN or AA. This metabolite is reported
to have both antioxidant and pro-oxidant behavior depending on its chemical environment [38]. When
in a pro-oxidant environment, 3HAA auto-oxidizes by dimerizing into cinnabarinic acid [39]. 3HAA
has been found to prevent β-amyloid aggregation by binding to a specific region within the protein
that, in the absence of 3HAA, promotes its misfolding [40]. This represents a potential research area to
target for Alzheimer’s disease (AD). A study by Darlington et al. [41] assessed the importance of the
3HAA:AA ratio as a biological marker to indicate the progression of disorders with an inflammatory
component. They found that this ratio was significantly reversed in patients with osteoporosis, as
patients showed not only lower baseline levels for 3HAA, but also higher levels of AA compared
to control [41]. Some studies suggest that a possible explanation is an inhibition of the enzymatic
conversion of AA to 3HAA, thus resulting in lower levels of 3HAA [42]. Another project from the
Hordaland Health Study examined the relationship between different Kyn pathway metabolites and
BMD. They found a positive correlation between BMD and 3HAA in differently aged groups of both
men and women [43]. Nevertheless, much more knowledge about these metabolites is needed to
understand their impact on aging bone and MSCs.

3. Xanthurenic Acid Induces Cell Apoptosis

Xanthurenic acid (XA) is also produced from 3HKYN by an enzymatic reaction catalyzed by Kyn
aminotransferase. XA is a well-studied Trp metabolite that is known to trigger apoptosis by promoting
the release of cytochrome C, resulting in the destruction of mitochondria as well as structural proteins
such as gelsolin [44]. It is also reported that XA induces the translocation of several pro-apoptotic
Bcl-2 family proteins to mitochondria, thus inducing apoptotic mechanisms [45]. This metabolite
accumulates in aging tissues and has been associated with certain degenerative diseases, such as
senile cataracts, through its ability to promote cell death and disrupt the normal physiology of the
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lens epithelium [46]. Much data exist about the cytotoxic impact of XA and its negative effect on the
human lens, but little is known concerning its impact on aging bone. Considering the data obtained,
one could hypothesize that XA would likely negatively affect bone and lead to an aging phenotype.
However, the same Hordaland Health Study project mentioned earlier found a positive correlation
between BMD and XA [43]. These results suggest a novel mechanism of XA effects on aging bone.

3.1. Picolinic Acid Increases Bone Marrow Adiposity

Picolinic acid (PIA) results from the conversion of 3HAA to 2-amino-3-carboxymuconate-6-
semialdehyde (ACMS) and then to PIA by an enzymatic reaction. This metabolite is mostly known as a
metal chelator, and thus, PIA has been used as a way to introduce chelators into biological systems [47].
Some studies report PIA as having a neuroprotective role because it has been shown to block the
neurotoxic effects of quinolinic acid (QA) within the cortex of the brain [48,49]. However, levels of PIA
within the CNS in the context of neurodegenerative diseases have yet to be explored. Regarding bone,
Vidal et al. [50] conducted a series of tests to explore the effects of PIA. They found that IDO knockout
murine MSCs that were treated with increasing concentrations of PIA recovered their osteogenic
potential. They also reported that PIA-treated human MSCs (hMSCs) increased their expression of
osteogenic genes like Runx2 and osteocalcin (OCN) in vitro [50]. Our group conducted a study to test
the in vivo effects of PIA in mice. We found that feeding PIA did not impact BMD, trabecular bone, or
bone microstructure, but did result in increased BM adiposity. Furthermore, lipid storage genes such
as Plin1 and Cidec were increased in PIA-treated MSCs [51]. Notably, these two studies not only were
performed in different systems (in vitro versus in vivo) but also used different concentrations of PIA,
indicating that there might be a dose dependence to the effect of this metabolite on bone.

3.2. Quinolinic Acid Is a Neurotoxin Related to Neurodegenerative Diseases

Quinolinic acid (QA) is formed from ACMS through a non-enzymatic reaction. In contrast to PIA,
this metabolite is widely known for its excitotoxicity via its activation of NMDA receptors [52]. In
a study by de Bie et al. [53], the cerebrospinal fluid of 49 women of all ages (0–90 years) was tested
and a positive correlation between QA and age determined [53]. Additionally, concentrations in the
cortex of mammals like rats were reported to increase with advancing age [54]. As a result, QA has
been implicated in multiple neurodegenerative diseases including AD, HD, and amyotrophic lateral
sclerosis (ALS) [55]. Outside the CNS, not much is known about the impact of QA on the body;
however, one might expect QA to promote bone loss through its activation of the NMDA receptor. In
the same Vidal et al. [50] study mentioned earlier, the impact of QA on ex vivo MSCs lacking IDO
was tested. Contrary to expectations, QA increased the osteogenic potential of these cells, but to a
significantly lesser extent than PIA [50]. Like picolinic acid, the impact of QA on MSCs needs to be
addressed in an in vivo setting.

