Contents lists available at ScienceDirect

جـــامـعــة الملك سعود King Saud University

Saudi Journal of Biological Sciences

Original article

Plastome of *Saraca asoca* (Detarioideae, Fabaceae): Annotation, comparison among subfamily and molecular typing

Mohammad Ajmal Ali^{a,*}, Tapan Kumar Pan^b, Arun Bahadur Gurung^{c,*}, Mohammad Abul Farah^d, Fahad Al-Hemaid^a, Khalid Mashay Alanazi^d, Meena Elangbam^e, Joongku Lee^f, Shankar Kumar Pandey^g, M. Oliur Rahman^h, Soo-Yong Kimⁱ

^a Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

^b University Department of Botany, Tilka Manjhi Bhagalpur University, Bhagalpur 812007, Bihar, India

^c Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India

^d Genetics Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

^e Genetics Laboratory, Centre of Advanced Studies in Life Sciences, Manipur University, Canchipur 795 003, India

^f Department of Environment and Forest Resources, Chungnam National University, Daejeon 34134, Republic of Korea

^g Department of Botany, TNB College, Tilka Manjhi Bhagalpur University, Bhagalpur 812007, Bihar, India

^h Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh

ⁱ International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea

ARTICLE INFO

Article history: Received 3 November 2020 Revised 3 December 2020 Accepted 6 December 2020 Available online 11 December 2020

Keywords: Plastome Saraca asoca Detarioideae Fabaceae Molecular authentication Simple sequence repeat Genomic rearrangement

ABSTRACT

Saraca asoca (Roxb.) Willd. (subfamily Detarioideae, family Fabaceae) is a perennial evergreen sacred medicinal tree classified under 'vulnerable' by the IUCN. The chloroplast (cp) genome/plastome which follows uniparental inheritance contains many useful genetic information because of its conservative rate of evolution. The assembled cp genome of *S. asoca* which maps as a conserved circular structure revealed extensive rearrangement in gene organization, comprising total length 160,003 bp including LSC, SSC, IRa, and IRb, and GC content was 35.26%. Herein a set of *rbcL* and *matK* gene were established using molecular phylogenetic analyses for molecular typing of *S. asoca*.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Saraca asoca (Roxb.) de Wilde [family Fabaceae, subfamily Detarioideae (APG IV, 2016; LPWG, 2017)], commonly known as 'asoca' (Fig. 1A-B), indigenous to Assam, E. Pakistan, Upper Burma, Malaya, Ceylon and South India (Singh et al., 2015), is one of the most sacred tree of the Indian subcontinent (Murthy et al., 2008; Mollik et al., 2010). Apart from its various pharmacological signif-

* Corresponding authors.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

icance e.g. antimicrobial (Seetharam, et al., 2003; Shirolkar et al., 2013), anticancer (Cibin et al., 2012), anti-inflammatory (Cibin et al., 2012; Saha, et al., 2012), antiarthritic (Preethi and Krishnakumar, 2011) activities, the barks, leaves, flowers, and seeds of '*asoca*' have extensively been used against uterine infections and as astringent in the cases of the internal haemorrhoids in modern as well as in the Indian traditional systems of medicine (Nudrat et al., 2005; Singh et al., 2015).

The continuous development in the next-generation sequencing (NGS) platforms (Shendure et al., 2017), and bioinformatics tools (Yang and Rannala, 2012) including cloud computing for genomic data analysis (Kwon et al., 2015; Langmead and Nellore, 2018) during last two decades have (a) greatly propelled to sequencing of the organellar genome e.g. mitochondria (Kozik et al., 2019), chloroplast (Daniell et al., 2016) and whole genome (Chen et al., 2018), (b) revolutionized the understanding of various biological disciplines (Ali et al., 2020) e.g. tree of life (Philippe et al., 2005;

https://doi.org/10.1016/j.sjbs.2020.12.008

1319-562X/© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail addresses: ajmalpdc@gmail.cm (M.A. Ali), arunbgurung@gmail.com (A.B. Gurung).

Fig. 1. Saraca asoca. A. The tree in the flowering stage. B. An enlarged view of inflorescence.

