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Purpose: Epidemiological evidence suggests that UV irradiation plays an important role in pterygium pathogenesis. UV
irradiation can produce a wide range of DNA damage. The base excision repair (BER) pathway is considered the most
important pathway involved in the repair of radiation-induced DNA damage. Based on previous studies, single-nucleotide
polymorphisms (SNPs) in 8-oxoguanine glycosylase-1 (OGG1), X-ray repair cross-complementing-1 (XRCC1), and AP-
endonuclease-1 (APE1) genes in the BER pathway have been found to affect the individual sensitivity to radiation exposure
and induction of DNA damage. Therefore, we hypothesize that the genetic polymorphisms of these repair genes increase
the risk of pterygium.
Methods: XRCC1, APE1, and hOGG1 polymorphisms were studied using fluorescence-labeled Taq Man probes on 83
pterygial specimens and 206 normal controls.
Results: There was a significant difference between the case and control groups in the XRCC1 genotype (p=0.038) but
not in hOGG1 (p=0.383) and APE1 (p=0.898). The odds ratio of the XRCC1 A/G polymorphism was 2.592 (95%
CI=1.225–5.484, p=0.013) and the G/G polymorphism was 1.212 (95% CI=0.914–1.607), compared to the A/A wild-type
genotype. Moreover, individuals who carried at least one C-allele (A/G and G/G) had a 1.710 fold increased risk of
developing pterygium compared to those who carried the A/A wild type genotype (OR=1.710; 95% CI: 1.015–2.882,
p=0.044). The hOGG1 and APE1 polymorphisms did not have an increased odds ratio compared with the wild type.
Conclusions: XRCC1 (Arg399 Glu) is correlated with pterygium and might become a potential marker for the prediction
of pterygium susceptibility.

Pterygium is a chronic condition characterized by the
encroachment of a fleshy triangle of conjunctival tissue into
the cornea. The pathogenesis of pterygium is under
investigation and several factors including ultraviolet
radiation, immunoinflammatory process, virus infection, and
genetic factors have been reported to be related to pterygial
formation [1]. Epidemiological evidence suggests that UV
irradiation plays an important role [1-3]. The noxious effects
of UV irradiation are either directly by UV phototoxic effects
or indirectly by formation of radical oxygen species (ROS)
[4-6].

ROS are very harmful to cells because they injure cellular
DNA, proteins, and lipids (called oxidative stress) [4-7].
Among the numerous types of oxidative DNA damage, 8-
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hydroxydeoxyguanosine (8-OHdG) has received
considerable attention because of its demonstrated mutagenic
potential and it is a ubiquitous marker of oxidative stress [7,
8].

The base excision repair (BER) pathway is considered an
important pathway involved in repair of radiation-induced
DNA damage [9-11]. In particular, common single-nucleotide
polymorphisms (SNPs) in the 8-oxoguanine glycosylase-1
(OGG1), X-ray repair cross-complementing-1 (XRCC1), and
the apyrimidinic endonuclease-endonuclease-1 (APE1) genes
in the BER pathway have been the most extensively studied
for their influences in the individual sensitivity to radiation
exposure and induction of DNA damage [12-18].

Polymorphisms in human 8-oxoguanine glycosylase 1
(hOGG1) may alter glycosylase function and an individual’s
ability to repair damaged DNA, possibly resulting in genetic
instability that can foster carcinogenesis. An amino acid
change from serine to cysteine at codon 326 (Ser326Cys) is
the most frequently studied SNP. Kohno et al. [19] observed
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a significantly lower capacity to repair 8-OHdG for the
hOGG1-Cys326 protein than for the hOGG1-Ser326 protein.

Apurinic/apyrimidinic endonuclease/redox
factor-1(APE1/Ref-1) is an essential enzyme in the BER
pathway involved in the excision of abasic sites formed in
DNA cleavage by OGG1. Several sequence variants were
identified in APE1, including an amino acid change from
aspartic acid to glutamic acid (Asp148Glu) in exon 5 that may
be associated with hypersensitivity to ionizing radiation [12].

