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Abstract
In fields of genetically modified, insect-resistant rice expressing Bacillus thuringiensis (Bt)
proteins, frogs are exposed to Bt Cry proteins by consuming both target and non-target

insects, and through their highly permeable skin. In the present study, we assessed the

potential risk posed by transgenic cry1Ca rice (T1C-19) on the development of a frog spe-

cies by adding purified Cry1Ca protein or T1C-19 rice straw into the rearing water of Xeno-
pus laevis tadpoles, and by feeding X. laevis froglets diets containing rice grains of T1C-19

or its non-transformed counterpart MH63. Our results showed that there were no significant

differences among groups receiving 100 μg L–1 or 10 μg L–1 Cry1Ca and the blank control

in terms of time to completed metamorphosis, survival rate, body weight, body length, organ

weight and liver enzyme activity after being exposed to the Cry1Ca (P > 0.05). Although

some detection indices in the rice straw groups were significantly different from those of the

blank control group (P < 0.05), there was no significant difference between the T1C-19 and

MH63 rice straw groups. Moreover, there were no significant differences in the mortality

rate, body weight, daily weight gain, liver and fat body weight of the froglets between the

T1C-19 and MH63 dietary groups after 90 days, and there were no abnormal pathological

changes in the stomach, intestines, livers, spleens and gonads. Thus, we conclude that the

planting of transgenic cry1Ca rice will not adversely affect frog development.

Introduction
Transgenic rice expressing Bacillus thuringiensis (Bt) insecticidal proteins can effectively pre-
vent and control lepidopteran pests, thus reducing the use of pesticides, but it has not yet been
approved for commercial cultivation. A concern is that the planting of Bt rice may result in
non-target effects [1]. Discussions about such effects have focused primarily on terrestrial
organisms, such as non-target herbivorous insects [2,3], natural enemies [4,5], economically
important insects [6,7], and soil organisms [8]. However, the potential effects of Bt crops on
aquatic organisms has rarely been addressed, in particular since exposure of aquatic organisms
to the plant-produced Cry proteins is regarded as being very low [9].
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Studies have shown that the Bt toxins present in transgenic crop byproducts can enter
stream ecosystems adjacent to agricultural fields through exudation from roots, dispersal of
pollen and movement of post-harvest corn residues [9,10]. Douville et al. detected the existence
of the cry1Ab gene in water, sediment and even in the tissues of mussels near Bt corn fields
[11,12]. Tank et al. sampled the river water downstream of Bt corn fields and found that the
soluble Cry1Ab concentration reached 21 ng L–1 [13]. Additionally, some studies have indi-
cated potential adverse effects of Bt crops on aquatic organisms, including Daphnia magna
[14–16], larvae of Trichoptera [17,18], larvae of a crane fly and an isopod [19]. Moreover, rice,
unlike dry-land crops, requires water during most of its developmental stages. Wang et al.
demonstrated that Bt rice releases detectable amounts of Bt protein into irrigation water [20].
Therefore, the risk of Bt rice for aquatic organisms needs to be addressed.

Frogs are commonly found in rice fields and play an important role in maintaining the bio-
diversity and stability of the paddy field ecosystem. However, frog populations have declined
sharply worldwide in recent decades [21,22]. Frogs might be affected by Bt rice in three ways.
First, frogs could ingest Bt proteins directly by consuming insects that have fed on Bt rice [23].
Second, because their skins are highly permeable, frogs could be exposed to Bt proteins that are
released into the water [20]. Third, frog diets can be affected by changes in food resources. Bt
rice effectively reduces the population of target insects, which may dramatically alter the com-
position of dominant insect species in a rice field as has for example been reported for cotton
[24]. Therefore, it is important to assess the potential non-target effects of Bt rice on the devel-
opment of frog species.

Xenopus laevis is a model animal widely used in environmental toxicology, because it is easy
to feed, readily induced to lay eggs and very sensitive to external contamination [25]. In our
previous study, we assessed the risk posed by transgenic rice expressing a Cry1Ab/1Ac fusion
protein on the development of X. laevis froglets by a 90 day feeding test, and no adverse effects
were observed [26]. Transgenic rice expressing cry1Ca (T1C-19) is a promising Bt rice line for
commercial use that targets lepidopteran rice pests [27,28]. In the present study, X. laevis tad-
poles were exposed to purified Bt Cry1Ab or Bt rice straw, and X. laevis froglets were fed diets
containing rice grains of T1C-19 or its non-transformed isoline to assess the potential risk
posed by Bt rice. Results from this study will provide important information concerning the
environmental safety of Bt rice strains.

Materials and Methods

Ethics Statement
This study was approved by the Animal Research Committee of the Institute of Plant Protec-
tion, Chinese Academy of Agricultural Sciences. All procedures involving experimental ani-
mals were performed in accordance with the NIH guide for the Care and Use of Laboratory
Animals. Briefly, all the animals were humanely treated during this study, the anesthetic proce-
dure with 0.1% MS-222 (Sigma-Aldrich) was adopted, if necessary, to reduce the suffering of
the experimental animals.

Transgenic rice
T1C-19 rice expresses a gene encoding synthetic Cry1Ca under the control of the corn ubiqui-
tin promoter and exhibits resistance to stem borers [27,28]. Its corresponding non-transformed
isoline, MH63, is an elite indica restorer line for cytoplasmic male sterility and is commonly
grown in China. Both rice lines were obtained from Huazhong Agricultural University
(Wuhan, China). The two rice lines were simultaneously planted in two adjacent plots in the
experimental field station of the Institute of Plant Protection, Chinese Academy of Agricultural
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Sciences (39.53°N, 116.70°E). Crops were cultivated according to commonly used local agricul-
tural practices but without insecticide applications.

Rice was harvested at the end of October 2013, and rice stems of each line from 20 cm above
the soil surface were collected and stored at −20°C until used. Conventional nutrient compo-
nents of each rice line were analyzed by the Hangzhou Center for Inspection and Testing for
Quality and Safety of Agricultural and Genetically Modified Products, Ministry of Agriculture,
P. R. China.

