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Abstract: Wastewater treatment (WWT) is a priority around the world; conventional treatments
are not widely used in rural areas owing to the high operating and maintenance costs. In Mexico,
for instance, only 40% of wastewater is treated. One sustainable option for WWT is through the use of
constructed wetlands (CWs) technology, which may remove pollutants using cells filled with porous
material and vegetation that works as a natural filter. Knowing the optimal material and density
of plants used per square meter in CWs would allow improving their WWT effect. In this study,
the effect of material media (plastic/mineral) and plant density on the removal of organic/inorganic
pollutants was evaluated. Low (three plants), medium (six plants) and high (nine plants) densities
were compared in a surface area of 0.3 m2 of ornamental plants (Alpinia purpurata, Canna hybrids and
Hedychium coronarium) used in polycultures at the mesocosm level of household wetlands, planted
on the two different substrates. Regarding the removal of contaminants, no significant differences
were found between substrates (p ≥ 0.05), indicating the use of plastic residues (reusable) is an
economical option compared to typical mineral materials. However, differences (p = 0.001) in removal
of pollutants were found between different plant densities. For both substrates, the high density
planted CWs were able to remove COD in a range of 86–90%, PO4-P 22–33%, NH4-N in 84–90%,
NO3-N 25–28% and NO2-N 38–42%. At medium density, removals of 79–81%, 26–32, 80–82%, 24–26%,
and 39–41%, were observed, whereas in CWs with low density, the detected removals were 65–68%,
20–26%, 79–80%, 24–26% and 31–40%, respectively. These results revealed that higher COD and
ammonia were removed at high plant density than at medium or low densities. Other pollutants
were removed similarly in all plant densities (22–42%), indicating the necessity of hybrid CWs to
increase the elimination of PO4-P, NO3-N and NO2-N. Moreover, high density favored 10 to 20%
more the removal of pollutants than other plant densities. In addition, in cells with high density of
plants and smaller planting distance, the development of new plant shoots was limited. Thus, it is
suggested that the appropriate distance for this type of polyculture plants should be from 40 to 50 cm
in expansion to real-scale systems in order to take advantage of the harvesting of species in these and
allow species of greater foliage, favoring its growth and new shoots with the appropriate distance to
compensate, in the short time, the removal of nutrients.
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1. Introduction

Water pollution and low investment in wastewater treatment (WWT) in developing countries
results in a high risks for human health and ecosystems [1,2]. This condition creates the obligation
to find both economic and ecological alternatives for WWT based on the needs of these regions,
located mostly in tropical and inter tropical areas with little attention to such water problem [3,4].
Constructed wetlands (CWs) are a sustainable option to treat wastewater. These engineering systems
can mimic the functions of natural wetlands through physical, chemical and biological processes [5],
where the role of plants and support media or substrates is essential.

The substrates serve as the support of the living organisms, provide storage for many contaminants
and permanent physical support for plants [6,7]. Conventionally, the use of minerals such as tezontle,
sand, zeolite and gravel are very common in CWs as a substrate or filling material [8,9]. However,
these are usually the most expensive materials during the construction of CWs owing to their
commercial use in the construction industry and this is a limitation in rural communities with limited
economic resources [10].

In this sense, materials with the same or better functionality and lower commercial costs such as
the polyethylene terephthalate (PET) are necessary. Despite the fact that PET causes major negative
environmental effects, the roughness and porosity of certain parts of a PET bottle such as the cap,
neck and bottom can be functional as a substrate in CWs [11]. Another important component in CWs is
the vegetation, commonly called macrophytes in natural wetlands, that have been used in CW systems
(Phragmites australis, a species of the genus Typha spp., Scirpus spp. and C. papyrus), which provide
oxygen to the systems in the substrates, favoring the growth of aerobic bacterial communities.
They also contribute to the removal of pollutants by absorption (15 to 25%) of residual water elements
used for their development [12,13]. In this last decade, new ornamental flowering plants (OFP,
eg., Anthurium spp., Canna spp., Heliconiaceae spp., Spathiphyllum wallisii, and Zantedeschia aethiopica),
not typical of natural wetlands that favor aesthetic aspects of the CWs without affecting the removal
function (up to 80% of organic and inorganic compounds), have been evaluated to facilitate the
adoption of this technology in small communities [14,15]. The majority of studies regarding CWs have
been focused on effect of natural wetland macrophytes, different mineral substrates or water flow type
on pollutant removal [12,16,17]. However, little is known about the effects of OFP and the density
(number of plants) on the biogeochemical role in WWT. Similarly, little has been studied about the
reuse of plastic substrate as filter media. The objective of this study was to compare the removal effect
on organic and inorganic pollutants of domestic wastewater of the plant density (three OFP species,
one of each one, three OFPs, with two of each species and six OFPs, using two of each species),
the use of mineral substrate (porous rock river –PRR) and the reutilization of PET residues as filter
media. In this regard, two hypotheses were put forth: (1) High plant density would provide more
oxygen to the substrate increasing the aerobic conditions and therefore the pollutant removal efficiency.
(2) Knowing the roughness and structure of certain components of PET bottles, such residues can have
a similar action as filter media compared with mineral substrates.

