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Abstract

Background: Understanding the biochemical mechanisms contributing to melanoma development and progression is
critical for therapeutical intervention. LKB1 is a multi-task Ser/Thr kinase that phosphorylates AMPK controlling cell growth
and apoptosis under metabolic stress conditions. Additionally, LKB1Ser428 becomes phosphorylated in a RAS-Erk1/2-p90RSK

pathway dependent manner. However, the connection between the RAS pathway and LKB1 is mostly unknown.

Methodology/Principal Findings: Using the UV induced HGF transgenic mouse melanoma model to investigate the
interplay among HGF signaling, RAS pathway and PI3K pathway in melanoma, we identified LKB1 as a protein directly
modified by HGF induced signaling. A variety of molecular techniques and tissue culture revealed that LKB1Ser428 (Ser431 in
the mouse) is constitutively phosphorylated in BRAFV600E mutant melanoma cell lines and spontaneous mouse tumors with
high RAS pathway activity. Interestingly, BRAFV600E mutant melanoma cells showed a very limited response to metabolic
stress mediated by the LKB1-AMPK-mTOR pathway. Here we show for the first time that RAS pathway activation including
BRAFV600E mutation promotes the uncoupling of AMPK from LKB1 by a mechanism that appears to be independent of
LKB1Ser428 phosphorylation. Notably, the inhibition of the RAS pathway in BRAFV600E mutant melanoma cells recovered the
complex formation and rescued the LKB1-AMPKa metabolic stress-induced response, increasing apoptosis in cooperation
with the pro-apoptotic proteins Bad and Bim, and the down-regulation of Mcl-1.

Conclusions/Significance: These data demonstrate that growth factor treatment and in particular oncogenic BRAFV600E

induces the uncoupling of LKB1-AMPKa complexes providing at the same time a possible mechanism in cell proliferation
that engages cell growth and cell division in response to mitogenic stimuli and resistance to low energy conditions in tumor
cells. Importantly, this mechanism reveals a new level for therapeutical intervention particularly relevant in tumors
harboring a deregulated RAS-Erk1/2 pathway.
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Introduction

Melanoma is the most lethal human skin cancer and its

incidence is rapidly rising world-wide [1]. The development of

effective therapeutics designed to target melanoma requires a

comprehensive understanding of the underlying biochemical and

genetic processes contributing to melanocytic neoplasic transfor-

mation and the subsequent progression to an advanced melanoma

disease stage. Therefore, dissecting the aberrant signaling

pathways that are critical to melanomagenesis and understanding

the mechanisms by which these pathways interact with each other

has become the recent focus of research directed at melanoma

therapeutic intervention.

Dysfunctional receptor tyrosine kinase (RTK) signaling, in

particular through the hepatocyte growth factor (HGF) tyrosine

kinase receptor c-Met signaling pathway, is one important

hallmark of melanoma. HGF signaling activates Ras-Erk1/2 and

PI3K-AKT pathways, and Ras pathway activation has been

shown to play a role in melanoma development and maintenance

[2]. Notably, BRAF, a downstream activator in the RAS pathway

is mutated in nearly 70% of human melanoma (BRAFV600E

activating mutation) while NRAS activating mutations occurs in

30% of melanomas (NRASQ61L activating mutation) [3]. In

addition, support for PI3K-AKT pathway signaling dysfunction in

melanomagenesis has been demonstrated by the documented loss

of the tumor suppressor PTEN-containing chromosomal region in

5–20% of melanomas as well as the over expression of AKT3 in

the advanced stages of this disease [4,5]. Strikingly, however,

single mutations within these two pathways are not sufficient to

promote melanoma development suggesting that a complex

interplay of these aberrant signalling pathways, under poorly

understood circumstances, promote melanomagenesis [2].
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We chose to investigate the potential interplay among the HGF

RTK signaling, the RAS Ras-Erk1/2 and the PI3K-AKT

pathways using the HGF transgenic mouse model in which

HGF is over-expressed and which develops melanoma in response

to neonatal ultraviolet (UV) radiation. This model is unique in that

it develops melanocytic neoplasms in stages that are highly

reminiscent of the human cutaneous malignant melanoma with

respect to biological, genetic and etiologic criteria [6,7].

To begin the analysis, we first searched for possible molecular

candidates with potential to mediate the HGF complex signaling

and identified the multitasking serine/threonine kinase, LKB1 [8]

as one candidate. LKB1 is involved in cell cycle control [9,10],

cellular energy metabolism [11] and cell polarity [12]. The cellular

localization and activity of LKB1 is controlled through its

interaction with the STE20-related adaptor (STRAD) and the

armadillo repeat-containing mouse protein 25 (Mo25); [13,14].

These finding led to the discovery that LKB1 is the upstream kinase

to AMP-activated protein kinase (AMPK) and is linked to mTOR

through the AMPK-TSC1/TSC2 cascade [15,16,17]. LKB1 is

phosphorylated on at least 8 residues, and evidence suggests that

LKB1 auto-phosphorylates itself on at least four of these, whereas

the other four are phosphorylated by upstream kinases [8]. Recent

studies show that human LKB1Ser428 (the equivalent mouse residue

is LKBSer431) is phosphorylated in response to mitogenic signals

including EGF, TPA, elevated levels of cAMP as well as by PKCf
[18,19,20,21,22], where the EGF-mediated phosphorylation of

LKB1Ser428 is dependent on the activation of p90RSK. Although

experiments conducted in G361 melanoma cells indicate that this

residue is involved in LKB1-mediated cell growth inhibition [8,23],

and several other investigations implicate LKB1Ser431 residue in the

activation of AMPK and BRK1/BRSK2 kinases (SAD-B/SAD-A)

[21,24,25], a recent publication stating that LKB1 phosphorylation

in the C-terminal is not required for regulation of AMPK BRSK1/2

and cell cycle arrest contradicts the previous findings [26].

Importantly, sporadic mutations in the lkb1 gene have been

documented in cancers of the breast, pancreas, lung, prostate,

cervical and ovary as well as in Peutz-Jeghers syndrome, a rare

disorder characterized by the appearance of intestinal polyps and

mucocutaneous melanocytic macules [27,28,29,30,31]. In Peutz-

Jegher patients, LKB1 may function as a tumor suppressor and is

associated with loss of heterozygosity or somatic mutation at the

lkb1 locus (for review [8]). More importantly, lkb1 mutations have

been described in melanoma [32] and based on this information

we determined if LKB1 could function as a potential link between

an activated RAS pathway and dysfunctional c-Met signaling and

play a role in melanoma development and progression.