Purified Cry1Ca protein
Cry1Ca was purchased from Envirotest-China (agent for EnviroLogix Inc., Portland, Maine,
USA; www.envirotest-china.com). The bioactivity of Cry1Ca was confirmed by performing
sensitive insect bioassays in our laboratory using neonate Chilo suppressalis larvae fed an artifi-
cial diet containing a range of protein concentrations for 7 days. The dietary EC50 (toxin con-
centration resulting in 50% weight reduction compared to the control) was estimated to be
18.1 ng mL–1 [29].

Animals
Mature female and male X. laevis were maintained separately in glass tanks containing dechlo-
rinated water at 21 ± 2°C on a 12-h light/12-h dark cycle, and they were fed chopped pork liver
once per week. One female/male pair of adult frogs was chosen and injected with 100 IU of
human chorionic gonadotropin (Sigma-Aldrich, Saint Louis, MO, USA) to induce breeding.
After eggs were laid, the female/male pair was removed from the breeding tank. Fertilized eggs
were incubated at 22 ± 2°C on a 12-h light/12-h dark cycle. On the fifth day after emergence,
tadpoles were given a daily diet of green algae and Daphnia magna, and after metamorphosis
they were switched to a commercially manufactured frog feed (Cargill Feed Co., LTD, Nanjing,
China).

Effects on the tadpoles
In this study, healthy tadpoles at the Nieuwkoop-Faber stage 46/47 with a uniform body weight
(~22 mg) and body length (~5 mm) were selected and randomly divided into five treatment
groups: those receiving 100 μg L–1 purified Cry1Ca (measured value 30.27 ± 2.15 μg L–1, n = 8),
10 μg L–1 purified Cry1Ca (measured value 3.32 ± 0.12 μg L–1, n = 8), T1C-19 rice straw (aver-
age Cry1Ca protein concentration 2.15 ± 0.76 μg g–1, n = 8), MH63 rice straw, and a blank con-
trol group. There were 64 tadpoles in each of the groups given Cry1Ca and in the blank control
group. The two groups given rice straw each contained 48 tadpoles. The feeding containers
were 1-L beakers, and four tadpoles were raised in each beaker. The rearing water was replaced
every 2 days over the experimental period. For the rice straw groups, 0.5 g of T1C-19 or MH63
rice straw was added to each beaker when the rearing water was replaced.

The development and survival of the tadpoles were recorded twice per day (9:00 am, 9:00
pm) until metamorphosis occurred. Dead tadpoles were recorded and an autopsy was immedi-
ately conducted. Tadpoles at the near-death stage (indicated by swimming with the belly up, or
tumble swimming) were removed, anesthetized with MS-222 and dissected. At the end of the
experiment, the tadpoles were anaesthetized by immersion in an ice water mixture containing
0.1% MS-222, and their body weights and body lengths (from the tip of the snout to the tip of
the cloaca) were measured. Then, the froglets were dissected, and their hearts, livers, kidneys,
fat bodies and intestines were collected and weighed. At the same time, the separated livers
were placed in 1.5-mL centrifuge tubes for cryopreservation and used to determine the follow-
ing parameters: albumin (ALB), total protein (TP), alkaline phosphatase (AKP) activity,
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alanine aminotransferase (ALT) activity, aspartate aminotransferase (AST) activity and cholin-
esterase (CHE) activity. The determination methods and the operational processes were com-
pleted in strict accordance with the appropriate kits’ directions (JianCheng Bioengineering
Institute, Nanjing, China).

Effects on the froglets
A total of 120 froglets with uniform body weight (~1 g) were equally divided into three experi-
mental groups (T1C-19, MH63 and blank control groups). Each experimental group was ran-
domly divided into four glass jars (20 × 34 × 24 cm) to give four replicates, and each replicate
group included 10 froglets. The froglets of the blank control group were fed diets designed for
Rana catesbeiana (Cargill Feed Co., LTD, Nanjing, China). The diets of the froglets in the T1C-
19 and MH63 groups were prepared according to the conventional nutrient composition of the
blank control diet, but the experimental rice grain was the largest component. The two self-
made test diets contained 30% rice grain, and the detailed diet compositions are shown in
Table 1. The conventional nutrient composition of the diets was measured by the Beijing
Research Institute for Nutritional Sources (Beijing, China), and the results are shown in
Table 2. The Cry1Ca concentrations in the diets were 0.17 ± 0.03 (n = 4), 0 and 0 μg g–1 for the
T1C-19, MH63 and blank control diets, respectively.

From 0 to 30 days, 31 to 60 days and 61 to 90 days, 2.5, 3.0 and 4.0 g, respectively, of feed
was supplied daily and each jar contained 2, 3 and 4 L, respectively, of dechlorinated water.

Table 1. Composition of the transgenic cry1Ca rice (T1C-19) and the non-transformed isoline (MH63)
test diets for Xenopus laevis froglets.

Ingredient (%) T1C-19 diet MH63 diet

Maize 14.50 14.50

Soybean meal 14.50 14.50

Fishmeal 40.00 40.00

T1C-19 rice grain 30.00 –

MH63 rice grain – 30.00

Additive * 1.00 1.00

Total 100.00 100.00

* Contains in mg kg–1 diet: iron, 70; copper, 11; manganese, 70; zinc, 65; iodine, 0.49; selenium, 0.3;

vitamin A, 8000 (IU); vitamin D, 2400 (IU); vitamin E, 20 (IU); vitamin K, 0.5 (IU); vitamin B1, 2; vitamin B2,

8; vitamin B6, 3.5; vitamin B12, 0.01; calcium pantothenate, 20; niacin, 35; folic acid, 0.75; and biotin, 0.26.

doi:10.1371/journal.pone.0145412.t001

Table 2. Conventional nutrient composition of the transgenic cry1Ca rice (T1C-19), the non-trans-
formed isoline (MH63) and the blank control diets for Xenopus laevis froglets (n = 1).

