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Diabetic neuropathy is associated with increased morbidity and
mortality. To date, limited data in subjects with impaired glucose
tolerance and diabetes demonstrate nerve fiber repair after
intervention. This may reflect a lack of efficacy of the interven-
tions but may also reflect difficulty of the tests currently deployed
to adequately assess nerve fiber repair, particularly in short-term
studies. Corneal confocal microscopy (CCM) represents a novel
noninvasive means to quantify nerve fiber damage and repair.
Fifteen type 1 diabetic patients undergoing simultaneous pan-
creas–kidney transplantation (SPK) underwent detailed assess-
ment of neurologic deficits, quantitative sensory testing (QST),
electrophysiology, skin biopsy, corneal sensitivity, and CCM at
baseline and at 6 and 12 months after successful SPK. At baseline,
diabetic patients had a significant neuropathy compared with
control subjects. After successful SPK there was no significant
change in neurologic impairment, neurophysiology, QST, corneal
sensitivity, and intraepidermal nerve fiber density (IENFD). How-
ever, CCM demonstrated significant improvements in corneal
nerve fiber density, branch density, and length at 12 months. Nor-
malization of glycemia after SPK shows no significant improve-
ment in neuropathy assessed by the neurologic deficits, QST,
electrophysiology, and IENFD. However, CCM shows a significant
improvement in nerve morphology, providing a novel noninvasive
means to establish early nerve repair that is missed by currently
advocated assessment techniques. Diabetes 62:254–260, 2013

D
iabetic polyneuropathy is one of the most
common long-term complications of diabetes
and underlies the development of painful neu-
ropathy in 21% of both type 1 and type 2 di-

abetic patients (1). It is the main initiating factor for foot
ulceration and lower extremity amputation (2). At present
we have no treatment to repair nerve fibers and improve
diabetic neuropathy. Even in the Diabetes Control and
Complications Trial (DCCT) and follow-up Epidemiology

of Diabetes Interventions and Complications (EDIC)
study, improved glycemic control only delayed the pro-
gression of clinical diabetic neuropathy and indeed nerve
conduction studies at closeout showed no significant risk
reduction (3). Furthermore, the Steno-2 study demon-
strated that although multifactorial intervention showed
an improvement in retinopathy, nephropathy, and cardiac
autonomic neuropathy, there was no benefit for somatic
neuropathy (4). Even in the most dramatic example of
“curing” type 1 diabetes with pancreas transplantation, in
115 patients followed over 10 years, neurologic function,
nerve conduction studies, and autonomic function were
only prevented from worsening and failed to show an im-
provement (5). This is in keeping with the lack of im-
provement in heart rate variability, 43 months after
simultaneous pancreas–kidney transplantation (SPK) (6)
and intraepidermal nerve fiber density (IENFD) 2.5 years
after SPK (7). Neuropathy is of course extremely severe at
this stage, as evidenced by severe intraepidermal nerve
fiber depletion in pancreas transplant recipients, suggest-
ing either a point of no return or the need for long-term
follow-up to identify posttransplant nerve fiber regen-
eration (8). However, IENFD and corneal nerve morphol-
ogy have been shown to improve in subjects with impaired
glucose tolerance neuropathy (9) and in patients with type
2 diabetes (10), respectively, after improvement in meta-
bolic risk factors.

To establish efficacy of a new treatment, ideally an im-
provement in diabetic neuropathy has to be shown. Al-
though current end points have a good ability to diagnose
diabetic neuropathy (11), their ability to define a thera-
peutic response may have significant limitations (12). This
may indeed be a major reason why clinical trials in human
diabetic neuropathy have failed to reach prespecified pri-
mary end points such as neuropathic deficits and electro-
physiology (13). The assessments of neurologic symptoms
and deficits have recently been shown to have poor di-
agnostic reproducibility (14). Although electrophysiology
correlates with large fiber damage, it does not assess small
fibers, which are the earliest to be damaged (15) and dem-
onstrate repair even in advanced neuropathy (12). Nerve fi-
ber morphology in sural nerve biopsies (16) and IENFD in
skin-punch biopsies (17) can accurately quantify nerve fiber
damage and repair, but both are invasive procedures.

We and others (18,19) have used corneal confocal mi-
croscopy (CCM) to detect subclinical diabetic neuropathy
and relate it to the severity of somatic neuropathy (20) and
IENFD (21) with good sensitivity and specificity (20). This
led us to propose that CCM, a noninvasive and reiterative
test, might be an ideal surrogate end point for evaluating
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therapeutic efficacy in clinical trials of human diabetic
neuropathy (22). In a preliminary study, we have pre-
viously shown a significant improvement in corneal nerve
fiber density (CNFD) and length 6 months after SPK (23),
but at that time we did not compare CCM with established
end points of diabetic neuropathy. In the current study we
have compared CCM with neurologic deficits, quantitative
sensory testing (QST), electrophysiology, and IENFD at
baseline and 6 and 12 months after SPK to help define the
measures that may best detect an improvement in diabetic
neuropathy after intervention.

