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Abstract In embryonic stem cells (ESCs), a core transcription factor (TF) network establishes the

gene expression program necessary for pluripotency. To address how interactions between four

key TFs contribute to cis-regulation in mouse ESCs, we assayed two massively parallel reporter

assay (MPRA) libraries composed of binding sites for SOX2, POU5F1 (OCT4), KLF4, and ESRRB.

Comparisons between synthetic cis-regulatory elements and genomic sequences with comparable

binding site configurations revealed some aspects of a regulatory grammar. The expression of

synthetic elements is influenced by both the number and arrangement of binding sites. This

grammar plays only a small role for genomic sequences, as the relative activities of genomic

sequences are best explained by the predicted occupancy of binding sites, regardless of binding

site identity and positioning. Our results suggest that the effects of transcription factor binding

sites (TFBS) are influenced by the order and orientation of sites, but that in the genome the overall

occupancy of TFs is the primary determinant of activity.

Introduction

Independence versus interaction of transcription factor binding sites
Enhancers are composed of combinations of transcription factor binding sites (TFBS). An important

question is: to what extent do TFBS act independently within enhancers and to what extent do spe-

cific interactions between transcription factors (TF) underlie enhancer function? Independence sug-

gests a modular genome in which the effects of multiple binding sites are predictable from their

individual effects. Interactions, such as cooperativity between TFs, cause the effect of multiple TFBS

to be more (or less) than the combination of their individual effects. Constructing models that pre-

dict the expression of genes based on the TFBS composition of their surrounding regulatory DNA

will require understanding the degree to which sites function independently and how interactions

between sites contribute to the activity of regulatory sequences.

Regulatory grammar
The extent to which TFs function either independently or through interactions should be reflected in

the cis-regulatory grammar of TFBS, defined as the ways that the order, orientation, spacing, and

affinity of binding sites impact the activity of enhancers. If TFs function independently then we do

not expect strong constraints on the positioning of their binding sites within regulatory elements. If

TFs function mostly through interactions with other TFs that require a precise geometry, then we

expect strong biases in the positioning of TFBS within regulatory elements. At least three models

make predictions of how grammar might influence enhancer activity, the billboard model, the
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enhanceosome model, and the TF collective model (Kulkarni and Arnosti, 2003; Spitz and Furlong,

2012). The enhanceosome model posits extensive interactions between bound TFs, resulting in a

strict grammar in which only precise positioning of TFBS activate target genes. The enhanceosome

model is supported by structural studies of the IFN-b enhancer, where a specific order and spacing

of TFBS is required to activate expression (Panne, 2008; Yie et al., 1999). In contrast, the billboard

model posits a more flexible grammar, where enhancers tolerate changes to the order, spacing, or

orientations of TFBS with little change to target gene expression (Giorgetti et al., 2010;

Kulkarni and Arnosti, 2003). In the billboard model bound TFs function in a largely independent

manner. This model was proposed to explain binding site turnover in developmental enhancers and

functional conservation of enhancer activity between species despite sequence divergence

(Hare et al., 2008a; Hare et al., 2008b; Ludwig et al., 2000; Visel et al., 2009). In the TF collective

model, specific TFs must be recruited to enhancers but can be recruited either by direct contact

with DNA or indirectly through other TFs (Junion et al., 2012; Spitz and Furlong, 2012; Uhl et al.,

2016). In the collective model no specific TFBS is required for activity even though the recruitment

of individual TFs might be. TFs may function independently in some contexts and may engage in

interactions in other contexts. The billboard, enhanceosome, and collective models differ in the

eLife digest Transcription factors are proteins that flip genetic switches; their role is to control

when and where genes are active. They do this by binding to short stretches of DNA called cis-

regulatory sequences. Each sequence can have several binding sites for different transcription

factors, but it is largely unclear whether the transcription factors binding to the same regulatory

sequence actually work together.

It is possible that each transcription factor may work independently and there only needs to be

critical mass of transcription factors bound to throw the genetic switch. If this is the case, the most

important features of a cis-regulatory sequence should be the number of binding sites it contains,

and how tightly the transcription factors bind to those sites. The more transcription factors and the

more strongly they bind, the more active the gene should be. An alternative option is that certain

transcription factors may work better together, enhancing each other’s effects such that the total

effect is more than the sum of its parts. If this is true, the order, orientation and spacing of the

binding sites within a sequence should matter more than the number.

One way to investigate to distinguish between these possibilities is to study mouse embryonic

stem cells, which have a core set of four transcription factors. Looking directly at a real genome,

however, can be confusing and it is difficult to measure the effects of different cis-regulatory

sequences because genes differ in so many other ways. To tackle this problem, King et al. created a

synthetic set of cis-regulatory sequences based on the four core transcription factors found in mouse

stem cells.

The synthetic set had every combination of two, three or four of the binding sites, with each site

either facing forwards or backwards along the DNA strand. King et al. attached each of the synthetic

cis-regulatory sequences to a reporter gene to find out how well each sequence performed. This

revealed that the cis-regulatory sequences with the most binding sites and the tightest binding

affinities work best, suggesting that transcription factors mainly work independently.

There was evidence of some interaction between some transcription factors, because, of the

synthetic sequences with four binding sites, some worked better than others, and there were

patterns in the most effective binding site combinations. However, these effects were small and

when King et al. went on to test sequences from the real mouse genome, the most important factor

by far was the number of binding sites.

Synthetic libraries of DNA sequences allow researchers to examine gene regulation more clearly

than is possible in real genomes. Yet this approach does have its limitations and it is impossible to

capture every type of cis-regulatory sequence in one library. The next step to extend this work is to

combine the two approaches, taking sequences from the real genome and manipulating them one

by one. This could help to unravel the rules that govern how cis-regulatory sequences work in real

cells.
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importance the precise arrangements of TFBS play in setting the activities of enhancers, and control

of gene expression likely incorporates aspects of all three models. Quantifying the extent to which

grammar influences activity in different contexts is an important step toward producing more predic-

tive models of gene expression.

We and others have used mouse embryonic stem cells (mESCs) as a system for studying cis-regu-

latory grammar and cooperative interactions between the pluripotency factors POU5F1 (OCT4),

SOX2, ESRRB, and KLF4 (Dunn et al., 2014; Fiore and Cohen, 2016; Williams et al., 2004). The

pluripotency factors are a core set of TFs that maintain pluripotency in mESCs and are sufficient to

induce pluripotency in terminally differentiated cells (Feng et al., 2009; Liu et al., 2008; Niwa, 2014;

Takahashi and Yamanaka, 2006; Zhang et al., 2008). The pluripotency TFs activate self-renewal

genes and repress genes that promote differentiation (Chambers and Tomlinson, 2009). Based on

known physical and genetic interactions, as well as genome-wide binding assays, multiple interacting

TFs specify target gene expression in mESCs (Huang et al., 2009; Niwa, 2014; Reményi et al.,

2004; Reményi et al., 2003; Williams et al., 2004). However, it remains unclear how pluripotency

TFs collaborate to drive-specific patterns of gene expression in ESCs, and what role, if any, is played

by TFBS grammar in determining specificity in the genome (Chambers and Tomlinson, 2009;

Chen et al., 2008b). Understanding how these factors combine to regulate their target genes is cen-

tral to understanding the establishment and maintenance of the pluripotent state.