Ingredient T1C-19 MH63 Blank control

Crude protein (%) 38.60 39.30 41.80

Crude fat (g kg–1) 59.00 61.00 81.00

Crude fiber (%) 2.90 2.80 2.30

Crude ash (%) 8.20 8.10 9.90

Moisture content (%) 9.40 9.40 6.50

Total phosphorus (%) 1.16 1.16 1.39

Calcium (g kg–1) 14.00 13.00 16.00

Note: Data in the table are measured values.

doi:10.1371/journal.pone.0145412.t002
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The self-made feed was mixed with water in a 1:1 ratio before each feeding. The prepared feed
was pressed into strips using a 5-mL injector, and then the strips were cut into feed portions of
~2 to 4 mm. These prepared portions were placed into containers to feed X. laevis. The rearing
water was monitored daily to maintain 20–22°C and renewed every 3 days. The froglets were
weighed and recorded every 15 days (0, 15, 30, 45, 60, 75 and 90 d) for a total of seven weigh-
ings during the 90-day experimental period.

After the froglets were fed for 90 days, they were anaesthetized by immersion in ice water
mixture containing 0.1% MS-222 and then dissected. The livers and fat bodies were weighed,
and the ratios between liver or fat body weight and body weight were calculated. Then, eight
froglets (four males and four females) in each group were randomly selected and their stom-
achs, intestinal tracts, hearts, livers, spleens, testes and ovaries were fixed in 4% neutral forma-
lin for 48 h, embedded in paraffin, sectioned and stained with hematoxylin and eosin. The
samples were analyzed and photographed using a microscope (BX63, Olympus, Japan).

Data analysis
All data are represented as means ± standard error (SE) unless otherwise indicated. The com-
parisons of the mortality rates between the different treatment groups and the blank control
group were conducted using the Chi-square test Bonferroni corrected. Differences in the time
for complete metamorphosis (TCM), body weight, body length, organ weight and liver enzyme
activities among different treatments were analyzed using a one-way analysis of variance
(ANOVA) followed by a least significant difference (LSD) multiple comparison test. Differ-
ences were considered significant at P< 0.05.

Results

Survival and development of the tadpoles
The metamorphosis rates on different dates during the different treatments were analyzed and
are shown in Fig 1. The order of the TCM for the groups was: MH63 rice straw (35.27 ± 0.93 d)
> T1C-19 rice straw (34.29 ± 0.80 d)> 100 μg L–1 Cry1Ca protein (33.91 ± 0.58 d)> 10 μg L–1

Cry1Ca protein (33.50 ± 0.48 d)> blank control (33.20 ± 0.41 d), but there were no significant
differences among the five different treatments (one way ANOVA: df = 4, 67; F = 1.53; P = 0.20).

The effects of different treatments on the tadpoles’ survival rate, body weight and body
length are shown in Table 3. The results showed that, the survival rates of rice straw-supple-
mented groups were lower than those of the blank control group and the Cry1Ca-supple-
mented groups, but the differences were not significant. Meanwhile, there were no significant
differences in the body length among the five treatments (one way ANOVA: df = 4, 67;
F = 1.54; P = 0.20). After long-term exposure to 10 and 100 μg L–1 Cry1Ca, there were no sig-
nificant differences in the larval body weights when compared with those in the blank control.
The body weight in the MH63 rice straw group was significantly lower than that in the blank
control group, but no significant difference was observed between the T1C-19 and MH63 rice
straw groups (Table 3).

Organ development of the tadpoles
There were no significant differences in the kidney or intestinal weights among the five treat-
ments (all P> 0.05, Table 3). When compared with the blank control, the weights of the heart,
liver as well as the fat body in the groups supplied 10 and 100 μg L–1 Cry1Ca demonstrated no
significant differences. The weights of the liver and fat body in the T1C-19 and MH63 rice
straw groups were significantly lower than those of the blank control group and the Cry1Ca-
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supplemented groups. For heart weight, the only difference among the five treatments was
observed between the T1C-19 rice straw and 10 μg L–1 Cry1Ca-supplemented groups. How-
ever, none of the measured indices showed any significant difference between the T1C-19 and
MH63 rice straw groups (Table 3).

Liver enzyme activity of the tadpoles
Among the five treatment groups, no significant differences were found in TP, ALT, AST and
AKP (all P> 0.05, Table 4). The levels of ALB in the rice straw–supplemented groups were

Fig 1. The time to completed metamorphosis (TCM) curves of Xenopus laevis tadpoles exposed to purified Cry1Ca and transgenic cry1Ca rice
(T1C-19) straw. Control: blank control; 1C-10: 10 μg L–1 Cry1Ca protein; 1C-100: 100 μg L–1 Cry1Ca protein; MH63: MH63 rice straw; T1C-19: T1C-19 rice
straw.

doi:10.1371/journal.pone.0145412.g001

Table 3. Survival and development of Xenopus laevis tadpoles exposed to purified Cry1Ca protein, transgenic cry1Ca rice (T1C-19) straw and
non-transformed isoline (MH63) straw. The experiment was initiated with 64 (n = 16 for 10, 100 μg L–1 Cry1Ca protein and blank control groups) or 48
(n = 12 for T1C-19 and MH63 rice straw groups) tadpoles.

Index Blank control 10 μg L–1 Cry1Ca 100 μg L–1 Cry1Ca T1C-19 rice straw MH63 rice straw Statistics (One-way ANOVA)

Survival rate (%)* 93.75 90.63 89.06 87.50 77.08 –

Body length (mm) 19.83 ± 0.27 20.24 ± 0.16 19.94 ± 0.19 20.10 ± 0.11 19.50 ± 0.28 df = 4, 67; F = 1.54; P = 0.20

Body weight (g) 1.07 ± 0.04a 1.03 ± 0.03a 0.97 ± 0.03ab 0.96 ± 0.03ab 0.89 ± 0.03b df = 4, 67; F = 4.25; P < 0.01

Fat body (mg) 10.59 ± 0.90a 10.27 ± 0.98a 8.18 ± 0.95a 5.80 ± 0.89b 4.16 ± 0.72b df = 4, 67; F = 8.20; P < 0.01

Heart (mg) 7.27 ± 0.23ab 7.56 ± 0.41a 6.59 ± 0.34ab 7.34 ± 0.50ab 6.00 ± 0.25b df = 4, 67; F = 2.95; P = 0.03

Intestine (mg) 32.79 ± 1.49 34.39 ± 1.19 31.70 ± 1.36 31.30 ± 0.81 32.03 ± 1.36 df = 4, 67; F = 0.90; P = 0.47