RESEARCH DESIGN AND METHODS

Selection of patients. Fifteen type 1 diabetic patients were evaluated at
baseline and 6 and 12 months after SPK and compared with 10 age/sex-matched
nondiabetic healthy control subjects. The healthy volunteers were recruited
from the general population. Both patients and control subjects underwent full
neurologic and medical assessments. Those patients with any history of sys-
temic (apart from diabetes for patient group) or neurologic conditions or
history of ocular trauma and those wearing contact lens or those who have had
ocular surgery were excluded. The study was approved by the Central Man-
chester Ethics Committee, and written informed consent was obtained
according to the Declaration of Helsinki.
Assessment of neuropathy. All patients and control subjects underwent
a detailed evaluation of neurologic symptoms according to the neuropathy
symptom profile (NSP), and theMcGill pain analog score was used to assess the
severity of painful neuropathy. Neurologic deficits were assessed using the
modified neuropathy disability score (NDS), which includes evaluation of vi-
bration, pin prick, and temperature perception as well as the presence or
absence of ankle reflexes to establish the severity of neuropathy: NDS 0–2, no
neuropathy; NDS 3–5, mild neuropathy; NDS 6–8, moderate neuropathy; and
NDS 9–10, severe neuropathy. Quantitative sensory testing included an as-
sessment of vibration perception threshold (VPT), measured on the first toe
using a Neurothesiometer (Horwell, Scientific Laboratory Supplies, Wilford,
Nottingham, U.K.), cold sensation (CS) (Ad fibers) and warm sensation (WS)
(C fibers) thresholds using the method of limits with the MEDOC TSA II
(Medoc, Ramat Yishai, Israel) on the dorsum of the left foot (24).

Computer-Aided Sensory Evaluator (CASE IV) was used tomeasure the heart
rate response to deep breathing. In this test, the patient was asked to inhale and
exhale deeply eight times in a row in the supine position while following the
rhythm of a “breathing cue,” and the changes in heart rate were displayed on an
ECG monitor. Two eight-cycle breathing series’were completed interspersed by
a 5-min period of normal breathing. The acquired data were analyzed by cal-
culating the mean difference between the highest and lowest heart rate for five
consecutive, artifact-free cycles in each eight-cycle series.

Electro-diagnostic studies were undertaken using a Dantec “Keypoint”
system (Dantec Dynamics, Bristol, U.K.) equipped with a Dansk Industri
Syndikat temperature regulator to keep limb temperature constantly between
32°C and 35°C. Peroneal motor and sural sensory nerves were assessed in the
right lower limb by a consultant neurophysiologist. The motor study was
performed using silver-silver chloride surface electrodes at standardized sites
defined by anatomical landmarks, and recordings for the sural nerve were
taken using antidromic stimulation over a distance of 100 mm.
Corneal sensitivity. Corneal sensitivity was quantified using a noncontact
corneal aesthesiometer (NCCA) (Glasgow Caledonian University, Glasgow,
Scotland, U.K.), which uses a puff of air through a bore 0.5 mm in diameter
lasting 0.9 s and exerting a force expressed in millibars (mbars) (25). The
stimulus jet is mounted on a slit lamp and is positioned 1 cm from the eye, and
the air jet is aligned to the center of the cornea. Each subject was presented
with a supramaximal stimulus, and the staircase method was used by reducing
the stimulus strength until the patient did not feel the jet on three occasions, to
establish the threshold. The coefficient of variation for NCCA was 5.6%.
CCM. Patients underwent examination with the Heidelberg retina tomograph
III in vivo corneal confocal microscope. The subject’s eyes were anesthetized
using a drop of 0.4% benoxinate hydrochloride, and Viscotears were applied
on the front of the eye for lubrication. A drop of viscoelastic gel was placed on
the tip of the objective lens, and a sterile disposable Perspex cap was placed
over the lens allowing optical coupling of the objective lens to the cornea. The
patient was instructed to fixate on a target with the eye not being examined.
Several scans of the entire depth of the cornea were recorded by turning the
fine focus of the objective lens backward and forward for ~2 min using the
section mode, which enables manual acquisition and storage of single images
of all corneal layers. This provides en face two-dimensional images with
a lateral resolution of ~2 mm/pixel and final image size of 400 3 400 pixels of