We previously addressed these questions by assaying a set of synthetic cis-regulatory elements

that represent a small fraction of the possible arrangements of pluripotency TFBS. We identified

some evidence for a grammar that is constrained by TFBS arrangement, including OCT4-SOX2 inter-

actions. However, our previous study lacked sufficient power to detect other interactions (Fiore and

Cohen, 2016). Here, we explore the role of grammar for pluripotency TFBS by assaying an exhaus-

tive set of synthetic cis-regulatory elements, composed of TFBS for SOX2, OCT4, KLF4 and ESRRB,

as well as a limited set of genomic regulatory sequences with comparable configurations of binding

sites. The pattern of expression of synthetic regulatory elements is well predicted by a model that

incorporates binding site position. However, despite all genomic sequences overlapping ChIP-seq

peaks for at least one of the four pluripotency factors, only about a third of sequences drove

reporter gene activity above background levels. Additionally, the positional grammar learned from

synthetic sequences performed poorly in predicting the activity of genomic sequences. Genomic

sequences appear to also include sequence features that recruit additional TFs, either directly

through TF-DNA interactions or possibly indirectly through TF-TF interactions. Our results suggest

that in the genome the overall occupancy of TFs is the best predictor of binding site activity. Our

results with synthetic elements suggest that other aspects of grammar (order, orientation) can tune

the activity of sites, but these effects are difficult to observe without direct experimental manipula-

tions. In the genome only the number and affinity of sites shows a correlation with activity.

Results

Rationale and description of enhancer libraries
We designed two reporter gene libraries to explore the role of grammar in regulatory elements con-

trolled by the pluripotency TFs. The first library, synthetic (SYN), contains a set of synthetic combina-

tions of consensus TFBS for OCT4 (O), SOX2 (S), KLF4 (K), and ESRRB (E). We did not include sites

for NANOG in our libraries as its position weight matrix (PWM) has low information content and is

not amenable to a synthetic binding site approach. Nanog also appears to be dispensable for

reprogramming terminal cells to a pluripotent state (Wang et al., 2013; Wang et al., 2012;

Jauch et al., 2008; Pan and Thomson, 2007; Takahashi and Yamanaka, 2006). We did not incorpo-

rate MYC-binding sites in our libraries because MYC often acts independently of the core pluripo-

tency TFs (Chen et al., 2012; Chen et al., 2008c; Liu et al., 2008).

We designed the SYN library to test how interactions between different TFs (heterotypic interac-

tions) determine the activities of regulatory elements. If heterotypic interactions depend on the

geometry of TF binding, then the order, orientation, and spacing of sites should influence activity.

To test this prediction, we designed the SYN library to assay different orders and orientations of the

pluripotency binding sites. The SYN library includes all possible 624 unique combinations of two,

three, and four TFBS (2-mers, 3-mers, and 4-mers, respectively), with each TFBS in either the forward
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or reverse direction (Supplementary file 1A). Each synthetic element in the SYN library contains no

more than one copy of a given TFBS. We chose this library design to focus on heterotypic interac-

tions and to avoid the confounding effects of homotypic interactions, which we examined in detail in

a previous study (Fiore and Cohen, 2016). We embedded each TFBS in a constant 20 bp sequence

with fixed spacing between sites to ensure that all the sites sit on the same side of the DNA helix.

We avoided varying the length of the spacer sequence between sites because increasing the length

of spacer sequences risks introducing cryptic binding sites that confound the results. For each TF,

we used a consensus binding site based on its position weight matrix (PWM) in the JASPAR data-

base (Sandelin, 2004; Fiore and Cohen, 2016). We did not vary the predicted affinity of the sites in

the SYN library because we could not assay a library large enough to vary the affinity of sites while

still testing all possible arrangements of sites. Our rationale was to retain the maximum power to

detect the effects of the order and orientation of sites, and this required us to compromise on our

ability to detect the effects of the spacing and affinity of sites. The highly controlled nature of the

SYN library provides maximum power to detect interactions mediated by the order and orientation

of sites.

The second library includes sequences from the mouse genome that match, as best as possible,

members of the SYN library. Using the same PWMs used to design the SYN library, we scanned the

mouse genome for combinations of the TFBS for O, S, K, and E within 100 bp of regions bound by

any of the four pluripotency TFs in E14 mESCs as measured by ChIP-seq (Fiore and Cohen, 2016;

Bailey et al., 2009; Chen et al., 2008c). We chose genomic sequences that contain one and only

one binding site that scores above the PWM threshold for each factor to mimic the composition of

the SYN library. We identified few clusters that included all four binding sites (<70). We therefore

selected 407 genomic sequences with three pluripotency TFBS that could be compared to the

exhaustive set of synthetic 3-mer elements. The resulting genomic wild-type library (gWT) is com-

posed of 407 unique genomic sequences with combinations of any three of the four TFBS, with each

site represented no more than once per sequence (Materials and methods, Supplementary file 1E-

F). Although these sequences differ from SYN elements in the individual site affinities, spacings

between TFBS, as well as intervening sequence composition, our expectation was that the gWT

sequences would test how well interactions learned from the SYN library apply to genomic sequen-

ces. To confirm that the activity of the gWT sequences depends on the presence of pluripotency

TFBS, we generated matched genomic mutant sequences (gMUT) in which all three of the identified

pluripotency TFBS were mutated by changing two positions in each TFBS from the highest informa-

tion content base to the lowest information base according to the PWM (Figure 1—figure supple-

ment 1). The final gMUT sequences lack detectable TFBS for O, S, K, or E when rescanned with the

threshold used to select the gWT sequences. The combined gWT/gMUT library allows us to quantify

the contributions of the pluripotency sites to regulatory activity, as well as sample configurations of

pluripotency TFBS from the genome that may provide insight into grammar for these sequences.

MPRA of reporter gene libraries
We assayed the cis-regulatory activity of the SYN and gWT/gMUT libraries in mESCs using a plas-

mid-based Massively Parallel Reporter Assay (MPRA) (Kwasnieski et al., 2012). Each unique library

member described above is present eight times with a different unique sequence barcode (BC) in its

3’ UTR (Fiore and Cohen, 2016). The elements were placed directly upstream of a minimal pro-

moter, mirroring classical tests of enhancer activity. The assay does not, however, test whether ele-

ments can function as long-range enhancers. To determine the relative activity of each sequence

compared to the minimal promoter included in each construct, we included copies of plasmids with

only the minimal promoter paired with over a hundred unique BCs in each library

(Materials and methods). Our measurements were highly reproducible between biological replicates,

with R2 between 0.98 and 0.99 for replicates of the SYN library and 0.96–0.98 for the gWT/gMUT

library, and are not driven by abundance biases in the library (Figure 1—figure supplement 2). After

thresholding on DNA and RNA counts, we recovered reads for 100% (624/624) of our SYN elements

and 99% (403/407) of paired gWT/gMUT sequences. The high concordance between replicates and

simultaneous sequencing of the two libraries allowed us to make quantitative comparisons, both

within and between libraries.
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Synthetic and genomic libraries support different grammar models
TFBS in synthetic regulatory elements make strong independent contributions to expression. Most

synthetic elements drive expression over basal activity regardless of the number, order, or orienta-

tion of sites within the element (Figure 1A). Of all SYN elements, 77% (6% of 2-mers, 66% of 3-

mers, 92% of 4-mers) were statistically different from basal levels in all three replicates after correct-

ing for multiple hypothesis testing (Wilcoxon rank-sum test; Bonferroni correction, n = 637; p-values

reported in Supplementary file 1C). In most cases, three or four consensus binding sites are suffi-

cient to increase expression above basal levels, which suggests strong independent contributions of

TFBS to the activity of synthetic elements. Synthetic elements with more binding sites generally drive

higher expression than elements with fewer binding sites, supporting the idea that TFBS can contrib-

ute to expression in an independent and additive manner. However, the wide range of expression

levels observed from different 4-mer elements must be due to the arrangement of the TFBS, as site

number, identity, and affinity are fixed. The strong positive effect of adding sites demonstrates an

independent effect of TFBS, while the diversity of expression among elements with the same num-

ber of sites reveals that grammar can quantitatively modulate activity.