Kidney (mg) 9.08 ± 0.50 8.36 ± 0.43 8.71 ± 0.45 7.91 ± 0.42 7.98 ± 0.53 df = 4, 67; F = 1.07; P = 0.38

Liver (mg) 37.07 ± 1.05a 36.56 ± 1.47a 34.42 ± 1.31a 27.91 ± 1.34b 27.96 ± 2.04b df = 4, 67; F = 7.81; P < 0.01

Data in the table are means ± SE except for the survival rate

* Chi-square test with Bonferroni corrections (adjusted α = 0.0125)

Different small letters within the same row mean significant difference (P < 0.05).

doi:10.1371/journal.pone.0145412.t003
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significantly lower than those of the blank control and Cry1Ca-supplemented groups (P< 0.05,
Table 4). The level of CHE in the MH63 rice straw–supplemented group was significantly lower
than those of the blank control and Cry1Ca-supplemented groups. However, no significant dif-
ferences between the T1C-19 andMH63 rice straw groups were observed (Table 4).

Survival and development of froglets
The growth curves of froglets fed control, MH63 rice or T1C-19 rice diets are shown in Fig 2.
The fitted curve for the blank control is y = 0.6266 x + 0.2160 (r2 = 0.9789), for the MH63 die-
tary group is y = 0.5060 x + 0.5490 (r2 = 0.9971) and for the T1C-19 dietary group is y = 0.5024
x + 0.5100 (r2 = 0.9908). The data suggested that the growth rate of the blank control group
was greater than those of the MH63 and T1C-19 dietary groups, which had almost overlapping
growth curves (Fig 2).

During the feeding experiment, there were no deaths in the three treatment groups, so the
survival rate was 100% (Table 5). After 90 days of feeding, the mean final body weight, daily
weight gain, liver weight, fat body weight and fat body/body weight ratio of the froglets in the
blank control group were significantly higher than those of the T1C-19 and MH63 dietary
groups (all P< 0.05, Table 5), whereas no significant differences were observed between the
T1C-19 and MH63 groups (Table 5). No significant difference in the hepatosomatic index was
observed between any group.

Table 4. Protein and enzyme activity in livers of Xenopus laevis tadpoles exposed to purified Cry1Ca, transgenic cry1Ca rice (T1C-19) straw and
non-transformed isoline (MH63) straw (n = 24).

Index Blank control 10 μg L–1 Cry1Ca 100 μg L–1 Cry1Ca T1C-19 rice straw MH63 rice straw Statistics (One-way ANOVA)

ALB (g g–1) 0.15 ± 0.01a 0.14 ± 0.01a 0.14 ± 0.01a 0.11 ± 0.01b 0.11 ± 0.00b df = 4, 115; F = 13.02; P < 0.01

TP (g g–1) 0.21 ± 0.01 0.20 ± 0.01 0.21 ± 0.01 0.19 ± 0.01 0.19 ± 0.01 df = 4, 115; F = 1.41; P = 0.24

AKP (U gprot–1) 20.30 ± 1.50 19.42 ± 1.29 20.06 ± 1.75 17.67 ± 1.22 19.35 ± 1.12 df = 4, 115; F = 0.54; P = 0.70

ALT (U gprot–1) 14.49 ± 0.70 15.38 ± 0.79 14.65 ± 0.75 16.40 ± 0.99 15.86 ± 0.91 df = 4, 115; F = 0.93; P = 0.45

AST (U gprot–1) 17.66 ± 1.21 18.71 ± 0.93 16.75 ± 1.00 18.68 ± 1.34 17.15 ± 0.97 df = 4, 115; F = 0.65; P = 0.63

CHE (U mgprot–1) 6.43 ± 0.40ab 7.05 ± 0.32a 6.68 ± 0.42ab 5.73 ± 0.41bc 5.19 ± 0.30c df = 4, 115; F = 4.00; P < 0.01

Data in the table are means ± SE

Different small letters within the same row mean significant difference (P < 0.05).

doi:10.1371/journal.pone.0145412.t004

Fig 2. The growth curves of Xenopus laevis froglets (body weight) when fed diets containing
transgenic cry1Ca rice (T1C-19) or non-transformed rice isoline (MH63) grains, or a blank control diet
for 90 days (n = 4).

doi:10.1371/journal.pone.0145412.g002
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Gross necropsy and histopathology of froglets
Histological examinations of the stomach, intestine (ileum), liver, spleen, testes and ovaries are
shown in Fig 3. There were no gross pathological findings during the necropsies, and no
group-related histopathological abnormalities were observed.

Discussion
Until now, studies on the effects of toxic and harmful substances on the development of X. lae-
vis tadpoles have focused on insecticides, such as endosulfan and triazophos [30,31], herbi-
cides, such as acetochlor and butachlor ammonium [32], and heavy metal ions found in
industrial wastewater, such as Cu2+ and Zn2+ [33]. However, there have been no reports on the
effects of Bt crops and their expression products on tadpole development. Our previous study
showed that the peak water concentration of Cry1Ca protein leached from T1C-19 straw
under laboratory conditions was 5.18 μg L–1 in a worst-case scenario and the maximum value
was 6.51 μg L–1 [34]. Moreover, under natural conditions, the Bt content in the water is less
than 100 ng L–1 [13,20]. In this study, although the concentrations of Bt protein added were
low (10 and 100 μg L–1), they were ~2- to 20-fold higher than that in the worst-case scenario
[9] or in the natural environment, which met the requirements of a Tier-1 test system [35] for
the environmental safety assessment of Bt crops.