X-ray cross-complementing group 1 (XRCC1) is one of
the major DNA repair proteins involved in the base excision
repair pathway. A functional polymorphism in the XRCC1
gene may lead to decreased DNA repair capacity and thus
confer an inherited predisposition to cancer risk. Several
variants of XRCC1 have been described, including one
affecting codon 194 in exon 6 that results in an arginine (Arg)
to tryptophan (Trp) substitution and one affecting codon 399
in exon 10 that results in an arginine (Arg) to glutamine (Gln)
change. Arg399Gln occurs in the vicinity of the Poly-ADP
ribose polymerase (PARP) binding domain. The presence of
the variant 399Gln has been shown to be associated with
measurable reduced DNA repair capacity and increased risk
of several types of cancers [12-14].

Recently, researchers have begun to use single nucleotide
polymorphisms (SNPs) to identify the genes associated with
pterygium [20-23]. Single nucleotide polymorphisms are the
most abundant types of DNA sequence variation in the human
genome, and the SNP marker has provided a good method for
identification of complex gene-associated diseases and
recognition of patients predisposing to the diseases [24,25].

Therefore, the aim of this study was to determine the
relationship between XRCC1 (Arg399Gln), hOGG1
(Ser326Cys), and APE1 (Asp148Glu) SNPs and pterygium.

METHODS
Patients: Primary pterygial samples were harvested from 83
patients undergoing pterygium surgery at China Medical
University Hospital and other institutions. Control blood
samples were the hospital controls collected from patients
without pterygium and pinguecula. This study was performed
with the approval of the Human Study Committee at China
Medical University Hospital.
Genomic DNA of blood samples from pterygium patients and
controls: Pterygium tissues from patients and venous blood
samples from controls were obtained for the collection of
genomic DNA. The blood cells were isolated by the Ficoll-
Paque method. Frozen tissues were homogenized in 10 mM
Tris, 0.1 M NaCl, 25 mM EDTA (pH 8.0), and 0.5% SDS on
ice. The aqueous supernatant was incubated with RNase A
and RNase T1 (250 mg/ ml; Sigma Chemical Co., St. Louis,
MO) at 37 °C for 60 min, followed by proteinase K digestion
(10 mg/ml; Merck, Darmstadt, Germany) at 55 °C for 12 h.
The supernatant was extracted twice with phenol:chloroform:

isoamyl alcohol (25:24:1, v/v/v). Then, sodium acetate (0.3
M final concentration) was added to the aqueous supernatant.
DNA was precipitated with ethanol and dissolved in water.
XRCC1 (Arg399Gln), OGG1 (Ser326Cys), and APE1
(Asp148Glu) SNP analysis: The XRCC1 Arg399Gln
(rs25487), hOGG1 Ser326Cys (rs1052133), and APE1
Asp148Glu (rs3136820) polymorphisms were genotyped
using TaqMan allelic discrimination assays (Applied
Biosystems, Foster City, CA). Probes, primers and TaqMan
universal PCR master mix were purchased from ABI. Briefly,
the genomic DNA region containing one of the two SNPs was
amplified separately using a PCR reaction. Each PCR reaction
contained: 20.0 ng DNA, 12.5 μl TaqMan Universal PCR
Master Mix, 1.25 μl 20× TaqMan SNP Genotyping Assay Mix
(including sequence-specific forward and reverse primers and
two TaqMan MGB probes: one probe labeled with VIC- dye
detects the Allele 1 sequence, one probe labeled with FAMTM

dye detects the Allele 2 sequence), and 9.25 μl ultrapure water
in a 25 μl reaction volume. Reactions were incubated at 95 °C
for 10 min, then denatured at 92 °C for 30 s, annealed and
extended at 60 °C for 1 min. The last two procedures went
through the cycle 40 times. The final products were analyzed
on an ABI StepOne system.
Statistical analysis: Statistical analysis of frequency
distributions was done by the χ2 test, and the correlations
between various genotypes of XRCC1, hOGG1, and APE1 of
case and control groups were analyzed by statistical software
SPSS 10.0 (SPSS, Chicago, IL). Adjusted odd ratios (ORs)
and a 95% confidence interval (95% CI) on pterygium were
evaluated for various factors using a multiple logistic
regression model.

RESULTS
There were 50 males and 33 females in the pterygium group
(age range from 50 to 83 years, mean of 57 years) and 126
males and 80 females in the control group (age range from 55
to 75 years, mean of 62 years). There were no significant
differences between both groups in age and sex.