2. Results and Discussion

2.1. Control Parameters

Table 1 shows results of the control parameters monitored during the study period. The water
temperature after passing through the systems was reduced by 2 ◦C on average. In spite of this,
it was found to be in a suitable range (between 16.5 and 32 ◦C) to favor the processes of removal of
contaminants in the CWs. On the side of increased bacterial activity, which is initiated at a temperature
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of >20 ◦C [18] the results of this study are in these ranges (Table 1). As for the appropriate pH in
CWs to promote most of the biological reactions, this occurs in ranges from 6 to 8 [19]. In this study,
an average of 6.8 (pH) was detected for the influent, whereas in the effluent the values increased
statistically (p < 0.05, Table 1). In systems with vegetation, the average pH was 7.7, while in systems
without vegetation it was 7.8. These ranges are suitable for promoting biological reactions in CWs.
In addition to the above, the low presence of DO in the systems (Table 1), could have favored the
increase in pH [20]. In relation to the electrical conductivity (EC), 1601.3 ± 291.2 was observed in
the influent and was significantly reduced (p > 0.05) in both systems with vegetation (30–36%) and
without vegetation (34%) (Table 1). In the literature, it is reported that for a hydraulic retention time
less than 3 days, this behavior is not frequent [21]. These results could be due to the capture of micro
and macro elements of ions by plants and eliminated through radical absorption and sedimentation of
suspended particles [22].

The dissolved oxygen (DO), shown in Table 1, increases considerably in systems with
vegetation (p > 0.05), while in systems without vegetation the increase was not significant (p > 0.05)
in relation to the influent. The presence of DO indicates the type of conditions found in the systems:
aerobic, anaerobic/anoxic for biological processes [23]. Therefore, the presence of oxygen in systems
with greater vegetation than in non-planted systems could be due to its release in the radical zone [24,25].
In relation to the total dissolved solids (TDS), these mainly include organic salts and residues, therefore,
in terms of their decrease in treatment systems it becomes an indicator of their effectiveness [26].
In this study, a significant decrease of TDS was found (p > 0.05) in relation to the value of the
influent (Table 1), these values found, after treatment in CWs, are within the limits allowed by the
United States Environmental Protection Agency [27] which indicates that 500 mg L−1 is a suitable
range for discharges to surface bodies and are consistent with those reported by other studies in similar
conditions using CWs, where reduced values have been found after treatment in these systems [28].

An environmental characteristic, such as the intensity of light, played an important role in
the development of vegetation. In this study, the range of light oscillated between 2000–5000 lux,
3000–10,000 lux, and 3000–35,000 lux at 17:00, 14:00 and 9:00 h, they favored the development of plants
without inhibiting their growth or physiological health. In the same way, such light values favored the
observed temperatures for good biological functioning in the system (Figure 1).
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Table 1. Water quality parameters in influent and enfluent in wetlands.