Rokas, 2006), evolution of plant genomes (Wendel et al., 2016), gene families and gene function (Leebens-Mack et al., 2019), conservation biology (Johnson and Koepfli, 2014; Wambugu et al., 2018), and (c) alleviate the enhancement of the agronomic traits (Rogalski et al., 2015; Daniell et al., 2016; Lima et al., 2016). The over-exploitation of *S. asoca* from the wild habitat due to increasing commercial demand of the bark of '*asoca*' as crude drug material leads it to vulnerable (IUCN, 2019); hence, the characterization of plastome/whole chloroplast (cp) genome of '*asoca*' and its genetic comparison will facilitate the development of DNA markers for diversity assessment, conservation, and in unraveling function of genes and gene families to produce its enhanced agronomic traits through genetic engineering.

2. Materials and methods

2.1. Leaf sampling and DNA sequencing

The green young leaves material of *S. asoca* was collected [voucher information: 'MAA & TKPAN-116' (BHAG, KSUH)] from the tree growing at conservatory of the botanical garden, Tilka Manjhi Bhagalpur University (TMBU), Bhagalpur, India, without harming the plant, were used for the extraction of DNA using # DNeasy Plant Mini Kit (QIAGEN). The *de novo* sequencing (as a single end run of 51 bp) was performed at Illumina platform, Illumina Pipeline 1.3.2 (Nie et al., 2012) was used for base calling.

2.2. Cp genome assembly and annotation

The raw reads were first filtered using fastqc. The high-quality reads were then assembled using spades (Bankevich et al., 2012), and annotated using the online tool GeSeq (https://chlorobox.mpimp-golm.mpg.de/geseq.html) at *Tamarindus indica* L. (GenBank NC_026685.1) as reference (Hansen et al., 2007; Tillich et al., 2017). The repeat structure and small inversion (Maia et al., 1991; Timme et al., 2007; Yang et al., 2010; Doorduin et al., 2011; Castro et al., 2013; Beier et al., 2017) in cp genome were analyzed.

2.3. Comparison of cp genome and phylogenetic analysis

The cp genome of *S. asoca* was compared with the five other complete **Detarioideae** (Fabaceae) cp genomes including *Crudia harmsiana* Wild., (NC_036743.1), *Daniellia pilosa* (J. Léonard) Estrella, (NC_036744.1), *Guibourtia leonensis* J. Leonard, (NC_036742.1) and *Tamarindus indica* L. (NC_026685.1) by aligning

using Kalign (Lassmann and Sonnhammer, 2005) and UPGMA analysis (Sneath and Sokal, 1973) employing MEGA X (Kumar et al., 2018) followed by the verification of the taxon proximity under UPGMA tree with MAUVE alignment.

The plant DNA barcoding genes i.e. *rbcL* and *matK* of adulterant species (a) *Bauhinia variegata* L. (GU135196, GU135033), (b) *Mesua ferrea* L. (KY654490, JN114759), (c) *Polyalthia longifolia* (Sonn.) Thwaites (JX856748, AY518786), (d) *Shorea robusta* Gaertn. (KY654498, KY973059) and (e) *Trema orientalis* (L.) Blume (KY654502, AB924756) were retrieved from the GenBank, and analyzed together with the sequences of the *S. asoca* (KY678341, KC592386). The sequences were aligned (Thompson et al., 1994), and the molecular phylogenetic analyses by Maximum Evolution method (Rzhetsky and Nei, 1992) rooted using outgroup *Sarcandra glabra* [Clade: Angiosperms, Order: Chloranthales, Family: Chloranthaceae (KP208901, JN407112) were performed using MEGA X (Kumar et al., 2018).

3. Results and discussion

The assembled cp genome maps as a conserved circular structure (Fig. 2A), comprising total length 160,003 bp including LSC, SSC, IRa, and IRb, and GC content was 35.26% (NCBI GenBank accession number: MN866115) as similar to those of other angiosperms (Daniell et al., 2016). The cp genome possessed 111 genes (97 CDS, 29 tRNA, 4 rRNA genes) (Fig. 2B). Twelve of the CDS and eight of the tRNAs contain introns; 18 of these contain single intron, and two genes (*ycf*3 and *clpP*) possess 2 introns each (Fig. 2A).

