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The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and
PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any in-
formation extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful.
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Stachybotrys chartarum is a saprophytic fungus with worldwide
distribution. In nature, it is isolated from soil, seeds, and de-

caying organic matter. Indoors, S. chartarum grows on wet
cellulose-containing building material, such as gypsum wall-
board, cardboard, and ceiling tiles (1).

S. chartarum is among the indoor fungal population frequently
identified in water-damaged buildings, and it has been linked to
damp building-related illnesses (DBRIs) (2). This fungus is capa-
ble of producing mycotoxins, of which the macrocyclic trichoth-
ecenes are among the most toxic (3, 4).

S. chartarum toxigenic strain 51-11, an environmental isolate
obtained from the cluster of idiopathic pulmonary hemorrhage
cases (Cleveland, OH) (5), is part of the RTI International (Re-
search Triangle Park, NC) microbial collection assigned a unique
identification number and stored at -80°C for long-term preser-
vation. The fungal spores were grown in potato dextrose broth
(PDB) (Becton, Dickinson & Company, Sparks, MD) and were
shaken at 25°C. The resulting fungal mycelia were harvested using
a sterile Miracloth (EMD Millipore, Darmstadt, Germany) and
washed with sterile distilled water. The mycelia were flash-frozen
in liquid nitrogen and stored at -20°C until the genomic DNA was
isolated using a protocol described by Kohler et al. (6).

Two genomic DNA libraries were produced for Illumina se-
quencing: one paired-end library (insert size, 350 to 390 bp) and
one mate-paired library (insert size, 100 to 5000 bp). These two
libraries were sequenced on an Illumina HiSeq 2000 (Illumina,
San Diego, CA) at Argonne National Laboratory (Lemont, IL).
The machine produced 460� coverage, and approximately 100�
of that coverage was actually used for the assembly, although the
whole data set was exploited for error correction. The genome size
was assessed using k-mer-counting tools, which pointed to a ge-
nome size of approximately 40 Mb. The resulting 40-Mb error-
corrected reads were assembled on a large-memory machine using
MIRA (http://genome.cshlp.org/content/14/6/1147.full). The re-
sulting contigs were hand-edited for quality. SSPACE basic 2.0
(Leiden, The Netherlands) was run on the mate-pair data to try to
close gaps and produce better scaffolds. The resulting assembly
contained 2,843 scaffolds. Higher-molecular-weight DNA for
PacBio long-read sequencing was also produced to close gaps in

the Illumina assembly. Nine sequencing runs were performed,
and after standard quality assurance/quality control cutoffs were
applied, there were 284,625 reads, with ~736 million bases total
(~2,600 bases per read), or ~18� coverage. Two hybrid assembly
methods were compared, SSPACE-LongRead and PBJelly. Multi-
ple combinations using both programs were performed on a su-
percomputing cluster, and the quality of assembly was assessed
using standard metrics (N50 and N90). Three iterations of
SSPACE-LongRead alone (not in combination with PBJelly)
showed the highest-quality assembly, with the final number of
scaffolds at 1,435, or approximately half of the Illumina assembly
alone.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession no. LDEE00000000. The version described in
this paper is version LDEE01000000.
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