In this study, we identify the mouse LKB1Ser431 residue as a

phosphorylation target, not only for EGF, but also for HGF

signaling and demonstrate that this LKB1 phosphorylation is

executed in an Erk1/2-p90Rsk-dependent manner, as previously

described in response to EGF stimulation [18,19]. We demon-

strate that LKB1Ser428 residue is constitutively phosphorylated in

cells harboring BRAFV600E activating mutations, and is found

frequently phosphorylated in mouse tumor samples with an

increased receptor tyrosine kinase activity suggesting a functional

connection between BRAF oncogenic pathway and LKB1.

Interestingly, BRAFV600E mutant cells show a very limited

response to metabolic stress that appears to be mediated by

mechanism that involves the uncoupling of the energy stress sensor

pathway LKB1-AMPK-mTOR. Importantly, inhibition of RAS-

Erk1/2 pathway in BRAFV600E mutant melanoma cell lines

restores the LKB1-AMPK-mTOR pathway response to metabolic

stress promoting apoptosis in coordination with the BH3-family

proteins Bad and Bim and the Bcl-2 family member Mcl-1.

Results

HGF induces LKB1Ser428 phosphorylation in a RAS-Erk1/2-
p90RSK pathway-dependent manner

We proposed to identify novel molecules involved in melanoma

development and progression analyzing the HGF specific signaling

in the UV induced HGF transgenic melanoma mouse model. To

understand the HGF specific signaling contributions we used 37-

31E-mouse melanoma cell line isolated from neoplasic lesions

raised in the HGF transgenic-UV irradiated mice and performed a

proteomic screening of the phospho-protein complexes induced

after the growth factor treatment (data not shown). As a result, we

identified LKB1 as a kinase that becomes phosphorylated in

response to HGF. Since previous studies implicates RAS pathway

in the modification of this residue we decided to use different cell

lines harboring either, BRAF wild type (37-31E, 37-31T, B16F1

and MeWo) or BRAFV600E mutant cell lines (UACC903, A375

and SKMel28). As shown in Figure 1A, in isolated phospho-

protein complexes from 37-31E cells, LKB1Ser431 was specifically

phosphorylated in response to HGF treatment since this

phosphorylation was totally prevented by the pretreatment with

the specific c-Met inhibitor PHA. LKB1Ser428 (Ser431 in mouse) is

phosphorylated in response to EGF through RAS-Erk1/2-p90RSK

pathway [18,20]. Since HGF triggering activates RAS and PI3K

pathway [33,34,35], we used specific Mek1/2 (U0126) and PI3K

(LY294002) inhibitors to determine which pathway was involved

in the LKB1Ser431 phosphorylation. Figure 1B shows that in mouse

and human melanoma cells, HGF-induced phosphorylation of

LKB1Ser431 was totally abolished by the specific Mek1/2 inhibitor

U0126, whereas the PI3K inhibitor LY294002 had no effect on

HGF-induced phosphorylation of LKB1Ser431. Furthermore, time

course experiments showed that p90RSK became phosphorylated

in response to HGF and its phosphorylation profile correlated with

LKB1Ser431 phosphorylation (Fig. 1C). Additionally, analysis of

B16F1 melanoma cells showed that the phosphorylation of the

LKB1Ser431 was p-Erk1/2 dependent (Fig. 1C) and, inhibition of

Mek1/2 after HGF treatment in 37-31E cells totally abolished the

phosphorylation of Erk1/2, p90RSK and LKB1Ser431 (Fig. 1C). To

confirm the p90RSK participation we used the p90RSK specific

inhibitor BI-D1870. Treatment of 37-31E cells with BI-D1870

abolished the HGF-mediated phosphorylation of LKB1Ser431

(Fig. 1D). The observed activation upon BI-D1870 treatment of

Erk1/2 and the increased levels of p-CREBSer133 is in agreement

with the suggested p90RSK negative-feedback loop that regulates

Erk1/2 described by other authors [20].

These results show that, LKB1Ser428 is phosphorylated in

response to HGF treatment in an Erk1/2-p90RSKdependent

manner.

LKB1Ser428 is phosphorylated in response to different
growth factors and is highly phosphorylated in
melanoma cells harboring BRAFV600E mutations and in
tumor samples

Next, we investigated if this post-translational modification was

broader in scope. We tested several growth factors related to

cancer development in human and mouse melanoma cell lines to

check whether or not these ligands were able to induce LKB1Ser428

phosphorylation. As suggested by previous investigations [18], all

ligands tested, including HGF, EGF, basic fibroblast growth factor

(FGF2), insulin like growth factor 1 (IGF-1), platelet derived

growth factor (PDGF), tumor necrosis factor-alpha (TNF-a),

herregulin, insulin and phorbol-ester tumor promoter TPA were

able to induced LKB1Ser428 phosphorylation in a cell type

RAS Pathway and LKB1
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dependent manner (Fig. 2A). In all cases, the ligands that activated

Erk1/2 and p90RSK kinases led to the phosphorylation of

LKB1Ser428 (Fig. 2A).

The aberrant regulation of the Ras-Erk1/2 pathway represents

one of the hallmarks in cancer. Considering that 70% of human

melanomas harbor BRAF activating mutations [3], we determined

the phosphorylation status of LKB1Ser428 in different human

melanoma cell lines harboring BRAFV600E activating mutations in

serum free and complete medium conditions. As expected,

SKMel28, A375, and UACC903 human melanoma cell lines

harboring the BRAFV600E mutation demonstrated a constitutively

phosphorylated LKB1Ser428 residue whereas the MeWo human

melanoma cell line that harbors the wild type alleles did not

(Fig. 2B).