Relationship of XRCC1 but not APE1 and hOGG1 gene
polymorphisms and pterygium: To verify the association of
risk and the genetic change in the base excision repair (BER)
pathway in pterygium development, the polymorphisms of
XRCC1, APE1, and hOGG1 in the pterygium and control
groups were analyzed. The results of the genotypes of XRCC1
(Arg399Gln), hOGG1 (Ser326Cys), and APE1 (Asp148Glu)
in the pterygium and control groups are shown in Table 1. The
analysis of the polymorphisms located at XRCC1 codon 399
in pterygium showed that 31 (37.3%) were homozygous for
the A/A genotype, 17 (20.5%) were homozygous for the G/G
genotype, and 35 (42.2%) were heterozygous for the A/G
genotype. There was a significant difference between the case
and control groups in the XRCC1 genotype (p=0.038).
However, no clear patterns were observed between the
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pterygium and control groups for significant associations with
the hOGG1 and APE1 polymorphisms.

The XRCC1 polymorphism, but not the hOGG1 and
APE1 polymorphism, is a risk factor for pterygium: To
understand whether the genetic polymorphisms of XRCC1
(Arg399Gln), hOGG1 (Ser326Cys), and APE1 (Asp148Glu)
increased the risk of pterygium development, the different
genotypes and the risk of pterygium were compared. The odds
ratio of the XRCC1 A/G polymorphism was 2.592 (95%
CI=1.225–5.484, p=0.013) and the G/G polymorphism was
1.212 (95% CI=0.914–1.607), compared to the A/A wild-type
genotype. Hence, individuals who carried at least one C-allele
(A/G and G/G) had a 1.710 fold increased risk of developing
pterygium compared to those who carried the A/A wild type
genotype (OR=1.710; 95% CI: 1.015–2.882, p=0.044; Table
2). The hOGG1 and APE1 polymorphisms did not increase

the odds ratio compared with the wild type (Table 2). The
multiple logistic regression analysis showed that the XRCC1
genotype is related to the risk of pterygium after adjusted with
hOGG1 and APE1 polymorphisms. Subjects who were
heterozygous or homozygous for the variant allele (399Glu)
of XRCC1 appeared to experience a higher risk of pterygium
than those who were homozygous for the wild-type allele
(399Arg) (OR: 1.758; 95% CI: 1.038–2.980, p=0.036; Table
3).

DISCUSSION
Theories on the pathogenesis of pterygium have implicated
ultraviolet light exposure as a major causative factor.
Evidence for sunlight exposure as one of the prime etiological
factors has been derived from both case-control studies and
prevalence surveys [26-28]. Gazzard et al. [29] indicated that

TABLE 1. GENOTYPE DISTRIBUTION OF XRCC1 (ARG399GLN), HOGG1 (SER326CYS) AND APE1 (ASP148GLU) GENES AMONG PTERYGIUM
PATIENTS AND CONTROL GROUP.

Gene Pterygium group (n=83; %) Control group (n=206; %) p value
XRCC1

Arg/Arg 31 (37.3) 104 (50.5)
Arg/Glu 35 (42.2) 80 (38.8)
Glu/Glu 17 (20.5) 22 (10.7) 0.038

hOGG1
Ser/Ser 10 (12.0) 32 (15.5)
Ser/Cys 37 (44.6) 102 (49.5)
Cys/Cys 36 (43.4) 72 (35.0) 0.383

APE 1
Asp/Asp 30 (36.2) 70 (34.0)
Asp/Gln 37 (44.5) 98 (47.6)
Gln/Gln 16 (19.3) 38 (18.4) 0.898

TABLE 2. RISK OF PTERYGIUM IN RELATION TO SNPS IN GENES INVOLVED IN OXIDATIVE DNA REPAIR IN A POPULATION-BASED
SAMPLE.