Wetlands Plants in Different Substrates

Parameters Low Density
PET

Medium
Density PET

High Density
PET

Low Density
PRS

Medium
Density PRS

High Density
PSR Control PET Control PRS

Water temperature (◦C)

Influent 26.45 ± 0.29

Effluent 24.62 ± 0.22 25.13 ± 0.20 24.83 ± 0.21 24.92 ± 0.21 25.105 ± 0.22 25.01 ± 0.23 24.88 ± 0.27 24.70 ± 0.24

pH

Influent 6.80 ± 0.47

Effluent 7.72 ± 0.43 7.70 ± 0.37 7.65 ± 0.41 7.69 ± 0.35 7.60 ± 0.42 7.63 ± 0.36 7.89 ± 0.32 7.76 ± 0.38

EC (µS/cm)

Influent 1601.33 ± 291.15

Effluent 1116.63 ± 41.39 1128.71 ± 38.66 1028.23 ± 47.33 1079.62 ± 45.18 1014.46 ± 40.32 1190.70 ± 178.96 1041.62 ± 58.85 1064.25 ± 56.67

DO (mg/L)

Influent 1.7 ± 0.42

Effluent 3.6 ± 0.51 3.9 ± 0.26 6.7 ± 0.13 3.4 ± 0.60 4.1 ± 0.34 5.8 ± 0.72 2.4 ± 0.54 2.1 ± 0.21

TDS (mg/L)

Influent 670.96 ± 14.79

Effluent 529.08 ± 15.13 507.77 ± 16.39 505.11 ± 19.59 480.61 ± 18.66 496.01 ± 20.23 458.71 ± 18.13 585.01 ± 13.89 595.63 ± 11.75

Values are given as the average ± standard error (n = 48); different letters indicate significant differences between the columns at the 95% significance level. PSR, Porous stone river; PET,
polyethylene terephthalate.
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2.2. Plant Growth and Flower Production

2.2.1. Alpina purpurata

Alpina purpurata is an ornamental plant listed as an exotic tropical plant in the global weed
compendium [29]. It has been cultivated in tropical areas, being capable of surviving in totally or
partially flooded soils [30]. Owing to this, it was used as an emerging plant in subsurface horizontal
flow CWs. The plant development data of A. purpurata are shown in Figure 2. No significant
differences (p > 0.05) were found in the development of the species in the two-culture media (PET
and PRS). The tropical conditions where the study was developed favored its adaptation in CWs
indicating that the environmental conditions were adequate for the development of this species [31].
During the study, it was found that plants planted in densities of one individual in polycultures
of three plants (low density), by cell, plants produced on average 10 shoots of A. pulpurata in both
substrates during the 12 months of study, while in a system with polycultures of medium density (three
plants), for A. pulpurata, for each CW, only six shoots were generated on average, independently of the
material support (PET/PRS). In polycultures of nine individuals (high density) A. purpurata, produced
four shoots per plant. This could be due to the presence of a greater number of plants in the same
area (0.36 m2), given that in the systems it was possible to generate more competition for the nutrients
present in wastewater and hindering the growth of tillers. It should be noted that these species are
not commonly used in CWs. In this sense, these data are the first reports of their development in
this type of system, finding that the distance of planted and the volume of seedlings significantly
influenced their development. As for the adequate distance to improve their development in this study,
it was 50 cm and in low density conditions. In relation to the production of flowers, no flowers were
produced during the study, which could be due to the fact that, during the flowering period, this plant
under terrestrial conditions grows from 1.5 to 2 m tall in an approximate period of 8 months [32].
However, in this study very small plants (10 to 25 cm) were planted and they did not show the
same growth behavior as in their natural state, given the new conditions to which they were exposed
for development. Thus, studies using a longer evaluation period are necessary to know the rate of
flowering of these species in CWs and encourage their ornamental use in future designs.
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2.2.2. Hedychium coronarium

Tropical floriculture is in early stages in Mexico, although the cultivation of Hedychium coronarium
shows great potential in various humid tropical areas of the country. This is an herbaceous plant
that develops at temperatures above 10 ◦C [33]. The ambient temperature conditions that occurred
in the study area (20–26 ◦C), as well as the light intensity (Figure 1), showed ranges that could
favor the proper development of H. coronarium; these can reach up to 3 m high in their natural state.
In this study, the PET and PRS substrates were used as media using different planting distances
for this plant (Table 1). These differ greatly from those recommended for cultivation (1 to 1.5 m
distance between them), which could indicate why the plants did not achieve heights they should
have presented (2 to 2.5 m high) in 12 months of study.