Based on the above results, tumor samples with a deregulated

tyrosine kinase pathway and/or with enhanced RAS-mediated

Figure 1. HGF induces LKB1Ser431 phosphorylation in a RAS-p90RSK dependent manner. (A) Five mg of phospho-protein isolated
complexes from samples: untreated (Control), HGF triggered (40 ng/ml) w/o PHA (0,2 mM) were resolved by SDS-PAGE. p-LKB1Ser428, p-Erk1/2Thr202/Tyr204

and Erk2 antibodies were probed against the membrane. Ponceau S staining of membrane is showed for phospho-protein extracts loading
control. (B) 37-31E, 37-31T, SKMel28, and MeWo cells were treated in serum starvation conditions with HGF (40 ng/ml), U0126 (10 mM) and
LY294002 (10 mM) as indicated in the figure. Western-blots show the levels of the indicated proteins. (C) Time course showing the
phosphorylation of the LKB1Ser431 and p-90RSK Thr359/Ser363 after HGF triggering (40 ng/ml) under serum starvation conditions. LKB1 total
protein is shown as a loading control. On the right, LKB1Ser431 is phosphorylated in response to HGF in an Erk1/2-p90RSK dependent manner.
Time course shows the phosphorylation of Erk1/2Thr202/Tyr204 and LKB1Ser428 in B16F1 cells. Down below, 37-31E melanoma cells were serum
starved and triggered with HGF (40 ng/ml) for 5 minutes. Then, cells were treated with the Mek1/2 specific inhibitor U0126 (10 mM) for the
indicated increasing times. Fifty mg of total lysates were resolved by SDS-PAGE and membrane was probed with the indicated antibodies.
(D) 37-31E cells were treated for 10 min in serum starvation with HGF (40 ng/ml) in the presence or absence of U0126 (10 mM) or BI-D1870
(10 mM). Western-blots show the levels of p-LKB1Ser431, p-Erk1/2Thr202/Tyr204 and p-CREBSer133.
doi:10.1371/journal.pone.0004771.g001
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mitogenic activity would be expected to exhibit elevated

LKB1Ser428 phosphorylation. In this matter, the phosphorylation

state of LKB1Ser431 in spontaneous tumor samples raised in UV-

irradiated HGF transgenic mice and in xenographed tumors from

the 37-31E-melanoma cells correlated with elevated levels of p-

Erk1/2 (Fig. 2C).

All together, these data indicated the existence of a RAS

pathway and LKB1 crosstalk suggesting that LKB1 might be

involved in some of the RAS-Erk1/2 induced-responses, and more

importantly would be contributing to BRAF oncogenic signaling.

BRAF mutant melanoma cells have a dysfunctional LKB1-
AMPK energy stress-induced pathway response

Melanoma cells are especially resistant to different types of

stress. LKB1 is the AMPKa upstream kinase that becomes

phosphorylated in response to metabolic stress controlling protein

synthesis through mTOR pathway. Considering the LKB1Ser428

phosphorylation as a read out of the RAS and LKB1 pathways

interaction, the constitutive phosphorylation of LKB1Ser428 in

BRAF mutant cells suggested a possible interplay between LKB1-

AMPK pathway and BRAF oncogenic signaling. Therefore, we

investigated the LKB1-AMPK pathway activation in three

different BRAFV600E mutant melanoma cell lines under low

energy conditions and the contribution of BRAFV600E signaling to

the energy sensor pathway. To test this hypothesis we starved

BRAF mutant melanoma cells under serum free and low glucose

conditions in the presence or absence of the Mek1/2 inhibitor

U0126, and investigated the activation of LKB1-AMPK-mTOR

pathway. UACC903, SKMel28 and A375 cells showed a very

limited response to energy withdrawal as measured by the

induction of phospho-AMPKa (Fig. 3A). Under these conditions

all cells retained considerable mTOR activity as indicated by the

phosphorylation levels of ribosomal protein S6 (Fig. 3A). However,

the addition of U0126 (10 mM) recovered AMPKa pathway

Figure 2. LKB1Ser431 (Ser428 human) is phosphorylated in response to different growth factors, in BRAFV600E mutant melanoma
cells and mouse tumor samples. (A) B16F1, 37-31T and MeWo cells were serum starved and treated with HGF (40 ng/ml), EGF (100 ng/ml), FGF2
(100 ng/ml), Herregulin (50 ng/ml), IGF-1 (50 ng/ml), PDGF (50 ng/ml), TNF-a (100 ng/ml) Insulin (100 nM) and TPA (200 nM). Fifty mg of total lysates
were separated by SDS-PAGE and same membranes were incubated against the indicated antibodies. (B) MeWo (BRAF wild type), A375 (BRAFV600E),
SKMel28 (BRAFV600E) and UACC903 (BRAFV600E) human melanoma cells were growth in complete medium (CM) or serum starvation (SF) conditions as
indicated. Fifty mg of total lysates were analyzed by SDS-PAGE. The phosphorylation status of LKB1Ser428, p-Erk1/2Thr202/Tyr204 and p-90RSK Thr359/Ser363

is shown. Total Erk1/2 is used as a loading control. Cell genotypes are showed. (C) p-LKB1Ser431 and p-Erk1/2Thr202/Tyr204 levels in mouse melanoma
tumor samples. Samples 1–7 primary tumors raised in HGF-UV irradiated transgenic mice. Samples 8 and 9 show xenograph tumors generated from
37-31E cells in FVB mice with high and low p-Erk1/2 levels, respectively. As a control fifty micrograms of protein from 37-31E melanoma cell line
treated with HGF (40 ng/ml) for 10 minutes was added (Total lysates, T.L.). Same membrane was blotted against the indicated antibodies.
Quantifications of phospho-proteins normalized against total protein are showed in the graphs below.
doi:10.1371/journal.pone.0004771.g002
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activation in response to low energy conditions resulting in the

complete abrogation of mTOR activity as indicated by phospho-

S6 ribosomal protein (Fig. 3A). In contrast, 37-31E melanoma cells

harboring wild type BRAF did not show this effect by the addition

of U0126 under low energy conditions (Fig. 3A). Interestingly, the

re-activation of the AMPKa pathway in BRAF mutant cells

correlated with the total inactivation of Erk1/2 and the unpho-

sphorylated LKB1S428 (Fig. 3A). Importantly, the addition of

U0126 up to 10 mM in serum free high glucose conditions did not

induce the activation of AMPKa [36] (Fig. 3B). To confirm the

reconnection of the AMPK pathway after inhibition of oncogenic

BRAF signaling we used AICAR (5-Aminoimidazole-4-carbox-

yamide ribonucleoside) instead of low glucose in order to stimulate

the activation of the AMPK pathway. As expected, the addition of

AICAR, which increases AMPK phosphorylation levels by a

mechanism that appears to be due to the inhibition of AMPK

dephosphorylation [37,38,39], slightly increased the p-AMPK

levels in serum starvation. The addition of U0126 inhibitor

resulted in a clear increment the p-AMPKa levels (Fig. 3C). Since

this effect was observed in BRAFV600E mutant cells, we repeated

the experiments using the BRAF inhibitor sorafenib. Notably,

inhibition of BRAFV600E signaling with sorafenib recovered the

activation of AMPK pathway in response to metabolic stress.