Oka et al. studied the effects of atrazine on X. laevis tadpoles and found that 35–56 days
were needed for the 46-stage tadpoles to complete their metamorphoses [36]. In contrast, Coa-
dya et al. showed that 72.8 ± 0.4 days were needed for the tadpoles in all experimental groups
to complete their metamorphoses [37]. In the present study, tadpoles in the blank control
group needed ~33 days from the 46-stage to complete metamorphosis. The differences in the
TCMs could be caused by many factors, such as hazard substances, water quality, nutrient sup-
ply or feeding density [38,39]. Our results showed that the TCMs of the five different treat-
ments were relatively consistent, indicating that the effects of pure Cry1Ca protein or rice
straw on the TCM were not significant. However, most of the detection indices, such as liver
and fat body weights and liver ALB level, in the rice straw groups showed significant differences
when compared with those of the blank control group. Possible reasons may include a change
in water quality, such as the pH decreasing to ~4.5 [34], which is lower than the optimal pH
value (6 to 8) for tadpole growth, after the addition of the rice straw. In addition,

Table 5. Survival and organ weight of Xenopus laevis froglets fed diets containing transgenic cry1Ca rice (T1C-19) grains and non-transformed
isoline (MH63) grains for 90 days (n = 4).

Index Blank control T1C-19 MH63 Statistic (One-way ANOVA)

Survival rate (%) 100 100 100 –

Initial weight (g) 1.08 ± 0.03 1.09 ± 0.03 1.08 ± 0.03 df = 2, 9; F = 0.02; P = 0.98

Final weight (g) 5.21 ± 0.15b 4.04 ± 0.23a 4.18 ± 0.23a df = 2, 9; F = 10.21; P < 0.01

Daily weight gain (g)* 0.05 ± 0.00b 0.03 ± 0.00a 0.03 ± 0.00a df = 2, 9; F = 46.48; P < 0.01

Liver weight (g) 0.21 ± 0.01b 0.15 ± 0.01a 0.16 ± 0.01a df = 2, 9; F = 11.51; P < 0.01

Fat body (g) 0.16 ± 0.01b 0.11 ± 0.01a 0.12 ± 0.01a df = 2, 9; F = 16.45; P < 0.01

Liver/body weight (%) 3.96 ± 0.07 3.76 ± 0.08 3.83 ± 0.09 df = 2, 9; F = 1.69; P = 0.19

Fat body/body weight (%) 3.15 ± 0.07b 2.79 ± 0.08a 2.79 ± 0.08a df = 2, 9; F = 7.32; P < 0.01

Data in the table are means ± SE except for the survival rate

* Daily weight gain = (Final weight–initial weight) / 90 days

Different small letters within the same row mean significant difference (P < 0.05).

doi:10.1371/journal.pone.0145412.t005
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allelochemicals, such as phenolic acids, hydroxamic acids, fatty acids, terpenes, indole and phe-
nolic acids [40], were probably released from the rice straw, and these substances may have
had adverse effects on tadpole growth. However, the differences were not significant between
the T1C-19 and MH63 rice straw groups, which indicated that the insertion of the Bt gene did
not produce any significant unintended effects on tadpole development.

With regards to the impact of Bt crops on non-target organisms, studies have shown that
there were no significant changes in some growth indices, but some physiological and bio-
chemical indices were significantly changed [41]. However, in this study, the examined indices
of the groups supplied 100 μg L–1 and 10 μg L–1 pure Cry1Ca protein showed no significant dif-
ferences when compared with those of the blank control group. There were significant differ-
ences between the ALB and CHE levels observed in the T1C-19 and MH63 rice straw groups
and the blank control group, but the differences were not significant between the T1C-19 and
MH63 groups. The other indices showed no significant differences with the blank control
group. These results were consistent with the growth and development detection indices of the
present experiment. They also confirmed the hypothesis that the Cry1Ca protein and the T1C-
19 rice did not have negative impacts on tadpole growth.

Cry proteins from Bt have a high specificity, acting via specific receptors on the intestinal
wall of the epithelial cells of sensitive insects, causing paralysis of the insect’s targeted intestinal
cells, which affects their food consumption [42]. The intestinal epithelial cells of other animals
do not have the protein’s binding site, and thus exposure to the protein should not affect other
animals. At present, food and feed safety research on Bt rice mainly uses rats [43,44], broiler
chickens [45] and pigs [46] as research subjects for 30- or 90-day toxicity tests or allergenicity
tests, and all of these studies showed that the safety of the Bt-transgenic and non-transformed
parental lines were comparable.

Cry1C is a Bt protein that shows good resistance to lepidopteran pests [47], as well as good
heat stability. However, artificial gastrointestinal fluids can quickly digest this protein in vitro,
and no adverse effects were observed in rats fed 5 g kg–1 protein per weight [48]. In the present
study, to assess the safety of Bt rice on a frog species, we exposed X. laevis froglets to Cry1Ca
proteins by feeding them a diet containing transgenic cry1Ca rice grains for 90 days. There
were no significant differences in the survival rates between the three different treatments,
whereas the body, liver and fat body weights in the blank control group were significantly
higher than those in the test T1C-19 and MH63 dietary groups. However, there was no signifi-
cant difference between the rice dietary groups. The differences between the rice fed groups
and the blank control may have been caused by a slight difference between the conventional
nutrient composition of the blank control and that of the self-made test diets (Table 2). Addi-
tionally, the blank control was an aquacultureal feed, whereas the feed of the test groups was
self-made and dissolved in water for a short time, and thus it may not have been conducive to
froglet uptake. In our previous study, there were no significant differences among the diets con-
taining rice grain and blank control groups in terms of body weight and organ weights [26],
this may due to different feed formulation, and different feed production methods compared
with the present study. However, there were no significant poisoning symptoms in the test ani-
mals and no abnormal pathology was observed by gross anatomy after 90 days of feeding in the
present study. In addition, there were no abnormal phenomena in the microstructures of the
stomachs, intestinal tracts, livers, kidneys or other important organs (Fig 3).

Fig 3. Histopathological staining of tissues from Xenopus laevis froglets after consuming the transgenic cry1Ca rice (T1C-19) test diet (a), the non-
transformed isoline (MH63) test diet (b), or the blank control diet (c) for 90 days.

doi:10.1371/journal.pone.0145412.g003
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Conclusions
In the present study, X. laevis were exposed to Bt proteins by adding high doses of purified
Cry1Ca protein or T1C-19 rice straw to the rearing water, or by feeding them a diet containing
T1C-19 rice grains, which carry the gene encoding Cry1Ca. However, the development of tad-
poles and froglets was not adversely affected. Based on these results, we conclude that the
planting of transgenic cry1Ca rice will not adversely affect frog development.