Figure 2 shows that regardless of the substrate, on average the plants grew up to 1.5 m high without
significant differences between substrates (p = 0.621), but failed to produce flowers, although their
typical flowering period is from 7 to 8 months after planting [34]. This could be due to the conditions
of constant saturation to which they were exposed, such as vegetation saturation, water quality or the
reduced space where they were planted. Consequently, new studies are required where this plant is
used as emergent vegetation in large-scale systems that allow its better development, more distances
for planting and with longer study periods in order to evaluate its flower production in CWs.

2.2.3. Canna hybrids

Canna hybrids is a tropical plant that is easy to grow and does not die easily because it is resistant
to adverse conditions, and even when irrigated with highly polluted water, they reproduce quickly
and generally flower 1 year after having been planted. It is considered an invasive plant when it grows
wild among controlled crops [35]. In this study, light ranges (Figure 1) were found to be lower than
those reported as optimal for cultivation of this OFP, which are between 40,000 and 60,000 lux [36],
however, this did not hinder their development.

Significant differences (p = 0.001) were found between the vegetation planted in PET and PRS
substrates (Figure 2). The plants presented an average of 30 cm more in height in PRS substrate than
in PET, although the growth is among the averages reported on the growth of plants (1 to 3 m) [37].
All plants grew healthy and managed to produce on average 95 flowers per plant in PET and 98
in PRS; without finding significant differences in flower production between substrates (p = 1.00).
Although the use of PET as a substrate in CWs is not common, the plants managed to adapt and grow
healthily as in any other common medium such as PRS. According to the growth conditions that
are shown in their natural state, these plants generate about 60 flowers per plant in 12 months [38].
However, in this study the flowering increased up to 40%, compared to when it is cultivated in soil,
which could be due to the availability of constant nutrients present in wastewater.

2.3. Contaminants Concentration in Influents and Effluents from CWs

The chemical oxygen demand (COD) is the amount of oxygen needed to oxidize organic carbon
completely to CO2, H2O and ammonium. COD does not differentiate between biologically oxidizable
organic matter and biologically inert materials [26]. The COD influent concentrations on average were
353.96 ± 9.21 mg/L. After treatment with CWs, in both substrates it was found that in systems with
vegetation and PET the COD was 78.57 ± 2.64 mg/L, and 76.23 ± 6.98 mg/L with PRS (Figure 3b).
CWs without vegetation had averages of concentrations of 142.55 ± 1.93 mg/L and 138.54 ± 5.29 mg/L
in PET and PRS substrates, respectively (Figure 3a,b). The COD data, after treatment, fulfilled
the regulations of the European Union for protection of water quality for discharge into lakes
(COD; <125 mg/L). These results may be due to the greater presence of oxygen (Table 1) in systems
with vegetation where the greatest COD reductions in CWs were presented after treatment [39].
The COD parameters indicate the ability to reduce oxygen present in receiving bodies of water and
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are the main parameters for measuring the content of organic matter in wastewater [40,41]. On the
other hand, the COD indicates the presence of non-municipal origin substances in the water [42].Molecules 2020, 25, x FOR PEER REVIEW  8 of 17 
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In this sense, it is essential that they be removed before discharging wastewater into rivers. In
this study, systems without vegetation showed removal efficiencies between 58 and 59% in both
substrates (Figure 4a,b). In general, the average of removal found in CWs with vegetation was 81%
and consistent with the reported by [5,14] with 78%, which is the average of removals found in systems
with polyculture of ornamental plants in CWs fed with domestic wastewater. However, significant
differences were found according to plant densities (p = 0.001) in both substrates and no significant
differences were observed regarding the substrate (p = 0.07), but different plant density showed
significantly higher average of COD removal (p = 0.001). CWs with low plant density (65–68%) <