Interestingly, sorafenib treatment under low glucose condition

reduced Erk2 protein levels by a currently unknown mechanism

(Fig. 3D). Importantly, experiments knocking–down BRAFV600E

performed in serum free and low glucose medium also resulted in

an increased of p-AMPKa levels (Fig 3D).

In addition, we tested whether p90RSK signaling was mediating

the observed effect using the p90RSK specific inhibitor BI-D1870.

Experiments were done in the presence of EGF to assured the

activation of RAS pathway. Treatment of cells with the p90RSK

inhibitor BI-D1830 did not recover the cells response to low energy

conditions as indicated by the p-AMPK levels (Fig. 3E) suggesting,

that the oncogenic BRAF-mediated LKB1Ser428 phosphorylation

was not sufficient to account for the observed response. As

Figure 3. Inhibition of oncogenic BRAFV600E signaling restores the limited response to metabolic stress of BRAF mutant melanoma
cell lines. (A) BRAF mutant melanoma cells have a limited response to energy withdrawal that is restored by U0126 treatment. Fifty micrograms of
total lysates from UACC903, A375, SKMel28 and 37-31E melanoma cells grown in serum free high glucose medium (H.G.), serum free low glucose
medium (L.G.) or serum free low glucose medium (L.G.) plus 10 mM of U0126 for 4 hours were separated by SDS-PAGE. Western-Blot shows the
activation status of proteins in the RAS and LKB1-AMPK-mTOR pathways. (B) U0126 inhibitor treatment does not activate AMPK. UACC903 A375 and
SKMel28 melanoma cells were grown in high glucose medium with serum in the absence or presence of 1 mM, 5 mM or 10 mM of U0126. Total protein
lysates were subjected to SDS-PAGE. Western-blot shows the phosphorylation state of AMPKa in the presence of different concentrations of U0126.
(C) Inhibition of BRAF signaling increases cell response to AICAR. UACC903 and SKMel28 cells were grown in complete medium; cells were treated
with AICAR (1 mM) for 4 h in the presence or absence of U0126 (10 mM) inhibitor. p-LKB1Ser428, p-AMPKThr172, p-Erk1/2Thr202/Tyr204, p-ACCSer79 levels
were checked by western blot. (D) Sorafenib treatment and siRNA BRAF knockdown restores the metabolic stress pathway in BRAF mutant
melanoma cells. In the left panel, UACC903, A375 and SKMel28 melanoma cells were grown in low glucose serum free medium+/2EGF (50 ng/ml) for
4 h in the presence or absence of U0126 (10 mM) Western blots show the levels of p-AMPKaT172, p-LKB1Ser431 p-Erk1/2Thr202/Tyr204 and pCREBSer133

proteins under the different conditions. In the right panel SKMel28 cells were transfected with either a scramble siRNA or BRAF siRNA. 72 hours after
transfection, cells were starved either in high glucose (H.G.) or low glucose (L.G.) medium for six hours. Western-blots show the levels of p-AMPKaT172,
p-Erk1/2Thr202/Tyr204 and BRAF proteins. (E) p90Rsk inhibitor BI-D1870 (10 mM), does not restore the metabolic stress pathway. UACC903, A375 and
SKMel28 melanoma cells were grown in low glucose serum free medium+/2EGF (50 ng/ml) for 4 h in the presence or absence of BI-D1870 (10 mM).
Western blots show the levels of the indicated proteins under the different conditions.
doi:10.1371/journal.pone.0004771.g003
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previously shown, BI-D1870 treatment induced the Erk1/2 and

CREBSer133 phosphorylation mediated by the suggested p90RSK

negative-feedback loop that regulates Erk1/2 [20].

Altogether these data show evidences that indicate that

melanoma cells harboring oncogenic BRAF have a diminished

response to metabolic stress. Importantly, the inhibition of the

oncogenic BRAF signaling, that connects RAS pathway to LKB1,

restored the AMPK-mediated energy stress sensor pathway.

However the results also indicate that the inhibition of the

LKB1Ser428 phosphorylation is not enough to recover the pathway

LKB1-AMPK-mTOR response, suggesting the existence of

additional mechanisms.

Growth factor treatment and oncogenic BRAFV600E

induce LKB1-AMPK disassembly
The LKB1 tumor suppressor kinase activity is not related to its

phosphorylation state [14]. Thus, its contribution to the different

biological processes is likely to be mediated by its interaction with

other proteins and/or its cellular localization. LKB1 controls

protein synthesis and cell growth through the AMPK-TSC1/

TSC2 cascade [15,16,17]. Mitogenic responses coordinate simul-

taneously cell growth with cell division. Since the activation of

AMPK-TSC1/TSC2 pathway by LKB1 controls energy metab-

olism and protein synthesis, we examined whether the growth

factor treatment leads to LKB1-AMPK dissociation, providing a

mechanism that would assure cell growth upon a mitogenic

stimulus and resistance to energy stress conditions. To investigate

the underlying mechanism, we transfected 293T cells with Flag-

tagged LKB1 and GST-AMPKa and then treated the cells with or

without EGF in order to activate RAS pathway. After immuno-

precipitation of the Flag-LKB1 complexes we checked for the

presence of GST-AMPKa in the immunocomplexes. The data

indicated that some fraction of AMPKa is constitutively bound to

LKB1. Interestingly, treatment of cells with the growth factor

induced dissociation of the LKB1-AMPKa complexes (Fig. 4A).

Moreover, this effect was totally independent of LKB1 kinase

activity since Flag-tagged kinase dead LKB1 (LKB1KD) repro-

duced exactly the same result. Since growth factor stimulation

promoted LKB1-AMPKa disassembly and this effect correlated

with the phosphorylation of LKB1Ser428 upon growth factor

stimulation, we examined the role of the Ser428 (Ser431 in mouse)

residue on this effect. We transfected LKB1WT wild type,

LKB1S431A mutant, LKB1S431D phospho-mimetic mutant and

the LKB1KD constructs together with GST-AMPKa in 293T cells

and repeated the previous experiment. Again when LKB1WT and

LKB1KD were transfected the EGF treatment promoted the

disassembly of the LKB1-AMPKa complex. However, GST-

AMPKa did not form a complex with either the LKB1S431A or

LKB1S431D mutants, suggesting that, in response to growth factors,

the Ser428 residue would be involved in the binding or stability of

the LKB1-AMPKa complexes (Fig. 4B).