The tandem and dispersed repeats were analyzed for *S. asoca* cp genome. It is evident that the number of tandem and dispersed repeats were more in 15–20 bp and 31–40 bp category, respectively (Fig. 3A). The repeat structures of *S. asoca* and other five species of Fabaceae were analyzed by REPuter and were compared. The forward and palindrome repeats were common in these species (Fig. 3B-C). A total of 70 different SSR loci repeated more than 1 time (Table 1), contribute to the A–T richness of cp genome. The repeat regions play very significant roles in genome recombination (Yang et al., 2010). The SSRs are highly polymorphic due to higher mutation rate that affects the number of repeat units (Tsai et al., 2008).

The comparison of cp genome of *S. asoca* with the five other complete **Detarioideae** (Fabaceae) cp genomes e.g. *C. harmsiana*, *D. pilosa*, *G. leonensis*, and *T. indica* revealed extensive rearrangement in gene organization (Fig. 4). Further, the ME tree from the set of the GenBank accession number [*Bauhinia variegata* [(Clade:

Fig. 2. A. The cp geneome map Saraca asoca, B. the genes of different groups are color-coded.

Fig. 3. The repeat structure analysis of the cp genome S. asoca. [A. The frequency of repeat by length; B. The repeat type; C. Comparison among six sequenced Fabaceae cp genomes (F: forward, P: palindrome, R: reverse, C: complement orientations)].

Rosids, Order: Fabales, Family: Fabaceae; GenBank accession number: GU135196, GU135033)], *Mesua ferrea* [Clade: Rosids, Order: Malpighiales, Family: Calophyllaceae; GenBank accession number: KY654490, JN114759)], *Polyalthia longifolia* [Clade: Magnoliids, Order: Magnoliales, Family: Annonaceae; GenBank accession number: JX856748, AY518786)], *Shorea robusta* [Clade: Rosids, Order: Malvales, Family: Dipterocarpaceae; GenBank accession number: KY654498, KY973059] and *Trema orientalis* [Clade: Rosids, Order: Rosales, Family: Cannabaceae; GenBank accession number: KY654502, AB924756)] of *rbcL* and *matK* [the cp genes used in the plant DNA barcoding (CBOL, 2009)] with the sequence of *S. asoca* (KY678341, KC592386/ MN866115) revealed the optimal tree with the sum of branch length 0.57133802 (Fig. 5), and have potential to be used as molecular typing of *S. acoca* from its adulterants (Hegde et al., 2018) as NMR spectroscopy (Urumarudappa et al., 2016) and *rbcL*-ISSR based DNA barcodes (Hegde et al., 2018) are least user-friendly.

Table 1The SSR loci of S. asoca cp genome.