medium density (79–81%) < high plant density (86–90%) (Figure 4a,b). This behavior could be due to the
release of radical oxygen given the higher plant density in the systems. This information is consistent
with that reported by [43], which indicated that the higher the plant density, the better the COD
removal in horizontal flow CWs. These results show a clearer picture of the role of vegetation in CWs.
However, new studies with a greater presence of organic matter in wastewater are suggested to deal
with CWs in high plant polyculture density.
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The phosphate concentration (PO4-P) in the influent was 10.46 ± 0.25 mg/L. This value decreased
significantly (p = 0.001) in CWs with vegetation 7.74 ± 0.11mg/L and 6.69 ± 0.15 mg/L in PET and
PRS respectively (Figure 3c,d), compared to the systems without plants (9.18 ± 012 mg/L in PET and
8.92 ± 0.25 mg/L in PRS), which could be due to the absorption of PO4-P ion by plants for growing
development [44], as shown in Figure 2. This behavior is explainable given the main phosphorus
removal mechanisms in wetlands (by substrate adsorption and assimilation by plants [45]. However,
these values do not comply with the Mexican standard which specifies phosphorus as total phosphorus
(PT) and establishes a maximum allowable limit of 5 mg/L. In biologically treated domestic wastewater,
PO4-P is approximately 80% of PT. Therefore, it is recommended to evaluate these substrates in
conjunction with others that have a greater ionic capacity to attract the phosphorus present in domestic
wastewater with phosphate content greater than or equal to the values present in this study.

In the PET substrate, the removal in systems without the presence of vegetation was on average
10%, 20% in CWs with low density, 26% with medium density where the highest removal of PO4-P
occurred; p = 0.001) and 22% of removal in CWs with high density [46], indicating that phosphorus in
its different forms can be used by plants for their development with better results in tropical climates,
where the plants are harvested continuously so that their development is not interrupted until the
plants reach maturity. That might explain the results obtained in this study, where the plants managed
to develop considerably (Figure 2) and the phosphate could have been used for its development and
flowering [18]. The ionic interaction with the substrates was not as relevant in this study, perhaps
because of the substrates used (PET and PRS), since using them in CWs is unconventional and precise
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mechanisms of their functioning are unknown. The elimination in these could be due to the adoption in
the microbial films that were developed in the PET substrate. Regarding the removals in PRS substrate,
significant differences were found (p = 0.001), among all treatments in controls without vegetation 20%
<in treatments with three species of plants 26% <in treatment with six individuals of plants 32% <in
treatment of nine individuals of 33% plants (Figure 4a,b).

In comparison to the treatments in PET and PRS, the phosphate removal behavior in PET substrate
was as expected, given that it apparently did not have an effect on the removal of this compound,
while in the PRS treatments a positive effect was shown, but not greater than those reported in the
consulted literature [47].

Ammonium is removed in CWs, through the action of aerobic and anaerobic microorganisms,
taking into account that under anaerobic conditions the reductions are slow [48], which may explain
its behavior in this study. The concentrations of ammonium (Figure 5a,b) in the influent oscillated in a
ranged of 18.88 ± 0.51 mg/L; these were significantly reduced (P = 0.001) in presence of plants and
in the systems without plant species. For both substrates from the first 50 days, the removal in the
CWs began to be observed, the elimination of pollutants were almost at 100% on the 125 days of study.
On average 2.81 ± 0.24 mg/L of NH4-N were observed in systems with plants for both substrates,
while in units without vegetation 3.23 ± 0.14 mg/L were detected, these results were lower than the
limit established by the Mexican law about ion discharge in rivers (NMX-AA-026-SCIF-2001, 25 to
50 mg/L).
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The ability of horizontal flow CWs to oxidize ammonia nitrogen is low (nitrification), given the
low availability of aerobic zones within the wetland (only in the rhizosphere zone) (Table 1) [49].
Despite this, the eliminations in this study (Figure 4a,b) were highly significant (p = 0.0012): in a system
with three plants the removal on average was 79 and 80%; in systems with six plants 80 and 82%;
in systems with nine plants 61 and 64%, and in controls without vegetation 84 and 90% in PET and PRS
substrate respectively. There were no significant differences (p = 0.086) between substrates, in contrast
with (p = 0.094) plant density, as well as between controls. These results are higher than those reported
by [50], who used plastic rings as substrates; a combination of zeolite and fly ash with more calcium
element; and fly ash using microphytes as emergent vegetation, finding eliminations between 40 and
58% of N-NH4.