The above data suggested that the limited response to metabolic

stress of BRAF mutant melanoma cells could be caused by the

dissociation of LKB1-AMPKa complexes. Thus, the inhibition of

BRAF signaling by U0126 inhibitor would permit the reconnec-

tion of the pathway. To confirm that, we performed an

immunoprecipitation of the endogenous LKB1 in the BRAF

mutant melanoma cells and examined the AMPKa association

under low energy conditions with or without U0126 inhibitor.

UACC903 and A375 melanoma cells showed an increase in the

number of AMPKa molecules associated to LKB1 when BRAF

signaling pathway was blocked (Fig. 4C). This re-assembly was also

associated with an increase in AMPKaT172 phosphorylation levels.

Similar results were obtained when endogenous p-AMPKaT172

was immunoprecipitated from SKMel28 melanoma cells under

same conditions, confirming the suggested mechanism (Fig. 4C).

Additionally, we reconstitute the system in Hela cells that do not

express endogenous LKB1. Hela cells were transfected with Flag-

LKB1 and GST-AMPKa in the presence or absence of oncogenic

myc-BRAFV600E under low glucose conditions. The expression of

oncogenic BRAFV600E induced the complex dissociation that was

totally rescued by the addition of U0126 inhibitor (Fig. 4D).

These data showed evidences that support the growth factor

treatment and RAS pathway activation mediated disassembly of

the LKB1-AMPK complexes. Importantly the inhibition of the

RAS pathway in cells harboring BRAFV600E mutation restores the

LKB1-AMPKa pathway by permitting the re-association of the

LKB1-AMPKa complexes. Furthermore, these data also suggest-

ed that although growth factor stimulation induces LKB1Ser428

phosphorylation, additional mechanisms should be involved

promoting the RAS pathway-dependent LKB1-AMPK disassem-

bly.

Restoration of the LKB1-AMPKa pathway in BRAFV600E

melanoma cells under energy stress conditions induces
apoptosis in coordination with Bad, Bim and Mcl-1

Next, investigated the cell survival response of BRAFV600E

mutant melanoma cell lines with a restored LKB1-AMPKa
pathway under stress energy conditions. According to the accepted

mechanism, elevation of intracellular AMP levels will activate

LKB1 that in turn activates AMPK and regulates apoptosis in

response to energy stress [16]. Additionally, it has been shown that

blocking BRAF signaling in BRAFV600E mutant cell lines for long

periods of time (24–48 hours) promotes apoptosis through the

regulation of BH3-family proteins [40,41]. We subjected

UACC903 and A375 melanoma cells to metabolic stress

conditions for a maximum of 12 hours in the presence or absence

of the Mek1/2 inhibitor. Then, we measured cell viability and

apoptosis by nuclear staining exclusion (Guava ViaCount) and

Annexin V and propidium iodide (PI) double staining. UACC903

and A375 melanoma cell lines showed some spontaneous

apoptosis under normal growing conditions: 5.71% and 3.27%

respectively. The addition of Mek1/2 inhibitor for 12 hours in

high glucose medium did not promote any increment in the

apoptosis rate (UACC903 5.38% and A375 2.70%). Glucose

starvation for 12 hours resulted in slight increase in the number of

double positive Annexin V-PI cells respect normal growing

conditions: 1.27 fold for UACC903 cells and 2.35 fold for A375

cells. However, the restoration of the LKB1-AMPKa pathway by

inhibition of Mek1/2 under low glucose conditions resulted in a

considerable number of apoptotic cells (5.7 and 6.4 fold increase

respectively); (Fig 5A). Similar results were observed when viable

cells were analyzed by PI exclusion (Fig. 5A). The results were

correlated with the molecular status of the pathways implicated in

a time course fashion. As shown before, the inhibition of Erk1/2

phosphorylation resulted in the decrease of phopho-LKB1Ser428

levels and the restoration of the LKB1-AMPKa pathway. In turn,

the LKB1-AMPKa pathway was able to sense the low energy

conditions as soon as 4 hours after glucose starvation, indicated by

the levels of p-AMPKaT172 (Fig. 5B). Interestingly, the increase in

the number of apoptotic cells did not correlate with p53

stabilization. On the contrary, p53 levels were down-regulated

under these conditions in all cell lines, suggesting the participation

of BRAF signaling in the stabilization of p53 and a p53-

independent apoptotic mechanism (Fig. 5B).

In order to establish a causal link among the inhibition of BRAF

signaling, the AMPK pathway re-activation, and the increased

number of dead cells, we knocked-down AMPKa in UACC903

RAS Pathway and LKB1
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melanoma cells and investigated the response under low glucose

conditions to the inhibition of the oncogenic BRAF signaling. As

showed in figure 5C, blocking BRAF signal under low energy

conditions in control cells resulted in elevated levels of p-

AMPKaT172 together with an increment in the number of dead

cells. However, AMPKa knock–down cells did not show any

increase in the number of dead cells under similar conditions.

As mentioned previously, BRAF suppresses apoptosis, targeting

the BH3-family of proteins in BRAFV600E mutant cells [40]. In

high glucose medium the addition of the U0126 inhibitor for

12 hours caused a small decrease of p-Bad and the Bcl-2 family

member Mcl-1 protein levels together with a slight increase in the

amount of BimEL. Interestingly, when the LKB1-AMPKa
pathway was restored under low glucose conditions, the increased

number of dead cells correlated with a stronger biochemical

response including the complete de-phosphorylation of Bad, the

stabilization of the non-phosphorylated BimEL isoform and the

drastic down-regulation of Mcl-1 (Fig. 5D).

Our results indicated that in a BRAF mutant context, the

reactivation of LKB1-AMPK-mTOR pathway under low energy

conditions together with the inhibition of oncogenic BRAF

signaling for short periods of time, promoted a pronounced

apoptosis response through the de-phosphorylation of Bad,

stabilization of BimEL and the down-regulation of Mcl-1.