In contrast to the synthetic elements, most genomic sequences in the gWT library did not exhibit

regulatory activity above basal levels. Only 28% (113/403) of wild type genomic sequences were sta-

tistically different from basal levels in all three replicates (p<0.05, Wilcoxon rank-sum test; Bonferroni

correction, n = 403; p-values reported in Supplementary file 1H). This low fraction of active gWT

sequences is consistent with observations from functional tests of genomic sequences bound by key
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Figure 1. Activity of synthetic elements and genomic sequences. (A) The activity of synthetic elements with different numbers of binding sites.

Expression is the average log of the ratio of cDNA barcode counts/DNA barcode counts for each synthetic element normalized to basal expression

(dotted line). (B) The activity of genomic sequences is largely dependent on the presence of pluripotency binding sites. Normalized expression of wild

type (gWT) sequences is plotted against expression of matched sequences with all three pluripotency TFBS mutated (gMUT sequences). Red indicates

sequences with significantly different expression between matched gWT and gMUT sequences. The diagonal solid line is the expectation if mutation of

TFBS had no impact on expression level. Expression of both gWT and gMUT sequences are normalized to basal controls, but basal expression is only

plotted for gWT sequences on the y-axis (dotted line).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Pluripotency motif substitutions for gMUT sequences.

Figure supplement 2. MPRA data quality.
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TFs in other cell types (Fisher et al., 2012; Grossman et al., 2017; White et al., 2013). The differ-

ence between the SYN and gWT libraries is that the surrounding sequence context in which the plu-

ripotency sites occur in the gWT library varies much more than in the SYN library, and these

contextual differences appear to have strong effects on the pluripotency sites. In most cases, the

effect of sequence context in the gWT library was strong enough to suppress the independent con-

tributions of the binding sites to activity. For genomic sequences that were statistically different

from basal, 99% (112/113) have a significant difference between matched gWT and gMUT sequen-

ces (Figure 1B; p<0.05, Wilcoxon rank-sum test; Bonferroni correction, n = 403; p-values reported in

Supplementary file 1H), indicating that the activity of these genomic sequences depends on one or

more of the pluripotency TFBS. Our observation that the presence of high-quality pluripotency TFBS

is generally insufficient to drive expression demonstrates that binding sites must be presented in the

proper surrounding sequence context in order to generate a functional regulatory element.

Synthetic elements support a positional grammar
While the overall pattern of expression of SYN elements supports strong independent contributions

from binding sites, direct comparisons of different TFBS configurations also support a role for inter-

actions between factors. Pairwise comparisons between 3-mers and their matched 4-mers that

include one additional site at either the 5’ or 3’ end, reveal that the position of the extra site can

strongly influence expression. For example, the O-K-E 3-mer and the matched O-K-E-S 4-mer drive

indistinguishable expression, while the matched S-O-K-E 4-mer drives one of the highest expression

levels in the SYN library (Figure 2A). Other examples are consistent with either strong position

dependence or both position and orientation dependence (Figure 2—figure supplement 1A–B).

Taken together, these results show that when an additional TFBS is added to an existing synthetic

element, the position and orientation of the new site can have large effects on activity.

Synthetic elements appear to follow a grammar that includes some position specific interactions

between TFBS. The ten highest expressing elements in the SYN library all have S and O sites next to

each other and in the first two positions (Figure 2B), while the ten lowest expressing 4-mers have a

strong bias for O and S in the last two positions (Figure 2C). The 10 highest expressing 4-mers all

have K followed by E in the last two positions, while the lowest expressing 4-mers tend to have K

and E in the first two positions. The fourth position can have an especially large effect on expression.

In the highest 25% of 4-mers S is depleted (0/96) in the fourth position (Figure 2D), while in the low-

est 25% E is virtually depleted (1/96) in the fourth position (Figure 2E). Conversely, in the fourth

position, E is overrepresented in the top 25% (64/96) while S is overrepresented in the bottom 25%

(48/96). These patterns also hold for comparisons of the strongest and weakest 3-mer and 2-mer ele-

ments (Figure 2—figure supplement 1C–F). These patterns indicate a grammar that includes a bias

for S and O sites positioned upstream of K and E sites. This positioning may favor interactions

between these factors and the basal transcriptional machinery or TFs recruited by the minimal pro-

moter. As specifying a site at a given position restricts possible sites in neighboring positions, these

patterns could also represent favorable interactions between factors. These data show that the pre-

cise arrangement of TFBS influences the activities of synthetic elements.

Modeling supports a role for TFBS positions in setting expression level
for synthetic elements but not for genomic sequences
While the grammar of O, S, K, and E sites influences the relative activities of the SYN elements, their

order and orientation does not appear to contribute to the activity of genomic sequences. We com-

pared the SYN and gWT libraries for elements with configurations of OKE, OSE, OSK, and SKE

TFBS. Unlike SYN 3-mer elements, all four classes of gWT sequences span the full range of expres-

sion levels observed for the entire library, with only OSK sequences having a higher average expres-

sion (Figure 3—figure supplement 1A). Thus, in genomic sequences, the same arrangement of sites

embedded in different genomic contexts can either fail to drive detectable activity or drive expres-

sion higher than the highest SYN library member. To quantify the divergence in activities between

genomic and synthetic elements directly, we matched gWT sequences with pluripotency TFBS-

dependent activity to SYN elements with the corresponding order of TFBS. We observed no correla-

tion in regulatory activity between matched site configurations, (R2 = 0.001; Figure 3—figure sup-

plement 1B). These data indicate that other variables contribute to the cis-regulatory activity of
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gWT sequences, such as the spacing and affinities of the sites, or the presence of TFBS for additional

factors in flanking sequences that are held constant in the SYN library.

To identify additional sequence features that might be contributing to activity, we used a varia-

tion of the Random Forest (RF) model, an unsupervised machine learning technique. RF models can

be applied for either simple classification, assigning observations to group predictions, or classifying

individual observations into semi-continuous bins to make quantitative, regression-case predictions.

The accuracy of predictions are assessed over a large number of decision trees trained on random

subsets of the data, which allows the contribution or ‘variable importance’ of specific features to be

measured. As RFs are prone to biases from early random splits in the decision trees for unbalanced

data, we used iterative Random Forests (iRF) as a tool for feature selection as well as for predicting

activity (Basu et al., 2018).