S.	Туре	SSR	Size	Starts	End
1	P1	(T)10	10	2993	3002
2	p2	(TA)6	12	3933	3944
3	p2	(CT)6	12	9477	9488
4	p2	(TA)6	12	9799	9810
5	p1	(A)11	11	11,185	11,195
6	p1	(A)10 (T)12	10	11,518	11,527
/	pl Pl	(1)10	10	14,444	14,453
8	pi	(A)IU (T)11ccc (T)14	10	15,746	15,/55
9 10	C C	(1)115eq (1)14 (T)15 seq (A)10	103	17,236	10,215
10	n1	(T)12	105	18 454	18 465
12	p1	(T)12 (T)13	13	18 906	18 918
13	p1	(A)11	11	19 421	19,431
14	p1	(A)10	10	48,187	48,196
15	p1	(A)14	14	50,369	50,382
16	p1	(T)14	14	51,455	51,468
17	p2	(TA)8	16	51,746	51,761
18	p1	10(A)	10	53,129	53,138
19	p1	(T)10	10	53,454	53,463
20	p1	(T)14	14	54,019	54,032
21	с	(AT)7 seq (T)11	119	59,271	59,389
22	p1	(T)10	10	59,795	59,804
23	c	(AT)6 seq (AT)6 seq (AT)7	163	60,249	60,411
24	p3	(1A1)5	15	60,634	60,648
25	pl	(A)IU (T)11 = (A)10	10	61,434	61,443
20	ť	(1)11 g(A)10 (T)12	12	65,230	65,257
27	p1	(1)12 (T)10	12	65 958	65 967
20	p1 p4	(TTAA)6	24	69 696	69 719
30	p1	(T)12	12	73 240	73 251
31	p1	(T)10	10	74,761	74,770
32	C C	(A)10 seg (A)9	89	76,392	76,480
33	с	(A)10 seg (AT)6	58	77,232	77,289
34	p1	(T)11	11	77,940	77,950
35	p1	(A)11	11	79,224	79,234
36	p1	(T)10	10	80,731	80,740
37	p1	(G)10	10	82,977	82,986
38	p1	(A)15	15	84,348	84,362
39	p1	(C)11	11	84,762	84,772
40	p2	(AT)6	12	85,254	85,265
41	p1	(A)10 (T)10	10	91,245	91,254
42	p1	(1)10	10	91,781	91,790
43	p1	(1)13	13	92,481	92,493
44	p1	(A)12	14	93,432	95,405
46	p1 p2	(AT)10	20	94 894	94 913
40	p2 n2	(TA)6	12	96 515	96 526
48	p2 p2	(AT)6	12	96.648	96,659
49	p1	(A)12	12	101,516	101,527
50	p1	(T)10	10	103,439	103,448
51	p2	(TA)7	14	103,785	103,798
52	p1	(T)15	15	105,822	105,836
53	p1	(T)10	10	106,166	106,175
54	p2	(AT)6	12	106,328	106,339
55	p1	(T)12	12	108,073	108,084
56	p1	(T)10	10	109,129	109,138
57	С	(A)11 seq (T)10	38	109,557	109,594
58	p1	(A)13	13	112,044	112,056
59	p2	(AT)6	12	112,200	112,211
6U 61	C	(AI)/ t(IA)/	29	112,852	112,880
62	р1 ъ1	(Α)IU (Δ)13	10	114,103	114,172
63	pi n ¹	(A)15 (T)10	13	115,814	115,820
64	p1	(T)10 (T)10	10	117 561	110,274
65	יץ n1	(T)10	10	120 635	120 644
66	p1	(A)10	10	121 197	120,044
67	n1	(T)10	10	126 128	126 137
68	p1	(T)13	13	130 202	130 214
69	p1	(A)11	11	131.334	131.344
70	p1	(T)10	10	133,319	133,328
				-	

Fig. 4. The MAUVE alignment of cp genomes of five different Detarioideae, showing genomic rearrangement.

Fig. 5. The minimum evolution tree based on combined sequence of *rbcL* and *matK* gene representative species of Rosids. (R, F, F: Clade: Rosids, Order: Fabales, Family: Fabaceae; R, M, C: Clade: Rosids, Order: Malpighiales, Family: Calophyllaceae; M, M, A: Clade: Magnoliids, Order: Magnoliales, Family: Annonaceae; R, M, C: Clade: Rosids, Order: Malvales, Family: Dipterocarpaceae; R, R, C: Clade: Rosids, Order: Rosids, Family: Cannabaceae).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to extend their sincere appreciation to the Researchers Supporting Project number (RSP-2020/154), King Saud University, Riyadh, Saudi Arabia.

References

- Ali, M.A., Kim, S.-Y., Pan, T.K., Al-Hemaid, F., Elshikh, M.S., Elangbam, M., Lee, J., Farah, M.A., Al-Anazi, K.M., 2020. Complete chloroplast genome of vulnerable medicinal plant *Saraca asoca* (Fabaceae). Mitochondrial DNA Part B 5 (1), 754– 755.
- APG, IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linnean Soc. 181, 1–20.
 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A., Dvorkin, M., Kulikov, A.S., Lesin, V., Nikolenko, S., Pham, S., Prjibelski, A., Pyshkin, A., Sirotkin, A., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: A new genome assembly

algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5), 455–477. Beier, S., Thiel, T., Münch, T., Scholz, U., Mascher, M., 2017. MISA-web: a web server