Figure 4. Growth factor treatment and BRAFV600E promotes LKB1-AMPKa disassembly. (A) 293T cells were transiently transfected for 48 h
with Flag-LKB1, Flag-LKB1KD (kinase dead) and GST-AMPKa as indicated. Then, cells were treated with 100 ng/ml of EGF for 10 min.
Immunocomplexes pulled down with an anti-Flag-resin were separated by SDS-PAGE and proteins present in the complexes were analyzed by
western blot. Total lysates show the transfection controls and the response to growth factor treatment. (B) 293T cells were transiently transfected
with the constructs indicated. Then, cells were serum starved for 2 h and treated with 100 ng/ml of EGF for 10 min and protein complexes were
immunoprecipitated with anti-Flag-resin. Protein complexes were separated by SDS-PAGE. Levels of GST-AMPKa, Flag-LKB1 constructs and the
phosphorylation state of LKB1Ser431 in the complexes are shown. Quantification of the amount of GST-AMPKa normalized to the Flag-LKB1
immunoprecipitated is represented in the graph. Total lysates are shown for control transfection of the different samples. (C) Endogenous LKB1 from
UACC903 and A375 melanoma cells growing in low glucose medium (L.G.) with or without 10 mM U0126 was immunoprecipitated. Western-blot from
the immunoprecipitated samples was probed against LKB1, AMPKa and p-AMPKaT172 antibodies. On the right, total lysates from SKMel28 melanoma
cells growing in complete medium (High Glucose, H.G.) low glucose medium (L.G.) in the presence or absence of 10 mM U0126 were subjected to
immunoprecipitation with the anti-p-AMPKaT172. Samples were separated by SDS-PAGE. Total lysates (T.L.) from low glucose plus U0126 treated cells
are showed as a control. Western-Blot of the immunoprecipitated samples was performed against total AMPKa antibody. (D) Hela cells were
transfected with Flag-LKB1, GST-AMPKa and myc-BRAFV600E or and empty vector as indicated. Flag-LKB1 was immunoprecipitated and western-blots
from immunoprecipitated samples were probed against the indicated antibodies. Graph shows the quantification of the AMPK bound to LKB1.
doi:10.1371/journal.pone.0004771.g004

RAS Pathway and LKB1

PLoS ONE | www.plosone.org 7 March 2009 | Volume 4 | Issue 3 | e4771



Discussion

The understanding of the molecular and biochemical mecha-

nisms contributing to melanoma development and progression is

critical for therapeutical intervention. The UV-induced HGF

mouse melanoma model recapitulates chronologically and histo-

pathologically all the stages of human melanoma [6,7]. We

investigated the potential interplay among the HGF RTK

signaling, the RAS-Erk1/2 and the PI3K-AKT pathways using

the HGF mouse model. In neoplasic melanoma cells isolated from

spontaneous tumors raised in the mouse model, we identified

LKB1 as one of the molecules responsive to HGF triggering. As

previously described for EGF [18], we show that HGF and several

other growth factors induce the phosphorylation of LKB1Ser431

through the Ras-Erk1/2-p90RSK pathway. Interestingly, this

residue appears to be constitutively phosphorylated in human

melanoma cells harboring BRAFV600E activating mutation as an

indicator of the connection between RAS pathway and LKB1.

The role of LKB1 in response to growth factors, and its connection

to the RAS pathway, is mostly unknown. Our results show that

melanoma cells harboring the BRAFV600E oncogenic mutation

have a very limited response to metabolic stress. Interestingly, the

inhibition of the BRAF signaling restores the ability of the cells to

sense the low energy conditions. Notably, growth factor treatment

and oncogenic BRAFV600E leads to the uncoupling of LKB1-

AMPKa complexes, suggesting a mechanism that disconnects the

energy sensor pathway, which is involved in controlling cell growth

through the mTOR pathway in response to low energy conditions.

Figure 5. Restoration of the LKB1-AMPKa pathway in BRAFV600E melanoma cells induces apoptosis under energy stress conditions.
(A) UACC903, A375 and SKMel28 human melanoma cells were grown in complete medium (H.G.), or low glucose medium (L.G.) with or without
10 mM of the Mek1/2 specific inhibitor U0126 for 12 h. Then, Annexin V and PI (propidium iodide) positive cells were analyzed by flow cytometry.
Histograms show the result from FACS analysis. Graphs on the right show the percentage of viable and dead cells in a parallel experiment under the
same conditions determined by nuclear staining exclusion (Guava-ViaCount). (B) Time course at 4 and 12 hours showing the LKB1-AMPKa pathway
status under the same conditions. UACC903, A375 and SKMel28 human melanoma cells were grown in complete medium (high glucose H.G.), low
glucose medium (L.G.) with or without 10 mM of the Mek1/2 specific inhibitor U0126 for the times indicated. Fifty micrograms of total protein lysates
were separated by SDS-PAGE and same membranes were blotted against the indicated antibodies. All experiments were done at least three times.
Representative experiments are shown. (C) UACC903 cells were transfected either with a scramble siRNA or with equimolar amounts of AMPKa1 and
AMPKa2 siRNAs for a total concentration of 100 nM. 72 hours after transfection cells were starved in low glucose medium for 6 hours in the presence
or absence of 10 mM of U0126. Dead cells were quantified by nuclear staining exclusion (Guava-ViaCount). Western-blots show the levels of p-
AMPKaT172, AMPKa and p-Erk1/2Thr202/Tyr204 under the different conditions. (D) UACC903 and A375 melanoma cells were grown in complete medium
(H.G. cm), serum free high glucose medium (H.G. sf), serum free low glucose medium (L.G.), serum free complete medium plus U0126 10 mM
(H.G.+U0126) and low glucose serum free medium plus U0126 10 mM (L.G.+U0126) for 12 hours. The levels of Bim, phospho-Bad and Mcl-1 are
showed under the different experimental conditions.
doi:10.1371/journal.pone.0004771.g005
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Furthermore, inhibition of BRAF oncogenic signaling promotes

the association of the LKB1-AMPKa complexes and results in an

increase of apoptosis in response to metabolic stress.

Our screening for the discovery of novel molecules involved in

HGF signaling in melanoma cells allowed us to identify by DIGE

analysis proteins that were directly modified in response to c-Met

activation by HGF (data not shown). Previously, it has been

described that EGF and forskolin promote the phosphorylation of

LKB1Ser428 in a p90RSK and PKA dependent manner respectively

[18,19]. Our results showed that LKB1Ser431 phosphorylation

occurs in response to HGF and other different growth factors in a

RAS-Erk1/2-p90RSK dependent manner as initially suggested by

previous investigations [18,19]. Interestingly, and according to

siRNA knock down experiments (data not shown), cells expressing

less than five percent of the LKB1 pool still respond to this

stimulus, suggesting that LKB1 would have a relevant role in the

mitogenic response to growth factors. Virtually all cancers have

aberrant signaling of receptor tyrosine kinases (RTKs), growth

factors autocrine loops or activating mutations in the RAS

pathway (RAS activating mutations or BRAFV600E mutation).