Gene OR 95% CI p value
XRCC1

Arg/Arg 1   
Arg/Glu 1.21 0.914–1.607 0.183
Glu/Glu 2.59 1.225–5.484 0.013

Arg/Glu or Glu/Glu 1.71 1.015–2.882 0.044
hOGG1

Ser/Ser 1   
Ser/Cys 1.077 0.721–1.610 0.716
Cys/Cys 1.600 0.708–3.615 0.258

Ser/Cys or Cys/Cys 1.343 0.627–2.873 0.448
APE 1

Asp/Asp 1   
Asp/Gln 0.939 0.706–1.249 0.663
Gln/Gln 0.982 0.476–2.206 0.962

Asp/Gln or Gln/Gln 0.909 0.534–1.549 0.726
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pterygium was independently related to increasing age and
outdoor activity. The noxious effects of UV irradiation are
either directly by UV phototoxic effects or indirectly by
formation of radical oxygen species (ROS) [4-6].

ROS is very harmful to cells, because they injure cellular
DNA, proteins, and lipids (called oxidative stress) [4-7].
Among the numerous types of oxidative DNA damage, 8-
hydroxydeoxyguanosine (8-OHdG) has received
considerable attention because of its demonstrated mutagenic
potential and it is a ubiquitous marker of oxidative stress [7,
8]. Our unpublished data also indicated that the 8-OHdG DNA
adducts in pterygium tissues were significantly higher than in
the conjunctiva [30] (data not shown). Therefore, we suspect
that the capability of the DNA repair enzymes in pterygium
was reduced.

Common polymorphisms in DNA repair enzymes have
been hypothesized to result in reduced capability to repair
DNA damage [31,32]. Several reports have indicated that
genetic factors play a role in the development of pterygium
[33-39]. Besides, some races have a greater predisposition to
pterygia; for example, Indians are affected more than
Caucasians, Thais more than Chinese, and dark-skinned
Africans more than pale-skinned Arabs [39]. Although
genetic factors have been proposed to play a role in pterygium
formation, there have only been a few studies to clarify this
proposition and no specific gene was identified. To the best
of our knowledge, this is the first study concerned with the
role of the DNA base excision repair (BER) pathway in
pterygium. Our study revealed that the XRCC1 (Arg399Glu)
polymorphism is associated with susceptibility to pterygium,
but the hOGG1 (Ser326Cys) and APE1 (Asp148Glu) are not.
This finding is not consistent with previous reports, which
have shown that the hOGG1 Ser326Cys polymorphism is
associated with the risk of pterygium [20]. Kau et al. [20]
indicated that the hOGG1 Ser326Cys polymorphism is a risk
factor for pterygium in Chinese people. The homozygous Cys/
Cys genotype was more prevalent in pterygium patients than
in the controls with the odds ratio being 2.2 [20]. In this study,
no association between the hOGG1 Ser326Cys polymorphism
and pterygium risk could be due to sample size, gender
distribution, and detection method which were different from
a previous report [20]. In this previous report, 70 patients with
pterygium and 86 healthy subjects were analyzed. The
proportion of males in the two groups was 85.7 and 74.4%,
respectively [20]. In our study, 83 patients with pterygium and

206 healthy subjects were studied and the proportion of males
in the two groups was 56.8 and 61.1% which is different from
the previous report [20]. In addition, we detected the XRCC1,
APE1, and hOGG1 polymorphisms using a SNP Shot assay
kit. The sensitivity and specificity were different with PCR-
RFLP [40]. Nevertheless, the effects of the hOGG1
Ser329Cys polymorphism on pterygium risk in Taiwanese
people necessitate an increase in the number of study
populations for further investigations.

UV irradiation can produce a wide range of DNA damage
and most DNA damage is repaired by the DNA repair system.
Our previous report has indicated that the Ku70 promoter
T-991C polymorphism is correlated with pterygium [41]. In
our present study, the polymorphism of X-ray repair cross
complementary 1 (XRCC1), a major gene in the BER system,
is associated with pterygium, but the polymorphisms hOGG1
and APE 1 are not associated. Therefore, we suggest different
DNA repair systems may play different roles in pterygium.
These repair systems could be the basis of future surveys.
Further study on polymorphisms of the genes in other repair
systems is necessary to clearly define the molecular
mechanism of pterygium formation by UV irradiation.

In conclusion, XRCC1 Arg399Glu is correlated with
pterygium and might become a potential marker for the
prediction of pterygium susceptibility. It also provides
valuable insight into the pathogenesis of pterygium.
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