We first trained a regression-case iRF model on the data from the SYN library. We initialized the

models with four features (Supplementary file 2A), representing only the presence or absence of

each of the four pluripotency TFBS. This ‘independent’ iRF model had an R2 of 0.56 between

observed and predicted observations when tested on held-out data for the final iRF iteration (Fig-

ure 3—figure supplement 2). However, the independent iRF model cannot account for the differen-

ces in activities between 4-mers, because all 4-mers have identical TFBS composition (4-mers

R2 = 0.00). To identify features that might distinguish between the activities of 4-mers, we trained an

additional regression-case iRF model, ‘independent + position’, initialized with 20 features,
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Figure 2. Non-additivity in synthetic elements. (A) Comparison of synthetic 3-mer elements with matched 4-mer elements containing one additional

site in the first or fourth position. Mean expression of elements across barcodes (black dot) is plotted +/- SEM (black whiskers). Green line for

comparison to expression of 3-mer; Green transparency highlights SEM of 3-mer shown. Capital letter represents binding site in forward orientation

and lower-case letter represents binding site in reverse orientation. Activity of the ten highest (B) and ten lowest (C) expressing 4-mers. Red line

represents average expression of all synthetic 4-mer elements. Case represents binding site orientation as in (A) Mean expression of each element

across barcodes (black dot) +/- SEM (black whiskers). Activity logos for the top 25% (n = 96) (D) and bottom 25% (E) of 4-mer synthetic elements. Height

of letter is proportional to frequency of site in indicated position. Positions organized from 5’ end (Position 1) to 3’ end (Position 4) of elements.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Additional examples of non-additivity in synthetic elements.
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representing both the presence and position of the four TFBS in each SYN element

(Supplementary file 2A). The 20-term positional model performs well in predicting SYN expression,

with an overall R2 of 0.87 for the last model iteration on a held-out test set (Figure 3A). The posi-

tional iRF model highly weights the presence/absence of the sites, as expected from the perfor-

mance of the independent iRF model, but also has contributions from the presence of E in the 4th

position and S in the first and second positions (Figure 3B). These results reinforce the conclusion

that the activity of synthetic sequences depends both on the composition and positioning of TFBS.

iRF models trained on the SYN library failed to predict or classify the expression of genomic

sequences. While synthetic elements had a range of activities, elements in the gWT library are pre-

dominantly inactive, and the small number of active gWT sequences drive expression across an order

of magnitude of activity levels (Figure 3—figure supplement 1A). Having such a large number of

inactive sequences in the pool makes it difficult to train a model that predicts the relative activities

of genomic sequences. Retraining iRF regression models to predict gWT expression fails during the

training step and has no correlation with the observed expression data (independent: R2 = 0.03;

independent + position: R2 = 0.001). In all subsequent analyses of genomic sequences, we limited
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Figure 3. Positional grammar in synthetic elements. (A) Iterative random forest (iRF) regression model that includes features for presence and position

of pluripotency TFBS predicts relative expression of synthetic elements. Number of binding site per element is indicated in pink (2-mers), green (3-

mers), and blue (4-mers). Observed and predicted expression are both plotted in log2 space. (B) Ranking of variables in synthetic iRF model. Variable

importance is estimated by Increased Node Purity (IncNodePurity), the decrease in node impurities from splitting on that variable, averaged over all

trees during training.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison of synthetic and genomic patterns of transcription factor binding sites (TFBS).

Figure supplement 2. Additive effects in synthetic elements.

Figure supplement 3. Effect of spacer sequences between TFBS on synthetic 4-mer expression.
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ourselves to models that attempt to distinguish between active and inactive genomic sequences,

without predicting the relative differences in activity among active sequences. However, our first

attempt to produce a classifier failed. Training a classification model to distinguish between active

and inactive gWT sequences (top 25%, n = 102; bottom 75%, n = 305) using either only independent

or independent + position features also fails to perform better than chance (Independent: Area

Under the Receiver Operator Curve (AUROC) = 0.52, Area Under the Precision Recall Curve

(AUPRC) = 0.22; Positional: AUROC = 0.47, AUPRC = 0.25; Supplementary file 2B). Genomic and

synthetic elements with the same pattern of sites can drive drastically different expression levels

(Figure 3—figure supplement 1B). Other sequence features present in the flanking genomic

sequences and absent from the synthetic elements must therefore play a role in setting activity lev-

els, in addition to the identity and position of the individual pluripotency TFBS.

Our results with genomic elements suggested that the sequences flanking the pluripotency TFBS

play a role in determining cis-regulatory activity. We tested the effect of changing spacer sequences

that flank the TFBS in six 4-mer elements from the SYN library. We tested four different spacer

sequences, for a total of 30 library members, which includes the original spacer sequence. The new

spacers sequences were designed to match the nucleotide content of the original spacers and mini-

mize the creation of new TFBS (Supplementary file 1J). To ensure the dynamic range of the library,

we mixed this ‘mini spacer library’ library with a small portion of the SYN library and performed an

MPRA.

We found that changing the spacer sequences in the SYN library had small, but significant effects

on the activities of the 4-mers. The activities of all six 4-mers in the mini spacer library tested with all

four spacer sequences remained in the original range of expression for 4-mers (Figure 3—figure

supplement 3A). On average, the spacer sequences modified expression by 6% (0.3–25%, Fig-

ure 3—figure supplement 3B). Although the overall effects of spacer sequences were small, the

rank order of the 4-mers did change for different spacers (Figure 3—figure supplement 3C), sup-

porting the idea that sequence features flanking the binding sites do affect gene expression. These

results are consistent with the differences between the SYN and gWT libraries.

Site affinity contributes to the activity of genomic sequences
We attempted to identify other sequence features that might differentiate active and inactive gWT

sequences. Sequence-based support vector machines (kmer-SVMs) are powerful tools to predict the

activity of regulatory elements (Fletez-Brant et al., 2013; Chaudhari and Cohen, 2018). To identify

sequence features that explain the differences between genomic elements, we trained a gapped

kmer SVM (gkm-SVM) (Ghandi et al., 2016; Ghandi et al., 2014). The best performing gkm-SVM

classified our positive and negative sets with AUROC of 0.75 and AUPRC of 0.77 (k = 8, gap = 2;

Figure 4A). Although all sequences in the gWT library were selected to contain TFBS for the four

pluripotency factors, many of the discriminative 8-mers (29/50) have motif matches that include at

least one pluripotency family member (Fletez-Brant et al., 2013; Bailey et al., 2009;

Supplementary file 2D). This suggests that the differences between active and inactive genomic

sites could be due to the primary pluripotency sites or secondary occurrences of these sites in the

intervening sequences that scored below the scanning threshold.

Sequences with higher predicted affinity pluripotency TFBS may drive higher expression. To

determine if differences in the primary pluripotency sites are part of the signal identified by the

SVM, we annotated gWT sequences with PWM-based scores for each TFBS present (Grant et al.,

2011). For SOX2, we found no difference in scores between high and low sequences (Figure 4B;

p=0.07, Welch’s t-test). For OCT4, we found a modest difference between the average scores for

high and low sequences and a broader but also a significant difference for KLF4 and ESRRB PWM

scores (Figure 4C–E). Summing the PWM scores for all of the TFBS further separates high and low

sequences (Figure 4F–G). These patterns suggest that the quality of the primary sites contributes to

the activity differences observed among gWT sequences.

We then asked if secondary sites for the pluripotency TFs might contribute to cis-regulatory activ-

ity by calculating predicted occupancy for both gWT sequences and gMUT sequences that lack the

primary binding sites (Materials and methods). Predicted occupancy is a metric that includes contri-

butions from any primary, well-scoring TFBS plus contributions from weaker sites that might be

missed with traditional motif scanning (White et al., 2016; White et al., 2013; Evans et al., 2012;

Segal et al., 2008; Zhao et al., 2009). We found evidence for additional low predicted affinity sites
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Figure 4. Sequence features separate active and inactive genomic sequences. (A) Performance of gkm-SVM for genomic sequences supports

contribution of sequence-based features to activity. Word length of 8 bp with gap size of 2 bp was used for training with threefold cross validation.