- for microsatellite prediction. Bioinformation 33 (16), 2583–2585.
- Castro, I., Pinto-Carnide, O., Ortiz, J.M., Martin, J.P., 2013. Chloroplast genome diversity in Portuguese grapevine (*Vitis vinifera* L.) cultivars. Mol. Biotechnol. 54 (2), 528–540.
- CBOL Plant Wording Group, 2009. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 106, 12794–12797.
- Chen, F., Dong, W., Zhang, J., Guo, X., Chen, J., Wang, Z., Lin, Z., Tang, H., Zhang, L., 2018. The sequenced angiosperm genomes and genome databases. Front. Plant Sci. 9, 418.
- Cibin, T.R., Devi, D.G., Abraham, A., 2012. Chemoprevention of two-stage skin cancer in vivo by Saraca asoca. Integr. Cancer. Ther. 11, 279–286.
- Daniell, H., Lin, C.S., Yu, M., Chang, W.J., 2016. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 1–29.
- Doorduin, L., Gravendeel, B., Lammers, Y., Ariyurek, Y., Chin, A.W.T., Vrieling, K., 2011. The complete chloroplast genome of 17 individuals of pest species *Jacobaea vulgaris*: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. NA Res. 18, 93–105.
- Hansen, D.R., Dastidar, S.G., Cai, Z., Penaflor, C., Kuehl, J.V., Boore, J.L., Jansen, R.K., 2007. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: *Buxus* (Buxaceae), *Chloranthus* (Chloranthaceae), *Dioscorea* (Dioscoreaceae), and *Illicium* (Schisandraceae). Mol. Phylogenet. Evol. 45, 547–563.
- Hegde, S., Archana, S., Harsha, V.H., Sanjiva, D.K., Subarna, R., 2018. Molecular identification of *Saraca asoca* from its substituents and adulterants. 3 Biotech. 8, 161.
- IUCN, 2019. IUCN red list of threatened species. Version 2011.1. www.iucnredlist. org. Accessed 6th November 2019.

Mohammad Ajmal Ali, Tapan Kumar Pan, Arun Bahadur Gurung et al.

- Johnson, W.E., Koepfli, K., 2014. The role of genomics in conservation and reproductive sciences. In: Holt, W., Brown, J., Comizzoli, P. (Eds.), Reproductive sciences in animal conservation. Advances in experimental medicine and biology. Springer, New York, New York.
- Kozik, A., Rowan, B.A., Lavelle, D., Berke, L., Schranz, M.E., Michelmore, R.W., Christensen, A.C., 2019. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet. 15, (8) e1008373.
- Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6), 1547–1549.
- Kwon, T., Yoo, W.G., Lee, W.-J., Kim, W., Kim, D.-W., 2015. Next-generation sequencing data analysis on cloud computing. Genes Genom. 37, 489–501.
- Langmead, B., Nellore, A., 2018. Cloud computing for genomic data analysis and collaboration. Nat. Rev. Genet. 19 (4), 208–219.
- Lassmann, T., Sonnhammer, E.L., 2005. Kalign an accurate and fast multiple sequence alignment algorithm. BMC Bioinform. 6, 298.
- Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., et al., 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685.
- Lima, M.S., Woods, L.C., Cartwright, M.W., Smith, D.R., 2016. The (in)complete organelle genome: exploring the use and non-use of available technologies for characterizing mitochondrial and plastid chromosomes. Mol. Ecol. Resour. 16 (6), 1279–1286.
- LPWG The Legume Phylogeny Working Group, 2017. Nasim, A., Babineau, M., Bailey, C.D., Banks, H., Barbosa, A.R., Pinto, R.B., Boatwright, J.S., Borges, L.M., Brown, G. K., Bruneau, A., Candido, E., Cardoso, D., Chung, K.-F., Clark, R.P., Conceição, A.S., Crisp, M., Cubas, P., Delgado-Salinas, A., Dexter, K.G., Doyle, J.J., Duminil, J., Egan, A.N., Estrella, M., Falcão, M.J., Filatov, D.A., Fortuna-Perez, A.P, Fortunato, R.H., Gagnon, E., Gasson, P., Rando, J.G., Tozzi, A.M.G.A., Gunn, B., Harris, D., Haston, E., Hawkins, J.A., Herendeen, P.S., Hughes, C.E., Iganci, J.R.V., Javadi, F., Kanu, S.A., Kazempour-Osaloo, S., Kite, G.C., Klitgaard, B.B., Kochanovski, F.J., Koenen, E.J. M., Kovar, L., Lavin, M., le Roux, M., Lewis, G.P., de Lima, H.C., López-Roberts, M. C., Mackinder, B., Maia, V.H., Malécot, V., Mansano, V.F., Marazzi, B., Mattapha, S., Miller, J.T., Mitsuyuki, C., Moura, T., Murphy, D.J., Nageswara-Rao, M., Nevado, B., Neves, D., Ojeda, D.I., Pennington, R.T., Prado, D.E., Prenner, G., Paganucci de Queiroz, L., Ramos, G., Filardi, F.L.R., Ribeiro, P.G., Rico-Arce, M.L., Sanderson, M. J., Santos-Silva, J., São-Mateus, W.M.B., Silva, M.J.S., Simon, M.F., Sinou, C., Snak, C., de Souza, É.R., Sprent, J., Steele, K.P., Steier, J.E., Steeves, R., Stirton, C.H., Tagane, S., Torke, B.M., Toyama, H., da Cruz, D.T., Vatanparast, M., Wieringa, J.J., Wink, M., Wojciechowski, M.F., Yahara, T., Yi, T., Zimmerman, E., 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66 (1), 44-77.
- Maia, G.L., Falcao-Silva Vdos, S., Aquino, P.G., de Araujo-Junior, J.X., Tavares, J.F., da Silva, Nagano Y, Ishikawa, H., Matsuno, R., Sasaki, Y., 1991. Nucleotide sequence and expression of the ribosomal protein L2 gene in pea chloroplasts. Plant Mol. Biol. 17, 541–545.
- Mollik, M.A.H., Hossan, M.S., Paul, A.K., Taufiq-Ur-Rahman, M., Jahan, R., Rahmatullah, M., 2010. A comparative analysis of medicinal plants used by folk medicinal healers in three districts of Bangladesh and inquiry as to mode of selection of medicinal plants. Ethnobot. Res. Appl. 8, 195–218.
- Murthy, S.M., Mamatha, B., Shivananda, T.N., 2008. Saraca asoca an endangered plant. Biomed. 3, 224–228.
- Nie, X., Lv, S., Zhang, Y., Du, X., Wang, L., Biradar, S.S., Tan, X., Wan, F., Weining, S., 2012. Complete chloroplast genome sequence of a major invasive species, crofton weed (*Ageratina adenophora*). PLoS One 7, e36869.