the subbasal nerve plexus of the cornea from each patient and control subject.
This layer is of particular relevance for defining neuropathic changes since it is
the location of the main nerve plexus that supplies the overlying corneal ep-
ithelium. Each nerve fiber bundle contains unmyelinated fibers, which run
parallel to Bowman’s layer before dividing and terminating as individual axons
underneath the surface epithelium (26). Five images per patient from the
center of the cornea were selected and examined in a masked and randomized
fashion (27). Three corneal nerve parameters were quantified: 1) CNFD, the
total number of major nerves per square millimeter of corneal tissue; 2) cor-
neal nerve branch density (CNBD), the number of branches emanating from
all major nerve trunks per square millimeter of corneal tissue; and 3) corneal
nerve fiber length (CNFL), the total length of all nerve fibers and branches
(mm/mm2) within the area of corneal tissue. CNFD and CNFL are considered
to reflect overall nerve fiber degeneration, whereas CNBD reflects nerve fiber
regeneration, which is partially also captured by CNFL.
Skin biopsy and immunohistochemistry. A 3-mm punch skin biopsy was
taken from the dorsum of the foot ;2 cm above the second metatarsal head
after local anesthesia (1% lidocaine). The biopsy site was closed using Steri-
strips, and the specimen was immediately fixed in PBS-buffered 4% para-
formaldehyde. After 18–24 h, it was rinsed in Tris-buffered saline and soaked
in 33% sucrose (2–4 h) for cryoprotection. It was then embedded in optimal
cutting temperature–embedding compound, rapidly frozen in liquid nitrogen,
and cut into 50-mm sections using a cryostat (model OTF; Bright Instruments,
Huntington, U.K.). Four floating sections per subject were subjected to mel-
anin bleaching (0.25% KMnO4 for 15 min followed by 5% oxalic acid for 3 min),
a 4-h protein block with a Tris-buffered saline solution of 5% normal swine
serum, 0.5% powdered milk, and 1% Triton X-100, and overnight incubation
with 1:1,200 Biogenesis polyclonal rabbit anti-human PGP9.5 antibody
(Serotec, Oxford, U.K.). Biotinylated swine anti-rabbit secondary antibody
(1:300; DakoCytomation, Ely, U.K.) was then applied for 1 h; sections were
quenched with 1% H2O2 in 30% MeOH-PBS (30 min) before a 1-h incubation
with 1:500 horseradish peroxidase–streptavidin (Vector Laboratories, Peter-
borough, U.K.). Nerve fibers were demonstrated using 3, 3 ́-diaminobenzidine
chromogen (Sigma-Aldrich, Manchester, U.K.). Sections were mildly coun-
terstained with eosin to better localize the basement membrane to identify
nerve fibers passing through it. Negative control subjects consisted of replacing
the anti-PGP9.5 antibody with rabbit immunoglobulin (DakoCytomation) at
a concentration matching that of the primary antibody, which showed no
immunostaining. IENFD, i.e., the number of fibers per millimeter of basement
membrane, was quantified in accord with established criteria and techniques
and expressed as number per millimeter (28).
Statistics. SPSS 16.05.0 forWindowswas used to compute the results. Analysis
included descriptive and frequency statistics. All data are expressed as
means 6 SEM. A paired sample t test was used to test whether a sample mean
(of a normally distributed interval variable) differed between control subjects
and diabetic patients at baseline and at follow-up 6 and 12 months after SPK.

RESULTS

The clinical characteristics and detailed assessment of
neuropathy in diabetic patients and age-matched control
subjects are summarized in Table 1. BMI was non-
significantly lower in diabetic patients and showed an in-
crease after SPK. HbA1c was higher in diabetic patients
compared with control subjects and improved into the
normal range at 6 and 12 months after SPK, but this was
not statistically significant. The total cholesterol was sig-
nificantly lower (P = 0.01) in diabetic patients and
remained the same at 6 and 12 months after SPK. Both
HDL and triglycerides were comparable between diabetic
patients and control subjects, and remained unchanged
after SPK. The estimated glomerular filtration rate was
lower in diabetic patients at baseline (P = 0.02) and did not
change significantly at 6 and 12 months after SPK.
Symptoms and neurologic deficits. Neuropathic symp-
toms as assessed with the NSP were significantly greater in
diabetic patients than in control subjects at baseline (P =
0.005), but there was no significant improvement at 6 (P =
0.1) or 12 (P = 0.9) months after transplantation. The
McGill pain index was significantly (P = 0.01) greater at
baseline compared with control subjects and did not show
a significant change at 6 (P = 0.9) or 12 (P = 0.9) months
after transplantation. The modified NDS was significantly
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(P = 0.003) greater at baseline compared with control
subjects, indicating a mild to moderate neuropathy, and
did not change significantly at 6 (P = 0.7) or 12 (P = 0.8)
months after transplantation (Table 2).
Quantitative sensory tests. VPT was significantly
greater in diabetic patients compared with control subjects
at baseline (P = 0.01) and did not change significantly at 6
(P = 0.1) or 12 (P = 0.6) months after transplantation. CS
was significantly greater in diabetic patients compared
with control subjects at baseline (P = 0.004) and did not
change significantly at 6 (P = 0.5) or 12 (P = 0.5) months
after transplantation. WS was significantly greater in di-
abetic patients compared with control subjects at baseline
(P = 0.005) and did not change significantly at 6 (P = 0.9) or
12 (P = 0.4) months after transplantation.
Autonomic function. Average heart rate variability was
significantly lower in diabetic patients compared with
control subjects at baseline (P = 0.01) and did not change
significantly at 6 (P = 0.9) or 12 (P = 0.8) months after
SPK.
Electrophysiology. Peroneal nerve conduction velocity
and amplitude were significantly lower in diabetic patients
compared with control subjects at baseline (P = 0.0001,
P = 0.0001, respectively) and did not change significantly
at 6 (P = 0.6, P = 0.5) or 12 (P = 0.3, P = 0.2) months after