3.3. Nicotinamide Adenine Dinucleotide (NAD+) Decline Is Related to the Appearance of Age-Related Diseases

Nicotinamide adenine dinucleotide (NAD+) is the terminal oxidation product of Trp breakdown
through the Kyn pathway and is a key cofactor in multiple biological processes. Although its
better-known function is its role in mitochondrial redox reactions and ATP production, it also plays an
important role in anabolic pathways for many macro-nutrients [56]. NAD+ is known to decline with
aging and this decline coincides with the appearance of age-related diseases [56–58]. Even though some
groups suggest a depletion of Trp with age, Schultz & Sinclair report that CD38, a NADase, increases
in certain tissues with age and its inhibition leads to increased NAD+ [57], suggesting that changes in
NAD+ may play an important role in aging pathology. This decline in NAD+ levels is reported to
cause mitochondrial dysfunction and an inability to repair DNA damage. It is also associated with
diabetes, atherosclerosis, and AD [59]. A study by Iqbal & Zaidi assessed the role of NAD+ and its
metabolites (ADP-ribose and cyclic ADP-ribose) in osteoclastogenesis. Although their results showed
no direct impact of NAD+, they found that increasing concentrations of cyclic ADP-ribose had an
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osteoclastogenic effect, as did the addition of exogenous ADP-ribosyl cyclase. On the other hand, its
non-cyclic form had an inhibitory effect on osteoclast formation [60].

These data have suggested a potential therapeutic role for NAD+ supplementation to prevent
age-related decline in function. A review presented by Aman et al. [60] reported that long-term
administration of NAD+ precursors such as nicotinamide mononucleotide (NMN) was able to counter
some hallmarks of aging and increase insulin sensitivity and bone density and improve immune
function [61]. The impact of NAD+ repletion on muscle stem cell (MuSC) function in aged mice
was also examined; investigators found that treatment with nicotinamide riboside (NR), an NAD+

precursor, increased the number of MuSCs and enhanced muscle function [62].

3.4. The Dual Role of Serotonin in Bone Homeostasis

In contrast to the Kyn pathway, much more is known about the impact of serotonin (SE) on
bone and organ function. SE is derived from Trp through a two-step reaction in which tryptophan
hydroxylase (Tph) 1 or 2 is the rate-limiting enzyme. Tph1 is mainly found in the pineal gland and the
gut, whereas Tph2 is the main enzyme in serotonergic neurons [63,64]. This molecule is widely known
for its role as a neurotransmitter in the CNS where it is derived mainly from the raphe nuclei in the
brainstem. There are multiple responses to SE known depending on the receptor expressed by the
cell; however, it is mostly recognized for its role in preventing depressive and anxiety-like symptoms.
Brain-derived serotonin (BDS) levels have been found to decrease with age and to be associated with
late-life depression and AD [65]. On the other hand, most SE is found in the periphery where it is
produced mainly in the gut. Gut-derived serotonin (GDS) is known to regulate gut motility, platelet
aggregation, and bone homeostasis [66]. Nonetheless, not much is known about how GDS changes
with age and the impact of gut microbiota on its levels.

The effects of SE on bone are known to be complex, as GDS and BDS have opposite effects on
the skeletal system. Mice lacking Tph2 show a bone loss phenotype, with increased bone resorption
and lower BV/TV [67]. This result suggests that BDS plays a key role in bone homeostasis. SE can
also promote bone formation by decreasing sympathetic tone through Htr2c receptors found in the
ventromedial nucleus in the hypothalamus (VMH) [67]. Increased sympathetic tone is known to
promote bone loss by the interaction of leptin with ObR receptors also found in the VMH [68,69].
This interaction in the bone occurs through β2-adrenergic receptors found on osteoblasts and leads to
mechanisms that reduce osteoblast proliferation and increase osteoclast differentiation [69]. GDS is
known to increase bone resorption and to negatively impact the skeletal system. SE produced in the
periphery does not cross the blood-brain barrier into the CNS.