ROC curve (left panel) and PR curve (right panel) is plotted for the average across threefold cross-validation sets +/- standard deviation. (B–E) Primary

(O,S,K,E) site affinities across gWT sequences, as output during motif scanning plotted for high genomic sequences (top 25% as ranked by expression,

Figure 4 continued on next page
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for SOX2 and OCT4 in both high and low sequences, making it unlikely that low-affinity sites strongly

contribute to expression differences (Figure 4—figure supplement 1). Together, these results sug-

gest that the affinities of the primary sites in genomic sequences, which are fixed in synthetic ele-

ments, contribute to the regulatory activity of genomic sequences more than the presence of

additional sites with low predicted affinity.

We also analyzed whether the spacing between binding sites correlated with the activity of cis-

regulatory elements. Using the same annotations used to determine the predicted affinities of

SOX2, OCT4, ESRRB, and KLF4 binding sites, we calculated the edge-to-edge distance between

every possible pair of binding sites and plotted the frequency of each spacing for high and low activ-

ity sequences (Figure 4—figure supplement 2). We observed a preference in high activity sequen-

ces for closely spaced sites for OCT4 and SOX2 reflecting a known interaction between these TFs.

We also observed preferences in high activity genomic sequences for closely spaced KLF4 and

OCT4 sites, and for ESRRB and OCT4 sites. Binding site spacing may therefore play a role in setting

the relative activities of genomic sequences.

Contributions from sites for other transcription factors
A major difference between the synthetic and genomic elements is the presence of sites for TFs

besides the pluripotency factors. While the synthetic elements were designed to keep the sequences

between pluripotency sites constant, genomic sequences differ in both the length and composition

of sequences between the pluripotency sites. The presence of binding sites for additional transcrip-

tion factors may contribute to the activity of genomic sequences. To identify sites for other factors

that could contribute to differences between high and low activity gWT sequences, we examined

the top discriminative 8-mers from the gkm-SVM, looking at possible PWM matches for additional

TFs (Supplementary file 2D). We then used PWMs for these additional TFs to identify instances of

sites for other factors in the genomic sequences (see Materials and methods) (Grant et al., 2011;

Sandelin, 2004). We found significant enrichment for FOXA1 sites (Figure 4H). We also found that

FOXA1 and NANOG had higher total PWM scores in the high activity sequences (Figure 5—figure

supplement 1A). While FOXA1 is likely not present in mESCs, other family members (FOXA2,

FOXD1, FOXP1) are expressed in ESCs and have been shown to contribute to the pluripotent regu-

latory network, and therefore could be acting on the gWT sequences through these binding sites

(Pan and Thomson, 2007; Mulas et al., 2018; Gabut et al., 2011).

Genomic sequences with higher occupancy by TFs in the genome, as measured by ChIP-seq,

have higher average expression in our assay. We annotated the gWT intervals with publicly available

ChIP-seq data for additional TFs and with ATAC-seq data from E14 mESCs to determine if differen-

ces in accessibility explained the difference between high and low activity sequences

(Supplementary file 2B). Both high and low activity gWT sequences were accessible in the genome

showing that accessibility does not necessarily correlate with high activity sequences. High activity

sequences had a small but significant overlap with NANOG peaks (Figure 5—figure supplement

1B). However, for the 328 genomic sequences with a NANOG ChIP-seq signal, only 16% had an

underlying TFBS as determined by motif scanning. Therefore, NANOG might be recruited by other

pluripotency TFs to these sequences independent of high-quality TFBS for this factor. If we compare

expression levels to the number of overlapping ChIP-seq peaks, including O,S,K,E and these addi-

tional TFs, we see that gWT sequences with higher occupancy in the genome have higher average

expression in our assay (Figure 5), which has been previously observed in HepG2 cells

(Ulirsch et al., 2016). This result supports a model where cumulative occupancy sets activity level.

Figure 4 continued

n = 101) and low genomic sequences (bottom 25% as ranked by expression, n = 101). (F–G) Total site affinities is calculated per sequence by summing

the predicted affinity of the three primary sites present in each sequence. (H) Total number of occurrences of TFBS for additional TFs in high and low

sequences (stratified as in B–G), as determined by motif scanning, excluding primary (O,S,K,E) sites.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Predicted occupancy of genomic sequences.

Figure supplement 2. Genomic sequences show distance preferences between factors.
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To understand the relative contributions of the sequence features that were enriched individually,

we trained iRF models with different subsets of these sequence features and compared their perfor-

mance on a held-out test set (Supplementary file 2B). None of these models accurately predicted

the activity of genomic sequences, likely because most genomic sequences in our collection had no

activity above basal levels. Therefore, we attempted to classify active from inactive genomic

sequences.

We trained an iRF model initialized with 58 features that capture differences between gWT

sequences and SYN elements. These features include predicted affinity and preferred spacings

between the pluripotency TFBS, the predicted occupancy for the pluripotency TFs, the presence of

binding sites for additional TFs, plus chromatin accessibility (ATAC-seq) and ChIP-seq peaks for both

TFs and histone marks, as well as summary features such as the total primary site affinities for each

sequence (Supplementary file 2B). This gWT iRF model classified active from inactive on a held out

test set with AUROC = 0.67, and AUPRC = 0.46 (Figure 6A–B, model ‘All’). Models that only

included subsets of features — the spacing between elements (model ‘Spacing’), the strength of the
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Figure 5. Activity of genomic sequences scales with increased occupancy in the genome. Expression of elements binned by number of intersected

ChIP-seq peak signals for different factors. Number of sequences in each bin indicated in center of boxplot. All gWT sequences overlapped at least

one ChIP-seq peak as per library design.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Genomic sequences show signatures for other factors.
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pluripotency sites (‘PrimarySites’), or the overlapping ChIP signal (‘ChIPSignals’) — did not perform

as well (Figure 6A–B). The features that best separate active from inactive sequences were related

to attributes of the pluripotency sites with the top feature being the summed pluripotency factor

predicted affinity per sequence (‘OSKE_TotalAffinity’, Figure 6C). Taken together, our data suggest

that genomic sequences drive higher expression when they contain strong binding sites with pre-

ferred spacing and are embedded in sequences that can mediate the recruitment of other TFs or

cofactors.

Discussion
In this study, we sought to understand how pluripotency factors collaborate to drive specific levels

of expression by testing both an exhaustive set of synthetic arrangements of TFBS for OCT4, SOX2,

KLF4, and ESRRB and comparable genomic sequences. The experimental design allowed for direct
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Figure 6. Performance of iRF classification models that include features specific to genomic sequences. (A) ROC Curve and (B) Precision-Recall (PR)

Curve comparing genomic iRF models. Color indicates set of features used to train model. (C) Variable importance as evaluated for the feature by the

average reduction in the Gini index (Chen et al., 2008c).
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comparisons between the regulatory grammar of synthetic and genomic sequences. The strongest

similarity between synthetic and genomic elements is that in both cases activity depends heavily on

the number and affinity of binding sites. These results are most consistent with a model in which the

overall occupancy of a sequence by its cognate TFs is the primary determinant of that element’s

activity. Consistent with this hypothesis, the predictive power of our trained genomic model derived

primarily from summing over the number and affinity of binding sites. We also observed correlation

between the occupancy of sites as measured by ChIP-seq and their activity in MPRA assays. While

there are many steps involved in activating gene expression, the occupancy model posits that the

strength of a regulatory element is primarily controlled by its fractional occupancy by TFs.