Acknowledgments
We thank Professor Yongjun Lin (Huazhong Agricultural University, Wuhan, China) for
kindly providing transgenic rice seeds.

Author Contributions
Conceived and designed the experiments: XC JD YP. Performed the experiments: JW XC HZ.
Analyzed the data: JW XC YL. Contributed reagents/materials/analysis tools: HZ YL. Wrote
the paper: XC JW.

References
1. Lu C (2010) The first approved transgenic rice in China. GM crops 1(3): 113–115. doi: 10.4161/gmcr.1.

3.12377 PMID: 21865866

2. Akhtar ZR, Tian JC, Chen Y, Fang Q, Hu C, Chen M, et al. (2010) Impacts of six bt rice lines on nontar-
get rice feeding thrips under laboratory and field conditions. Environmental Entomology 39: 715–726.
doi: 10.1603/EN09095 PMID: 20388307

3. Mannakkara A, Niu L, MaW, Lei C (2013) Zero effect of Bt rice on expression of genes coding for diges-
tion, detoxification and immune responses and developmental performances of Brown Planthopper
Nilaparvata lugens (Stål). Journal of Insect Physiology 59: 985–993. doi: 10.1016/j.jinsphys.2013.07.
009 PMID: 23920284

4. Tian JC, Chen Y, Li ZL, Li K, Chen M, Peng YF, et al. (2012) Transgenic Cry1Ab rice does not impact
ecological fitness and predation of a generalist spider. PLoS ONE 7(4): e35164. doi: 10.1371/journal.
pone.0035164 PMID: 22511982

5. Wang YY, Li YH, Romeis J, Chen XP, Zhang J, Chen HY, et al. (2012) Consumption of Bt rice pollen
expressing Cry2Aa does not cause adverse effects on adult Chrysoperla sinica Tjeder (Neuroptera:
Chrysopidae). Biological Control 61: 246–251.

6. Yao HW, Jiang CY, Ye GY, Hu C, Peng YF (2008) Toxicological assessment of pollen from different Bt
rice lines on Bombyx mori (Lepidoptera: Bombyxidae). Environmental Entomology 37: 825–837.
PMID: 18559190

7. Yang Y, Liu Y, Cao F, Chen X, Cheng L, Romeis J, et al. (2014) Consumption of Bt rice pollen contain-
ing Cry1C or Cry2A protein poses a low to negligible risk to the silkworm Bombyx mori (Lepidoptera:
Bombyxidae). PLoS ONE 9(7): e102302. doi: 10.1371/journal.pone.0102302 PMID: 25014054

8. Liu W, Lu HH, WuWX,Wei QK, Chen YX, Thies JE (2008) Transgenic Bt rice does not affect enzyme
activities and microbial composition in the rhizosphere during crop development. Soil Biology & Bio-
chemistry 40: 475–486.

9. Carstens K, Anderson J, Bachman P, Schrijver AD, Dively G, Federici B, et al. (2012) Genetically modi-
fied crops and aquatic ecosystems: considerations for environmental risk assessment and nontarget
organism testing. Transgenic Research 21: 813–842. doi: 10.1007/s11248-011-9569-8 PMID:
22120952

10. Viktorov AG (2011) Transfer of Bt corn byproducts from terrestrial to stream ecosystems. Russian Jour-
nal of Plant Physiology 58: 543–548.

11. Douville M, Gagné F, Blaise C, André C (2007) Occurrence and persistence of Bacillus thuringiensis
(Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment. Ecotoxicology and Environmen-
tal Safety 66: 195–203. PMID: 16499967

12. Douville M, Gagné F, André C, Blaise C (2009) Occurrence of the transgenic Bt corn cry1Ab gene in
freshwater mussle (Elliptio complanata) near corn field: Evidence of exposure by bacterial ingestion.
Ecotoxicology and Environmental Safety 72: 17–25. doi: 10.1016/j.ecoenv.2008.02.006 PMID:
18397807

Effects of Bt Rice on Xenopus laevis

PLOSONE | DOI:10.1371/journal.pone.0145412 December 22, 2015 11 / 13

http://dx.doi.org/10.4161/gmcr.1.3.12377
http://dx.doi.org/10.4161/gmcr.1.3.12377
http://www.ncbi.nlm.nih.gov/pubmed/21865866
http://dx.doi.org/10.1603/EN09095
http://www.ncbi.nlm.nih.gov/pubmed/20388307
http://dx.doi.org/10.1016/j.jinsphys.2013.07.009
http://dx.doi.org/10.1016/j.jinsphys.2013.07.009
http://www.ncbi.nlm.nih.gov/pubmed/23920284
http://dx.doi.org/10.1371/journal.pone.0035164
http://dx.doi.org/10.1371/journal.pone.0035164
http://www.ncbi.nlm.nih.gov/pubmed/22511982
http://www.ncbi.nlm.nih.gov/pubmed/18559190
http://dx.doi.org/10.1371/journal.pone.0102302
http://www.ncbi.nlm.nih.gov/pubmed/25014054
http://dx.doi.org/10.1007/s11248-011-9569-8
http://www.ncbi.nlm.nih.gov/pubmed/22120952
http://www.ncbi.nlm.nih.gov/pubmed/16499967
http://dx.doi.org/10.1016/j.ecoenv.2008.02.006
http://www.ncbi.nlm.nih.gov/pubmed/18397807


13. Tank JL, Rosi-Marshall EJ, Royer TV, Whiles MR, Griffiths NA, Frauendorf TC, et al. (2010) Occurrence
of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricul-
tural landscape. Proceedings of the National Academy of Sciences of the United States of America
107: 17645–17650. doi: 10.1073/pnas.1006925107 PMID: 20876106

14. Bøhn T, Primicerio R, Hessen DO, Traavik T (2008) Reduced fitness of Daphnia magna fed a Bt-trans-
genic maize variety. Archives of Environmental Contamination and Toxicology 55: 584–592. doi: 10.
1007/s00244-008-9150-5 PMID: 18347840

15. Bøhn T, Traavik T, Primicerio R (2010) Demographic responses of Daphnia magna fed transgenic Bt-
maize. Ecotoxicology 19: 419–430. doi: 10.1007/s10646-009-0427-x PMID: 19859805