transplantation. Sural nerve conduction velocity and
amplitude were significantly lower in diabetic patients
compared with control subjects at baseline (P = 0.003, P =
0.001, respectively) and did not change significantly at 6
(P = 0.7, P = 0.9) or 12 (P = 0.6, P = 0.3) months after
transplantation (Table 2).
IENFD. IENFD was significantly lower in diabetic patients
compared with control subjects at baseline (P , 0.0001)
and did not show a significant improvement 12 months
after transplantation (P = 0.9) (Fig. 1 and Table 3).
Corneal sensation. The corneal sensation threshold was
significantly greater in diabetic patients compared with
control subjects at baseline (P = 0.03) and did not change
at 6 (P = 0.9) or 12 (P = 0.9) months after transplantation
(Table 3).
CCM. Representative images from a diabetic patient at
baseline show a marked reduction in subbasal corneal
nerves with a progressive repair at 6 and 12 months after
SPK. CNFD was significantly lower in diabetic patients
compared with control subjects at baseline (P , 0.0001),
did not improve at 6 months (P = 0.7), but reached signifi-
cance at 12 months (P = 0.02). Similarly, CNFL was signif-
icantly lower in diabetic patients compared with control
subjects at baseline (P , 0.0001) and did not improve
at 6 months (P = 0.2) but reached statistical significance at

TABLE 1
Clinical demographic results in control subjects and type 1 diabetic patients undergoing SPK at baseline and follow-up visits at 6 and
12 months

Parameter Control subjects Baseline

Follow-up

6 months 12 months

n (female/male) 10 (3/7) 15 (5/10) 15 15
Age (years) 47 6 3 47 6 3 — —

Diabetes duration (years) 0 27 6 3.5 — —

BMI (kg/m2) 27 6 1 22 6 2 25.5 6 1 25.5 6 1
HbA1c (%) 5.7 6 0.1 7.4 6 0.8 5.9 6 0.3 5.9 6 0.4
Cholesterol (mmol/L) 5.1 6 0.2 4.0 6 0.3* 4.3 6 0.3 4.5 6 0.3
HDL (mmol/L) 1.5 6 0.1 1.3 6 0.2 1.5 6 0.2 1.6 6 0.2
Triglycerides (mmol/L) 1.3 6 0.2 1.4 6 0.1 1.2 6 0.1 1.03 6 0.1
Estimated glomerular filtration rate (mL/min/L) 86.22 6 2.13 60.53 6 8.64† 64.0 6 7.5 66.0 6 6.19

Data are presented as mean 6 SEM in diabetic patients and control subjects unless otherwise indicated. All symbols represent statistically
significant differences using paired sample t test. *P , 0.01. †P , 0.02 (baseline vs. control).

TABLE 2
Clinical neuropathy evaluation in control subjects and type 1 diabetic patients undergoing SPK at baseline and follow-up visits at 6 and
12 months

Parameter Control subjects Baseline

Follow-up

6 months 12 months

NSP (0–38) 0 6.7 6 1.8† 7.6 6 2.2 7.3 6 2.0
NDS (0–10) 0.3 6 0.2 4.6 6 0.9† 5.0 6 1.1 5.4 6 0.7
McGill pain index 0 1.7 6 0.6* 1.9 6 0.8 1.3 6 0.5
VPT (volts) 6.7 6 1.8 19.4 6 3.7* 17.4 6 3.3 16.9 6 3.4
CS (°C) 29.3 6 0.4 17.5 6 3.1† 19.8 6 2.9 20.0 6 2.7
WS (°C) 38.1 6 0.8 43.7 6 1.4† 43.8 6 1.2 42.3 6 1.1
Heart rate variability (average bpm) 15.3 6 2.1 7.1 6 1.7† 5.7 6 1.7 4.9 6 2.1
Sural nerve conduction velocity (m/s) 47.9 6 0.5 40.6 6 2.2† 41.5 6 1.6 41.8 6 1.9
Sural amplitude (mA) 20.7 6 3.4 5.1 6 0.9† 5.1 6 0.9 4.0 6 0.6
Peroneal nerve conduction velocity (m/s) 47.7 6 0.9 35.9 6 1.8‡ 37.7 6 1.2 38.5 6 1.8
Peroneal amplitude (mV) 12.2 6 0.9 2.4 6 0.4‡ 1.9 6 0.4 1.7 6 0.3

Data are presented as mean 6 SEM in diabetic patients and control subjects. All symbols represent statistically significant differences using
paired sample t test. *P , 0.05. †P , 0.01. ‡P , 0.001 (baseline vs. control; 6 months vs. baseline; 12 months vs. baseline).
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12 months (P = 0.03). CNBD was significantly lower in
diabetic patients compared with control subjects at base-
line (P , 0.0001) but showed a significant improvement
(P = 0.03) at 6 months and continued to improve signifi-
cantly (P = 0.008) at 12 months (Figs. 2 and 3).

Although IENFD did not show an improvement at 12
months, it showed a significant correlation with corneal
nerve parameters including CNFD (P = 0.656, r , 0.0001),
CNBD (P = 0.709, r , 0.0001), and CNFL (P = 0.695, r ,
0.0001).

DISCUSSION

The natural history of nerve damage in patients with type 1
diabetes is not entirely clear. Longitudinal data from the
Rochester cohort support the contention that the duration
and severity of exposure to hyperglycemia are related to
the progression and hence severity of neuropathy rather
than its onset (29). In type 1 diabetes the development of
diabetic neuropathy has been related not only to glycemic
control but also to conventional cardiovascular risk fac-
tors such as hypertension and lipids (30). The Toronto
consensus identified clinical and neurophysiologic evalu-
ation combined with quantitative sensory and autonomic
function testing as well as small fiber evaluation to di-
agnose neuropathy (11). However, there is no clear con-
sensus as to the critical end points, which should be used
to define the benefits of therapeutic intervention.