For nitrate removal, it is important to describe that nitrogen removal from water and wastewater
involve a combination of aerobic nitrification and anaerobic denitrification, a significant part of
organic nitrogen is converted to ammonia, which is oxidized in aerobic condition by Nitrosomonas and
Nitrobacter. Nitrification implies a chemolithoautotrophic oxidation of ammonia to nitrate under strict
aerobic conditions. In HSSF-CWs the aerobic conditions occur mainly in the rhizosphere zone. [51,52].
The concentration of NO3-N (Figure 5c,d) in the influent was 4.22 ± 0.18 mg/L for both substrates,
and after treatment it decreased significantly (P = 0.001) in systems with vegetation, 2.97 ± 0.10 mg/L
in PET and 2.91 ± 0.18 in PRS respectively were detected, but not in systems without vegetation
(3.65 ± 0.83 mg/L and 2.81 ± 0.18 mg/L in PET and PRS substrate).

Another way of reducing NO3-N is through denitrification. NO3- is reduced in anoxic conditions
by heterotrophic bacteria (such as Pseudomonas, Micrococcus, Achromobactor and Bacillus), in this process,
denitrifying bacteria decreases inorganic nitrogen such as nitrate and nitrite into innocuous fundamental
nitrogen gas [48,52]. In HSSF-CWs, anoxic conditions occur where there is no contact with the
vegetation roots.

CWs filled with PET and with presence of vegetation ranged from 24–30% (Figure 4a) and
showed significantly higher average nitrate removal efficiency than systems without plants (21%).
No significant differences were observed for such ion respect to plant densities (p ≥ 0.05), while in CWs
with PRS substrate (Figure 4b) the nitrate removal was similar in all the units, regardless of the plant
density (25–30%). The results found in this study differ from those expected in horizontal flow CWs
for the elimination of N-NO3, since anaerobic conditions, a carbon source and denitrifying bacteria
favor the elimination of this compound [53]. The previously described since the concentrations of
ammonium (Figure 5a,b) were relatively higher, nitrates were produced that could affect the elimination
mechanisms of this CWs.

The concentration of NO2-N in the influent was 6.84 ± 0.14 mg/L (Figure 5e,f), while in the
influents with vegetation was 4.38 ± 0.13 mg/L in PET and 3.99 ± 0.24 mg/L in PRS, in CWs without
vegetation it was 3.87 ± 0.10 mg/L and 4.04 ± 0.25 mg/L in PET and PRS respectively (Figure 5e,f).
The NO2-N elimination was favored in CWs (Figure 4a,b), finding significant differences (p = 0.001)
between substrates and plant density in cells with controls without vegetation 41 and 30%; in cells with
three plants 31 and 40%; in cells with six plants 39 and 41%, and in cells with nine plants 38 and 42% in
PET and PRS substrates, respectively. These results may be due to the high removal of ammonium that
could contribute to the production of nitrites as shown in Figure 4.

3. Materials and Methods

3.1. Study Area

This study was carried out in Pastorias, Actopan (June 2016–May 2017). This community is in the
central mountainous area of the State of Veracruz, Mexico (−96◦57′08” and 19◦55′83” S). The climate in
the area is classified as semi-warm humid with rains throughout the year (45%), warm-humid with
rains throughout the year (38%) and warm-humid with abundant rains in summer (17%), with higher
temperatures in June and lower in January, at an altitude of 1900 m above sea level. The average
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annual rainfall is 947.1 mm and the average annual temperature is between 20–26 ◦C, which are typical
conditions of the subtropical areas of America [54].