The occupancy model might also explain the surprising result that the activity of genomic ele-

ments in our plasmid MPRA experiments do not correlate with experimental measurements of how

accessible the chromatin is in their native locations. Plasmid assays might not capture regulation by

chromatin, but in many cases plasmid assays do recapitulate the activity of chromosomally inte-

grated elements (Maricque et al., 2019; Inoue et al., 2017). Alternatively, accessible regions may

be bound by transcription factors but may not necessarily drive activity, such as in the case of

‘poised’ regulatory elements (Cruz-Molina et al., 2017). Nucleosome exclusion is important for reg-

ulatory activity (Khoueiry et al., 2010) and may reflect TF binding, but accessibility itself may not be

sufficient for regulatory activity. Another possibility is that open chromatin may not be a direct

reflection of the occupancy of an element by its cognate TFs. Other factors besides occupancy by

TFs also determine the openness of chromatin, such as chromosome topology, the proximity of ori-

gins of replication, and nucleotide composition. This may explain why some genomic sequences with

binding sites that reside in open chromatin do not drive high activity in MPRA assays. The prediction

is that these regions are open for reasons other than occupancy by cognate TFs. That the activity of

genomic elements correlates with TF occupancy as measured by ChIP-seq, but not necessarily open

chromatin measurements by ATAC-seq, supports the occupancy model.

While TF occupancy was the best predictor of activity, the AUROC and AUPRC analyses show

that we are still missing important features that underlie the activity of genomic sequences. Indeed,

two-thirds of genomic sequences that contain consensus motifs and reside under a ChIP-seq peak

for one of the pluripotency TFs had no activity in our assay. Why don’t all sequences occupied by

TFs have strong regulatory activity? The sequence context in which occupied binding sites occur

must contribute heavily to their activity. We attempted to address this issue by examining the regu-

latory grammar of synthetic elements.

Synthetic elements provide a highly controlled system for exploring whether TFBS are con-

strained by a regulatory grammar. With synthetic elements we found clear evidence that their activ-

ity depends on the position and orientation of pluripotency binding sites. Synthetic elements with

the same number and affinity of TFBS had different levels of activity depending on the order and ori-

entation of the sites. This result suggests that active regulatory elements in the genome are defined

not only by the presence of TF occupied motifs, but also by cues in the surrounding DNA sequences.

However, our models that captured the specific regulatory grammar of synthetic elements failed to

predict the activity of genomic sequences.

Why don’t models that robustly predict the activity of synthetic elements also predict the activity

of genomic sequences? With synthetic elements, each sequence differs from others in the library by

only a small number of sequence features. In synthetic libraries, there are many pairs of elements

that differ by only a single sequence feature, which provides power to observe experimentally the

effect of a single variable. In contrast, libraries of genomic elements are much more diverse, and the

analysis of genomic sequences relies on detecting correlations between elements that share

sequence features. However, it is difficult to isolate the effect of a single sequence feature because

genomic elements that share a certain sequence feature will always be very different in terms of

other features. The strength of the synthetic approach is the power it provides to isolate the effects

of specific sequence features or pairs of sequence features. The weakness of the synthetic approach

is that genomic elements are subject to many context specific constraints, all of which cannot be

captured in a single synthetic library. When we changed the spacer sequences in our synthetic

library, we found small but reproducible effects on expression. Our interpretation of this result is

that changing the spacer sequences did not have large effects on the independent contribution of

each TFBS, but did have effects on the interactions between sites (i.e. the regulatory grammar). In

the future, we plan to use the regulatory grammar derived from synthetic elements to design
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experiments that manipulate single features of genomic elements. If the grammar that is learned

from synthetic elements reflects real constraints in the cell, then models of synthetic elements should

predict the relative effects of single perturbations of genomic elements even if they cannot predict

the absolute expression of genomic sequences. A combined approach that leverages both synthetic

and genomic sequences should continue to help unravel the rules that govern cis-regulation of

expression in cells.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line (Mus
musculus mouse)

RW4 other RRID:CVCL_6442 Gift from Mitra Lab, CGS,
Department of Genetics,
Washington University
School of Medicine
in St. Louis. The cell line tested
negative for mycoplasma
contamination by the Genome Editing
and iPSC core at Washington University
in St. Louis.

Commercial
assay or kit

PureLink RNA Mini Kit ThermoFisher
Scientific/Invitrogen

Cat#:12183018A Followed
manufacturer’s
protocol

Commercial
assay or kit

PureLink DNase Set ThermoFisher
Scientific/Invitrogen

Cat#:12185010 Followed
manufacturer’s
protocol

Commercial
assay or kit

TURBO DNA-free ThermoFisher
Scientific/Invitrogen

Cat#:AM1907 Followed
manufacturer’s
protocol

Commercial
assay or kit

SuperScript III
Reverse Transcriptase

ThermoFisher
Scientific/Invitrogen

Cat#:18080044 Followed
manufacturer’s
protocol

Commercial
assay or kit

anti-Alkaline
Phosphatase
(AP) staining

System Biosciences Cat.#:AP100R-1 Followed
manufacturer’s
protocol

Recombinant
DNA reagent

SYN this paper Recombinant plasmid library
of synthetic (SYN) elements
upstream of a minimal
Pou5f1 promoter and
dsRed/SV40 UTR
reporter element

Recombinant
DNA reagent

GEN this paper Recombinant plasmid library
of sequences identified in
the mouse genome (GEN)
upstream of a minimal
Pou5f1 promoter and
dsRed/SV40 UTR
reporter element

Recombinant
DNA reagent

miniSpacer this paper Recombinant plasmid library
of synthetic elements with
swapped spacer
(miniSpacer) sequences
upstream of a minimal
Pou5f1 promoter and
dsRed/SV40 UTR
reporter element

Software, algorithm Bedtools v2.2 https://bedtools.
readthedocs.io/en/latest/

RRID:SCR_006646 DOI: 10.1093/
bioinformatics/btq033

Software, algorithm iRF v2.0.0 https://cran.r-project.org/
web/packages/iRF/
index.html

DOI: 10.1073/pnas.
1711236115

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm gkm-SVM https://cran.r-project.org/
web/packages/
gkmSVM/index.html

DOI: 10.1093/
bioinformatics/btw203

Software, algorithm BEEML http://stormo.
wustl.edu/beeml/

DOI: 10.1371/journal.
pcbi.1000590

Library design
To generate a library that contained both synthetic and genomic elements, we ordered a custom

pool of 13,000 unique 150 bp oligonucleotides (oligos) from Agilent Technologies (Santa Clara, CA)

through a limited licensing agreement. Each oligo in the SYN pool was 150 bp in length with the fol-

lowing sequence:

CTTCTACTACTAGGGCCCA[SEQ]AAGCTT[FILL]GAATTCTCTAGAC[BC]TGAGCTCTACATGC
TAGTTCATG

where [SEQ] is a 40–80 bp synthetic element comprised of concatenated 20 bp building blocks of

pluripotency sites, as described previously, with the fifth position of the KLF4 site changed to ‘T’ to

facilitate cloning (Fiore and Cohen, 2016). [FILL] is a random filler sequence of variable length to

bring the total length of each sequence to 150 bp, and [BC] is a random 9 bp barcode. The oligonu-

cleotide pool contained all possible combinations of the pluripotency binding sites in both orienta-

tions, with no more than one of each site per sequence in lengths of two, three, and four building

blocks. The sequence of each of the element is listed in Supplementary file 1B. In total, the SYN

library has 624 unique synthetic elements. Each synthetic element is present in the pool eight times,

each time with a different unique BC. There are also 112 oligos in the pool for cloning the basal pro-

moter without any upstream element, each with a unique BC.