The cure for type 1 diabetes is via pancreas trans-
plantation, which normalizes blood glucose. Over the past
20 years, the survival and mortality of SPK transplants has
improved significantly (31); therefore, it provides the ideal
intervention to assess whether the long-term complica-
tions of diabetes are reversible. Some studies show that
retinopathy can deteriorate in 10–35% of patients with
unstable eye disease immediately after pancreas trans-
plantation, but benefits do become apparent after several
years (32,33). Other studies demonstrate an improvement
and/or stabilization of diabetic retinopathy after a median
follow-up of only 17 months (34,35). For nephropathy,
normoglycemia can stop the progression of diabetic glo-
merulopathy, but does not reverse it (36,37). Similarly,
pancreas transplantation alone can limit further reduction
in glomerular filtration rate (33), and SPK protects the
graft kidney from developing diabetic nephropathy (38).

With regard to neuropathy, pancreas transplantation has
previously been shown to improve nerve conduction and
motor and sensory action potentials in the upper but not
the lower limb as well as sudomotor function (5),within 1
year, but with no impact on autonomic function (5–7). SPK
has been shown to improve gastric emptying and symp-
toms related to gastroparesis compared with kidney
transplantation alone (39), although gastrointestinal
symptoms and autonomic deficits do not correlate with
each other. In a recent study in 18 type 1 diabetic patients
there was no improvement in IENFD 21–40 months post-
SPK (7). However, most patients receiving transplantation
had severe nerve fiber damage as evidenced by marked
depletion of intraepidermal nerve fibers (8).

Although nerve conduction studies and quantitative
sensory testing are useful and well-validated measures to
help diagnose and assess the progression of diabetic neu-
ropathy, their utility in evaluating a therapeutic response
may be limited (40). More detailed and reproducible
measures, which accurately quantify small fiber neuropa-
thy via skin or nerve biopsy, may be more sensitive but are
invasive (15–17). There is now an increasing literature on
the potential for CCM to quantify C-fiber pathology in pe-
ripheral neuropathies (18,41,42). Detailed morphometric
and immunohistological studies have demonstrated that
the subbasal nerve fiber bundles studied by CCM are

FIG. 1. A: Skin biopsies immunostained for PGP9.5. Healthy control (A)
shows numerous intraepidermal nerve fibers (red arrowheads) reach-
ing upper levels of epidermis with a well-developed subepidermal nerve
plexus (yellow arrowheads) in a healthy subject (A) compared with
scant subepidermal and minimal intraepidermal nerve fibers in
the diabetic patient both at baseline (B) and at follow-up (C). Scale
bar = 100 mm. B: IENFD in control subjects and in diabetic patients at
baseline and 12 months after SPK. Data are mean 6 SEM. (A high-
quality digital representation of this figure is available in the online
issue.)
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predominantly nociceptive C fibers (43,44). Indeed, CCM
has been applied to evaluate diabetic neuropathy (19,20),
idiopathic small fiber neuropathy (45), and Fabry disease
(46).We have shown that corneal nerve damage assessed
using CCM relates to the severity of intraepidermal nerve
fiber loss (21) and is related to a loss of corneal sensitivity
(25) in diabetic neuropathy. CCM detects very early small-
fiber damage even in subjects with an elevated HbA1c, still
within the normal range (18), and HbA1c levels 7–10 years
before CCM correlate with the severity of nerve damage
(47). Furthermore, an improvement in HbA1c by optimizing
medical therapy (10) and pancreas transplantation (23) led
to corneal nerve regeneration, shown using CCM. How-
ever, in these studies the evaluation of neuropathy was
limited to CCM.

The present study allowed us to evaluate the relative
ability of CCM to detect nerve fiber repair compared with
all other established measures for assessing neuropathy,
including neurologic deficits, QST, neurophysiology, and
IENFD. The results demonstrate a severe neuropathy in
diabetic patients before SPK as evidenced by significant
abnormalities in electrophysiology, QST, IENFD, and

corneal nerve fibers, confirming previous studies (5–8).
However, despite this considerable baseline damage, we
now show a significant improvement in corneal nerve
branch density within 6 months of transplantation. This
improvement confirms our previous work (23) indicating
an early nerve-fiber repair process with the restoration of
euglycemia, followed by a significant improvement in
nerve-fiber density and nerve-fiber length 12 months after
SPK. This is in contrast to all other standard measures of
neuropathy, including detailed QST, autonomic function,
electrophysiology, and IENFD, all of which failed to show
an improvement 12 months after SPK. These findings
support previous studies in diabetic neuropathy where at
best a prevention of progression in nerve damage was
shown only after several years of euglycemia (5–8,48–51).
However, these studies focused heavily on electrophysi-
ology and quantitative sensory assessment, which pre-
dominantly assessed large fiber function. It is relevant that
where small fiber function was assessed in the form of
sudomotor function, a significant improvement was dem-
onstrated within 1 year of SPK (5,7). The main limitations
of this study are the small number of subjects studied, the