We therefore hypothesized that LKB1 would be mediating some

of the effects of the RAS and BRAF oncogenes. In agreement with

this, LKB1Ser428 appears to be constitutively phosphorylated in

human melanoma cell lines harboring BRAFV600E activating

mutations as an indicator of the interplay between RAS pathway

and LKB1. Furthermore, LKB1Ser431 (Ser428 in human) tends to

be phosphorylated in mouse tumor samples harboring deregulated

tyrosine kinase activities or increased mitogenic signaling,

suggesting the direct participation of LKB1 in tumor biology.

LKB1 activity is controlled through its interaction with the

STE20-related adaptor (STRAD) and Mo25 [13,14]. LKB1 can

be phosphorylated at eight or more different residues, where the

modifications at these amino acids have no effect on LKB1 kinase

activity [8]. In the last five years a number of publications have

reported several critical roles for LKB1 in different biological

processes such as: energy metabolism [11,16], cell polarity and

division [12,11] and transcriptional regulation [10]. However,

most of these studies rely on the presence or absence of LKB1 in

these processes. Our data show that growth factor treatment

induces both, LKB1Ser428 phosphorylation and the dissociation of

LKB1-AMPKa complexes. The participation of this residue in

growth inhibition, cell polarity and the activation of the LKB1

downstream kinases (AMPK, BRSK1/2) have been controversial

[8,21,23,25,26]. Indeed, our results regarding the participation of

this residue in the growth factor-mediated dissociation of the

LKB1-AMPKa complexes are not conclusive and more research is

needed in order to elucidate the complete role of this residue.

Moreover, we can no exclude the participation of additional

residues or proteins in the process.

LKB1 is the upstream kinase of AMPKa and is linked to

mTOR through the AMPK-TSC1/TSC2 cascade [15,16,17]

controlling cell growth under energy stress conditions. One

possible interpretation of our results would be that the dissociation

of the LKB1-AMPKa complex would provide a mechanism to

avoid interruption of protein synthesis through this pathway while

cells are responding to a mitogenic stimulus. In this matter, the

activation of RAS-Erk1/2 pathway would engage biochemical

mechanisms to coordinate cell growth and division to assure cell

proliferation. Importantly, the deregulation of the AMPK-mTOR

axis by the dissociation of the LKB1-AMPKa complex in cells

harboring RAS pathway activating mutations could represent an

advantage for proliferation and a significant resistance increased to

metabolic stress conditions. Notably, BRAFV600E mutant melano-

ma cell lines showed a limited sensitivity in response to low energy

conditions. Treatment of cells with the Mek1/2 inhibitor U0126

allowed the formation of endogenous LKB1-AMPKa complexes

and restored the energy sensor pathway in response to low energy

conditions, supporting the proposed mechanism (Fig. 6). Mek1/2

inhibitors (U0126, PD98059) have been reported to activate

AMPK at 20 mM concentration, but not at 5–10 mM [36]. These

experiments were done in glucose free medium and in the

presence of growth factors with high levels of phospho-Erk1/2.

According to our data the inhibition of the Erk1/2 pathway under

low energy conditions would allow the re-association of LKB1-

AMPKa, which in turn would result in an increase the levels of p-

AMPKa. Furthermore, our data showed that in high glucose

medium the addition of U0126 (10 mM) or sorafenib (data not

shown) had no effect on AMPKa phosphorylation in all BRAF

mutant cell lines (Fig 5A). Up-to-date the connection between

RAS pathway and LKB1 has been limited to the phosphorylation

of LKB1Ser428 residue through p90RSK. However, our results

indicate that this modification is not enough to mediate the

observed effect, suggesting the existence of additional biochemical

mechanisms mediated by Erk1/2 that will account for the LKB1-

AMPKa dissociation mediated by the RAS pathway (Fig. 6).

The activation of AMPKa by LKB1 under energy stress,

stimulates glucose uptake and fatty acid oxidation to increase ATP

production, inhibits protein synthesis and protects cells from

undergoing apoptosis [8]. Surprisingly, the inhibition of Erk1/2

pathway in BRAF mutant melanoma cell lines subjected to

metabolic stress resulted in an increase in the number of dead cells

(Fig 6). Interestingly, our experiments knocking-down AMPKa
suggests a causal link among the inhibition of oncogenic BRAF

signaling, the reconstitution of the energy sensor pathway and the

resulting cell death. In agreement with the interplay between the

oncogenic signaling and AMPK is the recent finding where the

activation of AMPK pathway by administration of metformin,

phenformin or A-769662 to PTEN(+/2) mice significantly

delayed tumor onset, demonstrating that LKB1 is required for

activators of AMPK to inhibit mTORC1 signaling as well as cell

growth in PTEN-deficient cells [42]. Interestingly, the increased

apoptosis rate did not correlate with the stabilization of p53,

indicating that the mechanism was apparently p53-independent

and that BRAF oncogenic signaling was participating in the

stabilization of p53. In fact, it is known that under genotoxic-stress

conditions, Erk1/2 signaling mediates p53 stabilization [43,44].

Furthermore, the AMPK-induced p53 activation has been

reported to promote cell survival in response to glucose

deprivation in MEFs [45], while our data in BRAF mutated

melanoma cells clearly showed an increase in apoptosis.

Recent publications have shown that oncogenic BRAF can

suppress apoptosis through targeting BH3-only proteins Bad and

Bim [40,41]. Our results indicate that the inhibition of oncogenic

BRAF signaling at 12 h promotes a slight de-phosphorylation of

Bad and the stabilization of BimEL, most likely, by inhibiting its

Erk1/2-dependent phosphorylation and proteasome-mediated

degradation [46]. The reactivation of the LKB1-AMPK-mTOR

pathway under low energy conditions by the inhibition of BRAF

signaling led to a more pronounced effect that included a drastic

down-regulation of Mcl-1 (Fig 6). Interestingly, Mcl-1 has been

shown to be an important melanoma anti-apoptotic protein [47].

In conclusion, in this report we show that activation of RAS

pathway by growth factors and oncogenic BRAFV600E results in

the dissociation of LKB1-AMPKa. These results, permit us to

speculate that under normal growth conditions, this biochemical

mechanism, through the activation of RAS pathway, could be

involved in the coordination of two important processes in cell

proliferation: cell growth and cell division. Interestingly,
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BRAFV600E mutant melanoma cells have minimal response to

energy stressed conditions due to the constitutive dissociation of

the LKB1-AMPKa complexes. However, under metabolic stress

conditions the inactivation of BRAF oncogenic signaling restores

the LKB1-AMPKa-mTOR pathway-promoting apoptosis in

collaboration with BH3-only proteins and Mcl-1 (Fig 6). Impor-

tantly, this mechanism reveals a new level for therapeutical

intervention triggering apoptosis of tumor cells. This might be

particularly relevant in tumors harboring a deregulated RAF-

Erk1/2 pathway that survive in energy stress conditions.