Genomic sequences were represented in the pool by 150 bp oligos with the following sequences:

GACTTACATTAGGGCCCGT[SEQ]AAGCTT[FILL]GAATTCTCTAGAC[BC]TGAGCTCGGACTACGA
TACTG

where [SEQ] is either a reference (gWT) or mutated (gMUT) genomic sequence of 81–82 bps. Ref-

erence gWT sequences were selected by choosing regions of the genome within 100 bps of previ-

ously identified ChIP-seq peaks for these four pluripotency factors (Chen et al., 2008b). After

excluding poorly sequenced and repetitive regions (ENCODE Project Consortium, 2012;

Waterston et al., 2002), we scanned the remaining regions using FIMO with the four PWMs used

previously to design the synthetic building blocks, with a p-value threshold of 1 � 10�3 (Grant et al.,

2011; Bailey et al., 2009; Fiore and Cohen, 2016). Regions that contained more than one overlap-

ping site identified by FIMO were excluded. Binding sites that were located less than 20 bp from

each other were then merged into a single genomic element using Bedtools (Quinlan and Hall,

2010). Elements with no more than one of each site per element were then selected and expanded

to 81–82 bp centered on the motifs. Expanded sequences were rescanned to confirm the presence

of only three binding sites with the same threshold as used to originally scan the sequences. Sequen-

ces that contained restriction sites for were then removed from the library, leaving 407 genomic

sequences with combinations of the OCT4, SOX2, KLF4, and/or ESSRB TFBS.

We generated matched mutated sequences (gMUT) for each of the 407 gWT sequences by

changing two positions in each motif from the highest information content base to the lowest infor-

mation base for that position (Figure 1—figure supplement 1). The reverse complement position

and substitution was made for the reverse orientation of each motif. The mutated sequences were

rescanned with all four original PWMs to confirm that no detectable pluripotency TFBS remained,

using FIMO with the same p-value threshold (1 � 10�3) as above.

In total, the pool of oligos representing genomic sequences contained 407 wild-type sequences

(gWT) and the corresponding 407 gMUT sequences. The sequence of each element is listed in

Supplementary file 1G. Each of these 814 sequences were associated with eight unique BCs. The

primers for gWT and gMUT sequences were identical so all subsequent steps for this library was per-

formed in a single pool. There are also 112 oligos in the pool for cloning the basal promoter without
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any upstream element, each with a unique BC (Supplementary file 1F). The rest of the array con-

tained sequences not used in this study.

Cloning of plasmid libraries
For a full list of primers, see Supplementary file 3. The synthesized oligos were prepared as previ-

ously described (Kwasnieski et al., 2012; Fiore and Cohen, 2016), except using primers Synthe-

tic_FW-1 and Synthetic_Rev-2 with an annealing temperature of 55˚C for the SYN library and primers

Genomic_FW-1 and Genomic_Rev-1 with an annealing temperature of 53˚C for the gWT/gMUT

libraries. PCR products were purified from a polyacrylamide gel as described previously

(White et al., 2013). Each library was cloned as described previously (Fiore and Cohen, 2016), with

an SYN element (SYN library) or either a gWT or gMUT sequence (gWT/gMUT library) cloned into

the ApaI and SacI sites of plasmid pCF10.

The pou5f1 basal promoter and dsRed reporter gene were amplified from pCF10 using primers

CF121 and CF122, and inserted into the plasmid library pools from the previous step at the XbaI

and HindIII sites. Digestion of the libraries with SpeI and subsequent size selection was omitted as

the SYN library had less than 2% background and the combined gWT/gMUT library had less than

1% background in the final cloning step.

Spacer library
For the mini spacer library, we ordered an oligo pool containing 4-mer elements with different

spacer sequences from Integrated DNA Technologies (Coralville, IA). Each oligo in the mini library

was 161 bp in length with the following sequence:

GACATCAAGATCTGGCCTCGGGGCCC[SEQ]AAGCTTGAATTCTCTAGAC[BC]TGAGCTCTCGC
TTCGAGCAGACATGAT

where [SEQ] represents an oligo sequence described below and [BC] is a random 9 bp barcode.

We picked six 4-mer oligos from the original synthetic library to span the 4-mer expression range

and swapped out the spacer sequences in the oligos for four other sequences, generating a total of

30 constructs, including the original spacers. Each construct was represented in the pool with five

unique barcodes. The sequence of each element is in Supplementary file 1K.

The mini spacer library was cloned into the same backbone as the previous libraries. Briefly,

pCF10 was digested with ApaI and SacI, and the single-stranded oligo pool was directly assembled

into the backbone using HiFi DNA assembly The pou5f1 basal promoter and dsRed reporter gene

were amplified from pCF10 using CF121 and CF122, then ligated into the mini spacer library follow-

ing the same approach as the SYN, gWT, and gMUT libraries.

Cell culture and transfection
RW4 mESCs were cultured as described previously (Xian et al., 2005; Chen et al., 2008a) on 2%

gelatin coated plates in standard media (DMEM, 10% fetal bovine serum, 10% newborn calf serum,

nucleoside supplement, 1000 U/ml leukemia inhibitory factor (LIF), and 0.1 mM B-mercaptoethanol).

Approximately 1 million cells at 100% estimated viability were seeded into six-well plates 24 hr prior

to transfection. The SYN library and combined gWT/gMUT were transfected in parallel using 10 mL

Lipofectamine 2000 (Life Technologies, Carlsbad, CA), 3 mg of plasmid library, and 0.3 mg CF128 (a

GFP control plasmid) per well, as described previously (Fiore and Cohen, 2016). Four biological rep-

licates of each library pool, the SYN plasmid pool or combined gWT/gMUT plasmid pool, were

transfected and the plates were passaged 6 hr post-transfection. For three replicates of each library

pool, RNA was extracted 24 hr post-transfection from approximately 9 million cells per replicate,

using the PureLink RNA mini kit (Life Technologies, Carlsbad, CA) with the fourth transfection repli-

cate reserved for estimating transfection efficiency via fluorescent microscopy and staining for alka-

line phosphatase (AP) activity, a universal pluripotency marker (Singh et al., 2012).

Massively parallel reporter assay
Massively parallel reporter gene assays were used to measure the activity of each element as

described previously (Fiore and Cohen, 2016; Mogno et al., 2013). Briefly, we used Illumina Next-

Seq (San Deigo, CA) sequencing of both the RNA and original plasmid DNA pool, removing excess
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DNA from the RNA pool using TURBO DNA-free kit (Life Technologies, Carlsbad, CA). cDNA was

then prepared using SuperScript RT III (Life Technologies, Carlsbad, CA) with oligo dT primers. Both

the cDNA and the plasmid DNA pool were amplified using primers CF150 and CF151b, for 13

cycles. The PCR amplification products were digested using XbaI and XhoI (New England Biolabs,

Ipswich, MA), ligating the resulting digestion products to custom Illumina adapter sequences,

P1_XbaI_X (where X is 1 through 8, with in-line multiplexing BC sequences) to the 5’ overhang and

PE2_SIC69_SalI on the 3’ XhoI overhang, each of which is comprised of annealed forward (F) and

reverse (R) strands. An enrichment PCR with primers CF52 and CF53 was then used, and the result-

ing products were mixed at equal concentration and sequenced on one NextSeq lane.