TABLE 3
Corneal sensitivity, corneal nerve morphology, and IENFD in control subjects and type 1 diabetic patients at baseline and after SPK at
6 and 12 months

Parameter Control subjects Baseline

Follow-up

6 months 12 months

NCCA (mbars) 0.56 6 0.1 1.78 6 0.42* 1.83 6 0.73 1.84 6 0.89
CNFD (no./mm2) 35.77 6 1.53 14.44 6 1.20‡ 15.22 6 1.63 19.27 6 1.57*
CNBD (no./mm2) 100.92 6 13.1 21.46 6 3.78‡ 36.85 6 6.04* 43.02 6 6.48†
CNFL (mm/mm2) 27.93 6 1.26 11.35 6 1.04‡ 13.35 6 1.50 15.63 6 1.56*
IENFD (no./mm) 9.77 6 1.24 2.03 6 0.61‡ — 2.31 6 1.17

Data are presented as mean 6 SEM in diabetic patients and control subjects. Note that skin biopsy was not performed at 6 months. All
symbols represent statistically significant differences using paired sample t test. *P , 0.05. †P , 0.01. ‡P , 0.001 (baseline vs. control; 6
months vs. baseline; 12 months vs. baseline).

FIG. 2. CCM images from Bowman’s layer of cornea: a control subject (A) and patient with type 1 diabetes at baseline (B) and at 6 (C) and 12 (D)
months after SPK. The red arrows indicate main nerve fibers, and yellow arrows indicate branches. (A high-quality color representation of this
figure is available in the online issue.)
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possibility of false-positive results based on the number of
comparisons, the lack of sudomotor testing given its pre-
vious improvement in these patients, and the lack of
blinding given that all patients were known to have had
a SPK during the follow-up period. Furthermore, with
regard to the lack of improvement in IENFD, this may
reflect the location of the skin biopsy as we assessed this
on the dorsum of the foot, whereas a previous study (9)
has shown that proximal IENFD assessment in the thigh is
more responsive to intervention. Similarly, for neuro-
physiological assessment it has been suggested that upper
limb neurophysiology may show a better response to in-
tervention as a result of lesser severity of damage (52).

We now confirm and extend the results of our previous
study using the latest generation Heidelberg retina tomo-
graph III, which provides enhanced small fiber imaging
and detects earlier nerve fiber repair, particularly reflected
in the increase in nerve branch density, followed by sig-
nificant improvements in nerve fiber density and length.
We believe these data provide further support for the need
to study small fibers as surrogate markers and end points
in intervention trials of diabetic neuropathy. An important
issue with regard to the utility of CCM or indeed any sur-
rogate end point has to be that these alterations in corneal
nerve morphology predict deterioration of neuropathy and
ultimately clinically meaningful outcomes such as foot
ulceration. An alternative interpretation of this data could
of course be that CCM is measuring something unique that
is not an accurate biomarker of how other peripheral
nerves are faring or indeed that corneal nerves respond
well to restoration of insulin and normoglycemia, whereas
other peripheral nerves do not. Nevertheless, CCM ap-
pears to represent a promising noninvasive and hence re-
iterative test with high sensitivity, which may represent an
ideal surrogate end point for assessing the benefits of
pancreas transplantation and indeed other therapies in
clinical trials of human diabetic neuropathy.

ACKNOWLEDGMENTS

This work was supported by National Institutes of Health
Grant R105991.

No potential conflicts of interest relevant to this article
were reported.

M.T. researched and analyzed the data and wrote the
manuscript. M.M.-P. and T.A. were the transplant surgeons.

I.N.P. researched data and analyzed CCM images. H.F., O.A.,
and U.A. undertook clinical and neurological assessment,
skin biopsy, and QST. G.P. was the study coordinator. M.J.
undertook IENFD assessments. A.M. undertook neurophys-
iology. N.E. reviewed and revised the manuscript. A.J.B.
reviewed and revised the manuscript. R.A.M. supervised the
project, undertook IENFD assessment, and reviewed and
revised the manuscript. R.A.M. is the guarantor of this work
and, as such, had full access to all the data in the study and
takes responsibility for the integrity of the data and the
accuracy of the data analysis.

Support from the Wellcome Trust Clinical Research
Facility is acknowledged.

REFERENCES

1. Abbott CA, Malik RA, van Ross ER, Kulkarni J, Boulton AJ. Prevalence and
characteristics of painful diabetic neuropathy in a large community-based
diabetic population in the U.K. Diabetes Care 2011;34:2220–2224

2. Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global
burden of diabetic foot disease. Lancet 2005;366:1719–1724

3. Albers JW, Herman WH, Pop-Busui R, et al.; Diabetes Control and Com-
plications Trial /Epidemiology of Diabetes Interventions and Complica-
tions Research Group. Effect of prior intensive insulin treatment during
the Diabetes Control and Complications Trial (DCCT) on peripheral
neuropathy in type 1 diabetes during the Epidemiology of Diabetes In-
terventions and Complications (EDIC) Study. Diabetes Care 2010;33:
1090–1096

4. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multi-
factorial intervention on mortality in type 2 diabetes. N Engl J Med 2008;
358:580–591

5. Navarro X, Sutherland DE, Kennedy WR. Long-term effects of pancreatic
transplantation on diabetic neuropathy. Ann Neurol 1997;42:727–736