3.2. Constructed Wetlands (CWs) Systems’ Characteristics

The CW systems were Horizontal Subsurface Flow (HSSF) cells. Fourteen mesocosms constructed
with cement and blocks were used as experimental units (0.70 m. high, 1.5 m. long and 0.24 m. wide;
Figure 6). They were installed in a rural dwelling of three people and employed as a WWT home.
The water before entering the mesocosms had a pretreatment in a filter settler, in a 1500 L tank.
All the 14 experimental units (Figure 6) were filled from bottom to a height of 10 cm with PRR of
8 to 15 cm in diameter. Then, seven mesocosms were filled with 60 cm of PRR as a substrate (2.5 to
3.5 cm diameter, and an uneven surface with 0.4 average porosity), taken from the local Topiltepec river.
The other seven cells were filled with 50 cm of PET residues (rough sections were taken and with folds
of recycled bottles used for beverages like water and soft drinks, with 2.5 to 3.5 cm in diameter, in order
to provide a favorable surface for the development of bacterial communities, with a 0.5% porosity).
For cells with PET, 10 cm of PPR were added under the PET to prevent plastic buoyancy; this last
fraction (10 cm) did not interfere with the treatment system.
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Two filled experimental units, one from PRR and one from PET functioned as controls
without vegetation. In the other twelve cells, six were filled with PRR and six filled with PET.
The configuration of vegetation density for each different porous media was (15 to 20 cm high
each plant): three plants with one sample of Alpinia purpurata + one sample of Canna hybrids + one
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sample of Hedychium coronarium (low density, 0.4 m distance between plants). Two mesocosms were
planted with OFPs consisting of two A. purpurata + two C. hybrids + two H. coronarium plants (medium
density, 0.2 m of distance between plants). The other two mesocosms of each filter media were planted
with OFPs that included three A. purpurata + three C. hybrids + three H. coronarium plants (high density,
0.1 m of distance between plants). The ornamental plants were collected from areas near the study
sites to favor their adaptation to new flood conditions to which they were exposed. All mesocosms
were operated with a hydraulic retention time of 4 days.

3.3. Sampling and Analysis

From the day the tank was fed with 100% residual water and during the study period, a sample of
the influent and effluent of each mesocosm was taken every 15 days. The pollutants analyzed were
COD, PO4-P, NH4-N, NO3-N and NO2-N in duplicates by standard methods [55]. Total dissolved
solids (TDS), electrical conductivity (EC), pH, dissolved oxygen (DO) and water temperature were
measured with a H198194 multiparameter meter (Hanna, Ciudad de México, Mexico) placed in the
influent and effluent streams of the mesocosms. In addition to these data, the ambient temperature and
light intensity were measured every 15 days with a HTC-1 hydrometer (Uplayteck, Ciudad de México,
Mexico) and a HIELEC-MS8233-2000 (STEREN, Veracruz, Mexico) lux meter, respectively, at times of
9:00, 14:00 and 17:00 h; estimating and recording the average of each measurement. The height of the
plants was measured with a tape measure and the number of flowers was recorded every 30 days.

3.4. Statistic Analysis

The response variables were COD, PO4-P, NH4-N, NO3-N, and NO2-N, as well as the height of
the plant and the number of flowers. Statistical differences between treatments were estimated using a
two-way ANOVA with plant density and substrates as factors, followed by evidence of least significant
differences (LSD), with a significance level of 5%. All statistical analyses were performed with version
16.1.0 of Minitab (ver. 16, State college, PA, USA).

4. Conclusions

The use of Alpinia purpurata, Canna hybrids and Hedychium coronarium in polycultures for
treatment of domestic wastewater in mesocosms of CWs favored the elimination of organic matter and
nitrogen compounds, while phosphate ion was less removed by such species during the 350 days of study.
Owing to this, their use in CW designs is recommended. In addition, Canna hybrids flowers showed
greater flowering compared to their normal development in the natural state. However, the species
Alpinia purpurata and Hedychium coronarium failed to produce flowers. More studies over a longer period
are suggested in order to understand the flowering behavior of these plants in CWs. Apparently, in these
systems this may require periods longer than 12 months. Regarding plastic materials, PET was proven
to be a suitable support medium for use in large-scale CWs, since it allows the proper development of
vegetation and does not limit the removal of pollutants compared to PRS which is a more common and
more expensive substrate than PET because the latter is reusable in CWs.

Regarding the growth of the vegetation, it was observed that there was a better and greater growth
in plants with a lower planting density, as well as a greater production of tillers. Studies on CWs with a
greater effective area are necessary to obtain a clearer picture of the landscape and behavior of tropical
ornamental plants in relation to their planting density in these biosystems. Plant density shows a
positive effect on the elimination of pollutants, especially on COD and ammonia, however, in cells
where there were more plants with a smaller planting distance, the development of new plant shoots
was limited. In this sense, it is recommended that the appropriate distance for this type of polyculture
plants be 40 to 50 cm in expansion in real-scale systems, in order to take advantage of the harvesting of
species in these and allow species of greater foliage such as Alpinia purpurata and Hedychium coronarium
which develop properly and can produce flowers in CWs.
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