Abnormalities in the tryptophan/serotonin/kynurenine pathway have also been implicated in
the pathogenesis of the bone disease associated with chronic kidney disease (CKD-MBD) [70,71].
Kalaska et al. [72] examined the correlation between serum kynurenine metabolites and parameters
of bone turnover in rats after partial nephrectomy. They found that after one month, the bones of
nephrectomized rats had a significant increase in osteoclast number as well as decreased cortical bone
mineral density. These changes were associated with a significant increase in serum levels of both
KYN and 3-HKYN. There was also significant upregulation of expression of the AhR gene, presumably
the mediator of KYN effects. In contrast to peripheral effects, central kynurenine metabolism (similarly
to serotonin) may have a beneficial impact on bone parameters in the setting of renal insufficiency [73].
Rats undergoing partial nephrectomy were found to have a significant elevation in KYN with a decrease
in tryptophan levels in brain areas examined (cerebellum, brainstem, frontal cortex, hypothalamus and
striatum) and an increase in tibial cross-sectional area and wall thickness.

Lrp5-deficient mice have increased Tph1 [74–76] and in humans, mutation in the Lrp5 gene causes
osteoporosis pseudoglioma, which is characterized by bone loss and blindness [74]. While Lrp5 does
not directly promote bone loss, its regulation of GDS levels impacts bone homeostasis in patients with
osteoporosis pseudoglioma [77]. A study by Yadav & Ducy explored the mechanism through which
SE acts on bone and found that the Htr1b receptor was highly expressed on osteoblasts. Knockdown
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of this receptor resulted in a higher bone formation rate and an increased number of osteoblasts.
Furthermore, these authors reported that GDS acted by decreasing cAMP response element-binding
protein (CREB) and cyclin D1 interaction [75]. Another study found that high circulating levels of GDS
suppressed osteoblast proliferation mechanisms by an ability to decrease association between CREB
and Forkhead box protein 1 (FOXO1) transcription factors [78].

3.5. The Use of Melatonin as an Osteogenic Therapy

Melatonin is another Trp breakdown product and is synthesized in the pineal gland downstream
of serotonin production. Its secretion is controlled mainly by the suprachiasmatic nucleus, and it has
a role in regulating the sleep–wake cycle and modulating body temperature [79]. Melatonin can be
produced by almost every cell in the body and is a powerful mitochondrial anti-oxidant. In fact, the
gut appears to have the highest melatonin concentrations in the body (four hundred times higher than
the pineal gland). Melatonin is synthetized in the enterochromaffin cells in the gut and seems to serve
a paracrine function [80].

Melatonin has been reported to decrease during aging, and this reduction is associated with a
deregulation of the circadian rhythms of the body and an increase in oxidative stress [81]. Recently, the
therapeutic role of melatonin in preventing age-related characteristics was explored. Fang et al. [81]
examined the effects of melatonin supplementation on canine adipose-derived mesenchymal stem
cells. They found that melatonin attenuated cell senescence and reduced endoplasmic reticulum stress
(ERS), both of which are characteristics of aging [82]. Another study explored the effect of treating
murine MSCs with melatonin after an ischemic injury, which leads to increased cellular levels of ROS.
In this study, melatonin decreased autophagy-mediated apoptosis and ERS by increasing prion protein
PrPC, which is involved in reducing oxidative stress [83].

A number of recent studies have used melatonin to treat osteoporosis. Kotlarczyk et al. [84]
found that melatonin treatment decreased the bone resorption to bone formation ratio (NTX:OCN) in
perimenopausal women, as measured by the serum levels of the respective markers [84]. Another
study showed that treating perimenopausal and postmenopausal women with melatonin resulted
in increased BMD and osteocalcin, an osteogenic marker [85]. Other studies have focused on the
mechanisms through which melatonin may exert its bone-forming effects. Zhang et al. [86] explored the
osteogenic mechanism of melatonin on human mesenchymal stem cells (hMSCs) and discovered that
it promoted the expression of Runx2. In addition, they found that it suppressed the adipogenic marker,
PPAR-γ [86]. Another group reported that melatonin exerted an osteoblastogenic effect through the
MT2 receptor by increasing expression of proliferation markers such as Runx2, Bmp2, and Bglap [87].
Thus, melatonin may represent a therapeutic option in the treatment of osteoporosis.