16. Raybould A, Vlachos D (2011) Non-target organism effects tests on Vip3A and their application to the
ecological risk assessment for cultivation of MIR162 maize. Transgenic Research 20: 599–611. doi:
10.1007/s11248-010-9442-1 PMID: 20839052

17. Rosi-Marshall EJ, Tank JL, Royer TV, Whiles MR, Evans-White M, Chambers C, et al. (2007) Toxins in
transgenic crop byproducts may affect headwater stream ecosystems. Proceedings of the National
Academy of Sciences of the United States of America 104, 16204–16208. PMID: 17923672

18. Chambers CP, Whiles MR, Rosi-Marshall EJ, Tank JL, Royer TV, Griffiths NA, et al. (2010) Responses
of streammacroinvertebrates to Bt maize leaf detritus. Ecological Applications 20: 1949–1960. PMID:
21049882

19. Jensen PD, Dively GP, Swan CM, LampWO (2010). Exposure and nontarget effects of transgenic Bt
corn debris in streams. Environmental Entomology 39: 707–714. doi: 10.1603/EN09037 PMID:
20388306

20. Wang YM, Hu HW, Huang JC, Li JH, Liu B, Zhang GA (2013) Determination of the movement and per-
sistence of Cry1Ab/1Ac protein released from Bt transgenic rice under field and hydroponic conditions.
Soil Biology & Biochemistry 58: 107–114.

21. Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, et al. (2006) Pesticide mixtures, endocrine
disruption, and amphibian declines: are we underestimating the impact? Environmental Health Per-
spectives 114: 40–50.

22. Blaustein AR, Han BA, Relyea RA, Johnson PTJ, Buck JC, Gervasi SS, et al. (2011) The complexity of
amphibian population declines: understanding the role of cofactors in driving amphibian losses. Annals
of the New York Academy of Sciences 1223: 108–119. doi: 10.1111/j.1749-6632.2010.05909.x PMID:
21449968

23. Zhang QL, Li YH, Hua HX, Yang CJ, Wu HJ, Peng YF (2013) Exposure degree of important non-target
arthropods to Cry2Aa in Bt rice fields. Chinese Journal of Application Ecology 24: 1647–1651.

24. Lu YH, Wu KM, Jiang YY, Xia B, Li P, Feng HQ, et al. (2010) Mirid bug outbreaks in multiple crops cor-
related with wide-scale adoption of Bt cotton in China. Science 328: 1151–1154. doi: 10.1126/science.
1187881 PMID: 20466880

25. O'Rourke DP (2007) Amphibians used in research and teaching. ILAR Journal 48: 183–187. PMID:
17592182

26. Zhu HJ, Chen Y, Li YH, Wang JM, Ding JT, Chen XP, et al. (2015) A 90-day safety assessment of
genetically modified rice expressing Cry1Ab/1Ac protein using an aquatic animal model. Journal of
Agriculture and Food Chemistry 63(14): 3627–3633.

27. Zheng XS, Yang YJ, Xu HX, Chen H, Wang BJ, Lin YJ, et al. (2011) Resistance performances of trans-
genic bt rice lines T2A-1 and T1c-19 againstCnaphalocrocis medinalis (Lepidoptera: Pyralidae). Jour-
nal of Economic Entomology 104: 1730–1735. PMID: 22066204

28. Wang YN, Ke KQ, Li YH, Han LZ, Liu YM, Hua HX, et al. (2014) Comparison of three transgenic Bt rice
lines for insecticidal protein expression and resistance against a target pest, Chilo suppressalis (Lepi-
doptera: Crambidae). Insect Science doi: 10.1111/1744-7917.12178

29. Li Y, Chen X, Hu L, Romeis J, Peng Y (2014) Bt rice producing Cry1C protein does not have direct detri-
mental effects on the green lacewingChrysoperla sinica (Tjeder). Environmental Toxicology and
Chemistry 33: 1391–1397. doi: 10.1002/etc.2567 PMID: 24619941

30. Jones DK, Hammond JI, Relyea RA (2009) Very highly toxic effects of endosulfan across nine speices
of tadpoles: lag effects and family-level sensitivity. Environmental Toxicology and Chemistry 28: 1939–
1945. doi: 10.1897/09-033.1 PMID: 19358624

31. Sparling DW, Fellers G (2007) Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon
derivatives to larval Rana boylii. Environment Pollution 147: 535–539.

32. Geng BR, Yao D, Xue QQ (2005) Acute toxicity of the pesticide dichlorvos and the herbicide butachlor
to tadpoles of four anuran species. Bulletin of Environmental Contamination and Toxicology 75: 343–
349. PMID: 16222508

Effects of Bt Rice on Xenopus laevis

PLOSONE | DOI:10.1371/journal.pone.0145412 December 22, 2015 12 / 13

http://dx.doi.org/10.1073/pnas.1006925107
http://www.ncbi.nlm.nih.gov/pubmed/20876106
http://dx.doi.org/10.1007/s00244-008-9150-5
http://dx.doi.org/10.1007/s00244-008-9150-5
http://www.ncbi.nlm.nih.gov/pubmed/18347840
http://dx.doi.org/10.1007/s10646-009-0427-x
http://www.ncbi.nlm.nih.gov/pubmed/19859805
http://dx.doi.org/10.1007/s11248-010-9442-1
http://www.ncbi.nlm.nih.gov/pubmed/20839052
http://www.ncbi.nlm.nih.gov/pubmed/17923672
http://www.ncbi.nlm.nih.gov/pubmed/21049882
http://dx.doi.org/10.1603/EN09037
http://www.ncbi.nlm.nih.gov/pubmed/20388306
http://dx.doi.org/10.1111/j.1749-6632.2010.05909.x
http://www.ncbi.nlm.nih.gov/pubmed/21449968
http://dx.doi.org/10.1126/science.1187881
http://dx.doi.org/10.1126/science.1187881
http://www.ncbi.nlm.nih.gov/pubmed/20466880
http://www.ncbi.nlm.nih.gov/pubmed/17592182
http://www.ncbi.nlm.nih.gov/pubmed/22066204
http://dx.doi.org/10.1111/1744-7917.12178
http://dx.doi.org/10.1002/etc.2567
http://www.ncbi.nlm.nih.gov/pubmed/24619941
http://dx.doi.org/10.1897/09-033.1
http://www.ncbi.nlm.nih.gov/pubmed/19358624
http://www.ncbi.nlm.nih.gov/pubmed/16222508