Sequencing reads were filtered to ensure that the BC sequence perfectly matched the expected

sequence. For the SYN library, this resulted in 40 million reads combined for the three demultiplexed

RNA samples (P1_XbaI_1, P1_XbaI_2, P1_XbaI_3; 12.7–13.5 million each), and 19.7 million reads for

the DNA library sample (P1_XbaI_7). For the combined gWT/gMUT libraries, this resulted in approxi-

mately 37 million reads combined for the three demultiplexed RNA samples (P1_XbaI_4, P1_XbaI_5,

P1_XbaI_6; 9.4–16 million each), and 19.6 million reads for the DNA library sample (P1_XbaI_8). For

each library, BCs that had less than three raw counts in any RNA replicate or less than 10 raw counts

in the DNA sample were removed before proceeding with downstream analyses.

Expression normalization was performed by first calculating reads per million (RPM) per BC for

each replicate for both the SYN library and the combined gWT/gMUT library. For each BC, expres-

sion was calculated by dividing the RPMs in each RNA replicate by the DNA pool RPMs for that BC.

Normalizing by DNA RPMs successfully removed the impact of the representation of the construct in

the original pool as the calculated expression has no correlation with the DNA counts for both the

SYN library and the combined gWT/gMUT. Within each biological replicate, the BCs corresponding

to each synthetic element (SYN) or genomic sequence (gWT/gMUT) were averaged and then nor-

malized by basal mean expression in that replicate. These normalized expression values were then

averaged across biological replicates. All downstream analyses were performed in R version 3.3.3

and plotted with ggplot2 version 2.2.1. Expression summaries per replicate are reported in

Supplementary file 1C for the SYN library, Supplementary file 1H for the gWT/gMUT library and

Supplementary file 1L for the ‘mini spacer’ library.

Predicted occupancy
Custom code, based on Zhao and Stormo’s BEEML algorithm (Zhao et al., 2009), was used to com-

pare sequences of interest to a provided Energy Weight Matrix (EWM) at a set protein concentration

(mu) and output a predicted occupancy for that TF as in White et al. (2013). Briefly, an energy land-

scape (EWM score) is calculated by comparing all n-mers of each sequence, where n = length of pro-

vided motif, to the matrix to generate an array of individual base scores for the forward and reverse

orientation of the sequence. Occupancy is then predicted using equation 3 for binding probability at

equilibrium, (1= ð1 þ eðDG � �ÞÞ). Position Frequency Matrices equivalent to the PWMs used for both

SYN building block design and for scanning the mouse genome were used to generate EWMs, using

the formula RT � ln Freq Base^consensus
� �

=Freq Base^i
� �� �

to convert the frequency of each base at

each position i to a pseudo DDG values for each factor (White et al., 2013). Predicted occupancy (P

(Occ)) for the 3-mer SYN elements was calculated for different assumed protein concentrations

(mu = 0.5, 1, 2, 4, 5, 8, 10, 12) to determine at what point the SYN elements are predicted to be sat-

urated, where P(Occ) ffi three for each SYN element, that is: approaching one for each TFBS in the

sequence. SYN elements were saturated by each of the four pluripotency factors at mu = 8 with the

exception of the shorter Oct4 motif, which reached saturation at mu = 10. Occupancy of gWT and

gMUT sequences was predicted for gWT and gMUT at an assumed high protein concentration of

mu = 8 for Sox2, Klf4, Esrrb, and mu = 10 for Oct4, consistent with the role of these factors in

mESCs. The predicted occupancy of each factor for matched gMUT sequences are reported in

Supplementary file 2F as a feature of gWT sequences. iRF models:

We built iterative Random Forest (iRF) models to classify our data using the R package iRF (ver-

sion 2.0.0) (Basu et al., 2018). To run the software a model is initialized with 1/p weights for each of

p features to be included in fitting the model. In each iteration, p features are reweighted by their

Gini Importance (wk), a measure that is calculated by how purely a node, split by feature, separates

the classes (Menze et al., 2009; Louppe et al., 2013). Default settings were used for model training,
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with four iterations of reweighting p features specified for each model as indicated in

Supplementary files 2A and 2B.

Synthetic data was split into training and test sets by randomly subsetting 50% of the total SYN

elements (total n = 407). Mean normalized expression was the response variable for model fitting for

the synthetic models (see Supplementary file 2E for feature annotations for SYN elements). Four

iterations of model fitting on training data was used.

Genomic data was split into training and test sets by randomly subsetting 50% of the total gWT/

gMUT intervals (total n = 624). Classification as ‘active’, 1, if mean normalized gWT expression was

greater than or equal to the 3rd quartile and ‘inactive’, 0, if mean normalized gWT expression was

less than the 3rd quartile (cutoff value = 1.983), was the response variable for model fitting (see

Supplementary file 2F for feature annotations and response values for gWT sequences). Four itera-

tions of model fitting on training data was used. gkm-SVM:

We used a gapped k-mer Support Vector Machine (gkm-SVM) to search for gapped k-mers that

distinguish between highly active and inactive genomic sequences (Ghandi et al., 2016). We subset

sequences from the gWT library into top 25% (high) and bottom 25% (low) based on expression

data for a total of 101 positive and 101 negative intervals for the training set. FASTA sequences

were then generated from the mm10 reference genome (Bioconductor, BioMart) for each region

(Supplementary file 4). We then used the gkm-SVM R package to classify high vs. low sequences

(Ghandi et al., 2016). Word length (L) values of 6 (gap = 2), 8 (gap = 2), and 12 (gap = 6), were

tested with cross validation. Default settings were used for other function options. Three-fold cross

validation was chosen due to the the amount of structure in the data, with combinations of OSK

binding sites overrepresented in positive training sequences (Figure 3—figure supplement 1). The

best average performance on training data as evaluated by AUCs was the model trained with param-

eters of L = 8 and gap = 2 (See Supplementary file 2G for output scores). The final gkmer-SVM

model includes approximately 1 million unique k-mers (See Supplementary file 2C for full kmer list

and weights).

Other analysis and data sources
All genome coordinates from previous mouse genome builds were converted to mm10 using the

UCSC liftover tool (Kuhn et al., 2013). Binding matrices for SOX2, OCT4, KLF4, ESRRB were as pre-

viously reported (Fiore and Cohen, 2016). The Bedtools suite (version 2.20) was used for manipula-

tions and analysis of bed files (Quinlan and Hall, 2010). Statistical tests were chosen based on

expectations of normalcy, with Wilcoxon rank-sum test used for comparisons of BC expression as

these distributions were observed to be skewed for some library members, Welch’s t-test used

where sample sizes were equal and roughly normal, and Fisher’s 1-sided tests used for testing for

enrichment in small sample sizes.

Data access
Raw sequencing data for SYN library and gWT/gMUT library can be found under SRA accession

number SRR7515851. Processed sequencing data, specifically demultiplexed barcode counts per

replicate, can be found under GEO accession number GSE120240. Additionally, a table of normal-

ized reads per million (RPMs) across replicates for all barcodes are included as Supplementary file

1D for the SYN library, Supplementary file 1I for the gWT/gMUT library, and Supplementary file

1M for the MiniSpacer library.
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