Materials and Methods

Cell lines
37-31E and 37-31T cells have been described previously [33].

The 293T, Hela, SKMel28, MeWo, A375 and B16F1 cell lines

were from ATCC. The 293T cells and Hela cells were maintained

in DMEM (Gibco) with 10% FBS and penicillin/streptomycin,

while the 37-31E and 37-31T cells were supplemented with EGF

(5 ng/ml) (Invitrogen) and Insulin (4 mg/ml) (Invitrogen). The

human melanoma cell lines SKMel28 and were grown in MEM

(ATCC) supplemented with 10% FBS plus penicillin/streptomycin

(Gibco). UACC903 were a gift from J. Trent (P. Pollock), Tgen

Phoenix, Arizona. All cell lines were growth under 37uC and 5%

CO2 conditions. For low glucose conditions cells were put in

DMEM (Gibco) or MEM (Gibco) low glucose medium plus

penicillin/streptomycin for at least 4 h.

Phospho-protein isolation
37-31E cells were serum starved for two hours and then

triggered with 40 ng/ml of HGF (R&D) for 10 minutes in the

presence or absence of 0.2 mM of the c-Met specific inhibitor PHA

(Sugen-Pfizer). Cells were then lysed according to the phospho-

protein purification kit (Qiagen Inc.), and phospho-proteins

purified according to manufacturer instructions.

Plasmids
pCMV5-Flag-LKB1WT wild type, pCMV5-Flag-LKB1KD ki-

nase dead, pCMV5-Flag-LKB1S431A mutant and pCMV5-Flag-

LKB1S431D mutant were obtained from Dario Alessi (University of

Dundee). pEBG-2t-GST-AMPKa was a kind gift from José

Miguel Lizcano and José Manuel López Blanco (Autonomous

University of Barcelona). pLPCX-myc-BRAFV600E, was subcloned

from pEB- myc-BRAFV600E (obtained from Richard Marais,

ICRF).

Cell transfection
293T cells were seeded at 60% confluence the day before

transfection. Cells were transiently transfected with Lipofectamine

Figure 6. A model of the metabolic stress response regulation by oncogenic BRAF in melanoma cells. Resistance to stress conditions is
essential for melanoma cells survival. We propose that oncogenic BRAFV600E signaling (left panel) protects to apoptosis by regulating BH3-family
members and confers resistance to low energy conditions promoting the uncoupling of LKB1 and AMPK through Erk1/2 and p90Rsk. Under this
condition BRAF mutant cells have a limited response to low energy conditions. On the right panel the inhibition of BRAF signaling allows the
formation of the LKB1-AMPK complexes restoring the energy stress pathway and promoting the down-regulation of anti-apoptotic proteins such as
Mcl1. The activation of AMPK by metabolic stress conditions and the inhibition of BRAF signaling would have synergistic effects promoting apoptosis.
doi:10.1371/journal.pone.0004771.g006
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reagent (Invitrogen Inc.) following the manufacturer’s protocol.

Cells were treated and lysed 36–48 h after transfection.

siRNA transfection experiments
Scramble siRNA, human BRAF siRNA On target-smartpool,

and human siRNA AMPKa1 and AMPKa2 On-target-smart-

pools were purchased from Dharmacon. 100 nM siRNA was

transfected into cells using Lipofectamine 2000 (Invitrogen Inc.)

following manufacturer protocol. Experiments were performed

72 hours after transfection.

Reagents and Western Blot analysis
PHA c-Met specific inhibitor (Pfizer) was diluted in DMSO and

used at the concentrations indicated. Mek1/2 inhibitor U0126 and

PI3K inhibitor LY294002 (Cell Signaling) were used at 10 mM

concentration. P90RSK inhibitor BI-D1870 was purchased from

MSI/WTB University of Dundee and used at 10 mM. Cells were

treated with the inhibitors for 2 hours under serum starvation and

then treated with HGF (40 ng/ml) for 10 min. Five mg of phospho-

proteins or 50 mg of total protein lysates were separated by SDS-

PAGE and transferred to a PVDF membrane (Millipore). The

membranes were blocked in 5% milk (Santa Cruz) and blotted

against different primary antibodies. ERK2 and LKB1 were from

Santa Cruz. Anti-DYKDDDDK (Flag), phospho-Erk1/2 (Thr202/

Tyr204), Erk1/2, phospho-ACC (Ser79), p-90RSK (Thr359/

Ser363), AMPKa, p-AMPK (Thr172), phospho-S6 ribosomal

protein (Ser235/236); phosho-Bad (Ser112), anti-Bad and Bim

were purchased from Cell Signaling. Additionally p-Bad (Ser112)

was purchased from Genscript Co., Anti-GST polyclonal antibody

and anti-Flag was purchased from Sigma-Aldrich and Genscript

Co. and GAPDH was purchased from Trevigen. Mcl-1 antibody

was from DAKO. Anti-Flag resin was obtained from Sigma-Aldrich

and glutathione-resin was purchased from Amersham and Gen-

script Co. Membranes were developed using horseradish linked

secondary antibodies (GE Healthcare) and ECL (GE Healthcare).

Immunoprecipitations
36–48 h after transfection cells were treated as needed and lysed

in RIPA Buffer containing a protease cocktail II inhibitor (Sigma-

Aldrich). 800–1000 mg of total protein was subjected to immuno-

precipitation with 30 ml Flag-resin or 30 ml of Glutathion-resin.

Then, samples were washed three times with RIPA buffer and

SDS-loading sample buffer was added to the samples. Samples

were separated by SDS-PAGE.

Cell viability and apoptosis assays
Cell viability and dead cells were counted by using Guava

ViaCount reagent (Gevara Technologies) cell counter (ViaCount).

Apoptosis was measured using the Annexin V-EGFP apoptosis

detection kit (Genscript corporation) following the manufacturer’s

protocol. Positive cells for Annexin V-EGFP and propidium iodide

staining were analyzed and quantified by flow cytometry

(FACScalibur).

Image analysis
Bands from tumor samples were quantified using NIH1.6 Image

software. Normalization of p-proteins was performed against the

normalized amount of the total phosphorylated protein. Other

proteins were normalized against GAPDH.
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