33. Dobrovoljc K, Falnoga I, ŽnidaričMT, Mazej D, Ščančar J, Bulog B (2012) Cd, Cu, Zn, Se, and metal-
lothioneins in two amphibians,Necturus maculosus (Amphibia, Caudata) and Bufo bufo (Amphibia,
Anura). Biological Trace Element Research 150: 178–194. doi: 10.1007/s12011-012-9461-2 PMID:
22700180

34. Wang J, Chen X, Li Y, Zhu H, Ding J, Peng Y (2014) Effect of straw leachates from Cry1Ca-expressing
transgenic rice on the growth of Chorella Pyrenoidosa. Environmental Toxicology and Chemistry 33:
1156–1162. doi: 10.1002/etc.2535 PMID: 24478192

35. Li YH, Romeis J, Wu KM, Peng YF (2014) Tier-1 assays for assessing the toxicity of insecticidal pro-
teins produced by genetically engineered plants to non-target arthropods. Insect Science 21: 125–134.
doi: 10.1111/1744-7917.12044 PMID: 23956068

36. Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, et al. (2008) Effect of atrazine on metamor-
phosis and sexual differentiation in Xenopus laevis. Aquatic Toxicology 87: 215–226. doi: 10.1016/j.
aquatox.2008.02.009 PMID: 18395276

37. Coadya KK, Murphy MB, Villeneuve DL, Hecker M, Jones PD, Carr JA, et al. (2005) Effects of atrazine
on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid
concentrations in Xenopus laevis. Ecotoxicology and Environmental Safety 62: 160–173. PMID:
16112017

38. Indermaur L, Schmidt BR, Tockner K, Schaub M (2010) Spatial variation in abiotic and biotic factors in
a floodplain determine anuran body size and growth rate at metamorphosis. Oecologia 163: 637–649.
doi: 10.1007/s00442-010-1586-4 PMID: 20204410

39. Morey S, Reznick D (2001) Effects of larval density on postmetamorphic spadefoot toads (Spea ham-
mondii). Ecology 82: 510–522.

40. Rimando AM, Duke SO (2003) Studies on rice allelochemicals. In: Smith CW, Dilday R H (Eds). Rice,
origin, histroy, technology and production. JohnWiley & Sons, Inc., Hoboken, New Jersey, pp. 221–
244.

41. Zhou J, Xiao K, Wei B, Wang Z, Tian Y, Tian Y, et al. (2014) Bioaccumulation of Cry1Ab protein from an
herbivore reduces anti-oxidant enzyme activities in two spider species. PLoS ONE 9(1): e84724. doi:
10.1371/journal.pone.0084724 PMID: 24454741

42. Hofmann C, Vanderbruggen H, Höfte H, Van Rie J, Jansens S, Van Mellaert H (1988) Specificity of
Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in
the brush border membrane of target insect midgets. Proceedings of the National Academy of Sciences
of the United States of America 85: 7844–7848. PMID: 2856194

43. Wang ZH, Wang Y, Cui HR, Xia YW, Altosaar I, Shu QY (2002) Toxicological evaluation of transgenic
rice flour with a synthetic cry1Ab gene from Bacillus thuringiensis. Journal of the Science of Food and
Agriculture 82: 738–744.

44. Schrøer M, Poulsen M, Wilcks A, Kroghsbo S, Miller A, Frenzel T, et al. (2007) A 90-day safety study of
genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food
and Chemical Toxicology 45: 339–349. PMID: 17050059

45. Qin HF (2012) Safety assessment of rice genetically modified with Cry1Ac and sck by feeding studies
on broilers. Dissertation, Chinese Academy of Agriculture Science.

46. Cao ZH, Wang ZB, Gu XH (2014) Residues and organ damage of exogenous gene and protein from
transgenic Bt brown rice in growing pigs. Chinese Journal of Animal Nutrition 26: 1908–1915.

47. Avisar D, Eilenberg H, Keller M, Reznik N, Segal M, Sneh B, et al. (2009) The Bacillus thuringiensis
delta-endotoxin Cry1C as a potential bioinsecticide in plants. Plant Science 176: 315–324.

48. Cao SS, He XY, XuWT, RanWJ, Liang LX, Luo YB, et al. (2010) Safety assessment of Cry1C protein
from genetically modified rice according to the national standards of PR China for a new food resource.
Regulatory Toxicology and Pharmacology 58(3): 474–481. doi: 10.1016/j.yrtph.2010.08.018 PMID:
20801181

Effects of Bt Rice on Xenopus laevis

PLOSONE | DOI:10.1371/journal.pone.0145412 December 22, 2015 13 / 13

http://dx.doi.org/10.1007/s12011-012-9461-2
http://www.ncbi.nlm.nih.gov/pubmed/22700180
http://dx.doi.org/10.1002/etc.2535
http://www.ncbi.nlm.nih.gov/pubmed/24478192
http://dx.doi.org/10.1111/1744-7917.12044
http://www.ncbi.nlm.nih.gov/pubmed/23956068
http://dx.doi.org/10.1016/j.aquatox.2008.02.009
http://dx.doi.org/10.1016/j.aquatox.2008.02.009
http://www.ncbi.nlm.nih.gov/pubmed/18395276
http://www.ncbi.nlm.nih.gov/pubmed/16112017
http://dx.doi.org/10.1007/s00442-010-1586-4
http://www.ncbi.nlm.nih.gov/pubmed/20204410
http://dx.doi.org/10.1371/journal.pone.0084724
http://www.ncbi.nlm.nih.gov/pubmed/24454741
http://www.ncbi.nlm.nih.gov/pubmed/2856194
http://www.ncbi.nlm.nih.gov/pubmed/17050059
http://dx.doi.org/10.1016/j.yrtph.2010.08.018
http://www.ncbi.nlm.nih.gov/pubmed/20801181