6. Boucek P, Saudek F, Adamec M, et al. Spectral analysis of heart rate
variation following simultaneous pancreas and kidney transplantation.
Transplant Proc 2003;35:1494–1498

7. Boucek P, Havrdova T, Voska L, et al. Epidermal innervation in type 1
diabetic patients: a 2.5-year prospective study after simultaneous pan-
creas/kidney transplantation. Diabetes Care 2008;31:1611–1612

8. Boucek P, Havrdova T, Voska L, et al. Severe depletion of intraepidermal
nerve fibers in skin biopsies of pancreas transplant recipients. Transplant
Proc 2005;37:3574–3575

9. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-
diabetic neuropathy. Diabetes Care 2006;29:1294–1299

10. Tavakoli M, Kallinikos P, Iqbal A, et al. Corneal confocal microscopy de-
tects improvement in corneal nerve morphology with an improvement in
risk factors for diabetic neuropathy. Diabet Med 2011;28:1261–1267

11. Tesfaye S, Boulton AJ, Dyck PJ, et al.; Toronto Diabetic Neuropathy
Expert Group. Diabetic neuropathies: update on definitions, diagnostic
criteria, estimation of severity, and treatments. Diabetes Care 2010;33:
2285–2293

FIG. 3. CNFD (left), CNBD (middle), and CNFL (right) in diabetic patients at baseline and at 6 and 12 months after SPK. *P< 0.05; †P< 0.01; ‡P<
0.001 (baseline vs. control; 6 months vs. baseline; 12 months vs. baseline).

M. TAVAKOLI AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 62, JANUARY 2013 259



12. Malik R, Veves A, Tesfaye S, et al.; on behalf of the Toronto Consensus
Panel on Diabetic Neuropathy*. Small fiber neuropathy: Role in the di-
agnosis of diabetic sensorimotor polyneuropathy. Diabetes Metab Res Rev
2011;27:678–684

13. Ziegler D, Low PA, Litchy WJ, et al. Efficacy and safety of antioxidant
treatment with a-lipoic acid over 4 years in diabetic polyneuropathy: the
NATHAN 1 trial. Diabetes Care 2011;34:2054–2060

14. Dyck PJ, Overland CJ, Low PA, et al.; Cl vs. NPhys Trial Investigators.
Signs and symptoms versus nerve conduction studies to diagnose diabetic
sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve 2010;42:
157–164

15. Malik RA, Veves A, Walker D, et al. Sural nerve fibre pathology in diabetic
patients with mild neuropathy: relationship to pain, quantitative sensory
testing and peripheral nerve electrophysiology. Acta Neuropathol 2001;
101:367–374

16. Malik RA, Tesfaye S, Newrick PG, et al. Sural nerve pathology in diabetic
patients with minimal but progressive neuropathy. Diabetologia 2005;48:
578–585

17. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum
of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003;
60:108–111

18. Ahmed A, Bril V, Orszag A, et al. Detection of diabetic sensorimotor poly-
neuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent
validity study. Diabetes Care 2012;35:821–828

19. Rosenberg ME, Tervo TM, Immonen IJ, Müller LJ, Grönhagen-Riska C,
Vesaluoma MH. Corneal structure and sensitivity in type 1 diabetes mel-
litus. Invest Ophthalmol Vis Sci 2000;41:2915–2921

20. Tavakoli M, Quattrini C, Abbott C, et al. Corneal confocal microscopy:
a novel noninvasive test to diagnose and stratify the severity of human
diabetic neuropathy. Diabetes Care 2010;33:1792–1797

21. Quattrini C, Tavakoli M, Jeziorska M, et al. Surrogate markers of small
fiber damage in human diabetic neuropathy. Diabetes 2007;56:2148–2154

22. Hossain P, Sachdev A, Malik RA. Early detection of diabetic peripheral
neuropathy with corneal confocal microscopy. Lancet 2005;366:1340–1343

23. Mehra S, Tavakoli M, Kallinikos PA, et al. Corneal confocal microscopy
detects early nerve regeneration after pancreas transplantation in patients
with type 1 diabetes. Diabetes Care 2007;30:2608–2612

24. Bravenboer B, van Dam PS, Hop J, vd Steenhoven J, Erkelens DW.
Thermal threshold testing for the assessment of small fibre dysfunction:
normal values and reproducibility. Diabet Med 1992;9:546–549

25. Tavakoli M, Kallinikos PA, Efron N, Boulton AJ, Malik RA. Corneal sen-
sitivity is reduced and relates to the severity of neuropathy in patients with
diabetes. Diabetes Care 2007;30:1895–1897

26. He J, Bazan HE. Mapping the nerve architecture of diabetic human cor-
neas. Ophthalmology 2012;119:956–964

27. Tavakoli M, Malik RA. Corneal confocal microscopy: a novel non-invasive
technique to quantify small fibre pathology in peripheral neuropathies. J
Vis Exp 2011;47:2194

28. Lauria G, Bakkers M, Schmitz C, et al. Intraepidermal nerve fiber density at
the distal leg: a worldwide normative reference study. J Peripher Nerv Syst
2010;15:202–207