4. Summary

Tryptophan is an important amino acid in the body’s normal physiology, and deregulation of its
metabolism has been implicated in the aging process. Although much attention has been given to the
effects of kynurenine in promoting aging bone phenotypes, few studies have investigated the impact
of its downstream metabolites. Data from studies presented in this review and summarized in Table 1,
suggest a complex role for the different kynurenine metabolites in normal/abnormal bone physiology.
For example, KYNA, 3HKYN, and AA are all associated with osteoporosis, with its decreased BMD
and increased risk of fractures. In contrast, some investigators have found that 3HAA, XA, PIA, QA,
and NAD+ have a beneficial impact on bone mass.
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Table 1. Impact of tryptophan metabolites on bone characteristics.

Tryptophan
Metabolites

Oxidative
Stress

BM
Adiposity BMD BV/TV Osteogenesis Osteoclastogenesis

1. Kyn ↑ ↑ ↓ ↓ ↓ ↑

2. KYNA ↓

3. 3HKYN ↑ ↓

5. 3HAA ↑

6. XA ↑

7. PIA ↑ ↑

8. QA ↑

9. NAD+ ↓ ↑ *
10. GDS ↓ ↓ ↑

11. BDS ↑ ↑ ↓

12. ME ↓ ↓ ↑

Summary of the impact of tryptophan metabolism on bone homeostasis. * ADP-ribose inhibits osteoclastogenesis;
cyclic ADP-ribose promotes osteoclastogenesis.

5. Discussion

The current review discusses available English language literature on what is known about the
impact of various tryptophan metabolites on stem cells and musculoskeletal tissues. The review is
limited by the fact that little is known about some of the specific metabolite effects on bone and muscle.
In these cases, specific metabolite effects on other tissues are discussed.

These studies highlight the need for further research on the impact of these tryptophan metabolites
on aging bone. Defining the underlying mechanisms may permit the development of therapeutics
targeting specific metabolites in the Trp metabolic pathway.

Melatonin is a powerful mitochondrial anti-oxidant and could have potential therapeutic benefits
in modulating the progression of age-related diseases such as osteoporosis and sarcopenia. It is
also possible that it might be more practical to inhibit the kynurenine pathway and selectively add
back metabolites that are of benefit; for example, Castro-Portugez and Suthphin [84] have suggested
inhibition of the kynurenine pathway with selective replacement of NAD+. NAD+ is important in
mitochondrial bioenergetics and supplementation has been associated with increased longevity [88].
Inhibition of the first step in this pathway by inhibiting indoleamine 2,3-dioxygenase (IDO) is already
an experimental strategy that has been used for treating certain types of cancer [89]. Thus, modulation
of the tryptophan catabolic pathway has the potential to benefit not only musculoskeletal aging but
also other age-related diseases, such as neurodegenerative disorders, cancer, and vascular diseases.

These goals may be further complicated by the fact that the tryptophan metabolites have both
endocrine and paracrine roles. For example, tryptophan breakdown occurs predominantly through the
TDO pathway in the liver and in fact the majority of the kynurenine in the brain is derived from this
circulating kynurenine transported through the blood brain barrier. In contrast to the setting of tissue
inflammation, kynurenine is produced locally through activation of IDO. Tissue-targeted modulation
of the activity of these metabolites may present a major challenge in view of the need to minimize
undesirable side effects to allow therapeutic use of the various metabolites of the Kyn pathway.
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Abbreviations

3HKYN 3-hydroxykynurenine
KYNA kynurenic acid
AA anthranilic acid
BMD bone mineral density
XA xanthurenic acid
PIA picolinic acid
QA quinolinic acid
TDO trypophan 2,3-dioxygenase
MSC mesenchymal stem cell
BM bone marrow
HSC hematopoietic stem cell
ROS reactive oxygen species
BMSC bone marrow stromal cell
Kyn kynurenine
Trp tryptophan
IDO indoleamine 2,3-dioxygenase
BV bone volume
TV total volume
TPH tryptophan hydroxylase
KAT kynurenine aminotransferase
KMO kynurenine monooxygenase
ACMS 2-amino-3-carboxymuconate-6-semialdehyde
ACMSD 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase
3-HAO 3-hydroxyanthanilate oxidase
QPRT quinolinate phosphoribosyl transferase
CNS central nervous system
AD Alzheimer’s Disease; Huntington’s Disease
HD; 3HAA 3-hydroxyanthranilic acid
OCN osteocalcin
ALS amyotrophic lateral sclerosis
NAD nicotinamide adenine dinucleotide
MuSC muscle stem cell
SE serotonin
BDS Brain-derived serotonin
GDS gut-derived serotonin
VMH ventromedial nucleus of hypothalamus
ME melatonin
ERS endoplasmic reticulum stress
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