29. Dyck PJ, Davies JL, Wilson DM, Service FJ, Melton LJ 3rd, O’Brien PC.
Risk factors for severity of diabetic polyneuropathy: intensive longitudinal
assessment of the Rochester Diabetic Neuropathy Study cohort. Diabetes
Care 1999;22:1479–1486

30. Tesfaye S, Chaturvedi N, Eaton SE, et al.; EURODIAB Prospective Com-
plications Study Group. Vascular risk factors and diabetic neuropathy.
N Engl J Med 2005;352:341–350

31. Demartines N, Schiesser M, Clavien PA. An evidence-based analysis of
simultaneous pancreas-kidney and pancreas transplantation alone. Am
J Transplant 2005;5:2688–2697

32. Wang Q, Klein R, Moss SE, et al. The influence of combined kidney-
pancreas transplantation on the progression of diabetic retinopathy.
A case series. Ophthalmology 1994;101:1071–1076

33. White SA, Shaw JA, Sutherland DE. Pancreas transplantation. Lancet 2009;
373:1808–1817

34. Giannarelli R, Coppelli A, Sartini M, et al. Effects of pancreas-kidney
transplantation on diabetic retinopathy. Transpl Int 2005;18:619–622

35. Giannarelli R, Coppelli A, Sartini MS, et al. Pancreas transplant alone has
beneficial effects on retinopathy in type 1 diabetic patients. Diabetologia
2006;49:2977–2982

36. Fioretto P, Mauer SM, Bilous RW, Goetz FC, Sutherland DE, Steffes MW.
Effects of pancreas transplantation on glomerular structure in insulin-
dependent diabetic patients with their own kidneys. Lancet 1993;342:
1193–1196

37. Fiorina P, Perseghin G, De Cobelli F, et al. Altered kidney graft high-energy
phosphate metabolism in kidney-transplanted end-stage renal disease type
1 diabetic patients: a cross-sectional analysis of the effect of kidney alone
and kidney-pancreas transplantation. Diabetes Care 2007;30:597–603

38. Nyumura I, Honda K, Babazono T, et al. A long-term prevention of diabetic
nephropathy in a patient with type 1 diabetes after simultaneous pancreas
and kidney transplantation. Clin Transplant 2009;23(Suppl. 20):54–57

39. Hathaway DK, Hartwig MS, Milstead J, Elmer D, Evans S, Gaber AO. Im-
provement in quality of life reported by diabetic recipients of kidney-only
and pancreas-kidney allografts. Transplant Proc 1994;26:512–514

40. Dyck PJ, Davies JL, Litchy WJ, O’Brien PC. Longitudinal assessment of
diabetic polyneuropathy using a composite score in the Rochester Di-
abetic Neuropathy Study cohort. Neurology 1997;49:229–239

41. Hertz P, Bril V, Orszag A, et al. Reproducibility of in vivo corneal confocal
microscopy as a novel screening test for early diabetic sensorimotor poly-
neuropathy. Diabet Med 2011;28:1253–1260

42. Pritchard N, Edwards K, Shahidi AM, et al. Corneal markers of diabetic
neuropathy. Ocul Surf 2011;9:17–28

43. Müller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: structure,
contents and function. Exp Eye Res 2003;76:521–542

44. Müller LJ, Vrensen GF, Pels L, Cardozo BN, Willekens B. Architecture of
human corneal nerves. Invest Ophthalmol Vis Sci 1997;38:985–994

45. Tavakoli M, Marshall A, Pitceathly R, et al. Corneal confocal microscopy: A
novel means to detect nerve fibre damage in idiopathic small fibre neu-
ropathy. Exp Neurol 2010;223:245–250

46. Tavakoli M, Marshall A, Thompson L, et al. Corneal confocal microscopy:
a novel noninvasive means to diagnose neuropathy in patients with Fabry
disease. Muscle Nerve 2009;40:976–984

47. Fukashi I, Okino M, Ishibashi M, et al. Corneal nerve fiber pathology in
Japanese type 1 diabetic patients and its correlation with antecedent gly-
cemic control and blood pressure. J Diabetes Invest 2012;3:191–198

48. Kennedy WR, Navarro X, Goetz FC, Sutherland DE, Najarian JS. Effects of
pancreatic transplantation on diabetic neuropathy. N Engl J Med 1990;322:
1031–1037

49. Kennedy WR, Navarro X, Sutherland DE. Neuropathy profile of diabetic
patients in a pancreas transplantation program. Neurology 1995;45:773–
780

50. Navarro X, Kennedy WR, Aeppli D, Sutherland DE. Neuropathy and mor-
tality in diabetes: influence of pancreas transplantation. Muscle Nerve
1996;19:1009–1016

51. Navarro X, Kennedy WR, Loewenson RB, Sutherland DE. Influence of
pancreas transplantation on cardiorespiratory reflexes, nerve conduction,
and mortality in diabetes mellitus. Diabetes 1990;39:802–806

52. Allen RD, Al-Harbi IS, Morris JG, et al. Diabetic neuropathy after pancreas
transplantation: determinants of recovery. Transplantation 1997;63:830–
838

NERVE REGENERATION AFTER SPK

260 DIABETES, VOL. 62, JANUARY 2013 diabetes.diabetesjournals.org