- Nudrat, S.Z., Usha, M., Khan, I.A., Khanum, A., 2005. Medicinal and aromatic plants of India, Part I. Ukaaz Publication, Hyderabad, India.
- Philippe, H., Delsuc, F., Brinkmann, H., Lartillot, N., 2005. Phylogenomics. Annu. Rev. Ecol. Evol. Syst. 36, 541–562.
- Preethi, F., Krishnakumar, K., 2011. Anti-inflammatory activity of the barks of Saraca indica Linn. Pharmacol. Online 2, 657–662.
- Rogalski, M., do Nascimento Vieira, L., Fraga, H.P., Guerra, M.P., 2015. Plastid genomics in horticultural species: Importance and applications for plant population genetics, evolution, and biotechnology. Front. Plant Sci. 6, 586.
- Rokas, A., 2006. Genomics and the tree of life. Science 313 (5795), 1897-1899.
- Rzhetsky, A., Nei, M., 1992. A simple method for estimating and testing minimum evolution trees. Mol. Biol. Evol. 9, 945–967.
- Saha, J., Mitra, T., Gupta, K., Mukherjee, S., 2012. Phytoconstituents and HPTLC analysis in *Saraca asoca* (Roxb.) Wilde. Int. J. Pharm. Pharm. Sci. 4, 96–99.
- Seetharam, N., Sujeeth, H., Jyothishwaran, G., Barad, A., Sharanabasappa, G., Shabana, P., 2003. Antibacterial activity of *Saraca asoca bark*. Indian J. Plant Sci. 65, 658–659.
- Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., Waterston, R.H., 2017. DNA sequencing at 40: Past, present and future. Nature 550, 345–353.
- Shirolkar, A., Gahlaut, A., Chhillar, A.K., Dabur, R., 2013. Quantitative analysis of catechins in *Saraca asoca* and correlation with antimicrobial activity. J. Pharm. Anal. 3, 421–428.
- Singh, S., Anantha Krishna, T.H., Subban, K., Gini, C.K., Jinu, M.V., Chelliah, J., 2015. Phytomedicinal importance of *Saraca asoca* (Ashoka): an exciting past, an emerging present and a promising future. Curr. Sci. 109 (10), 1790–1801.
- Sneath, P.H.A., Sokal, R.R., 1973. Numerical Taxonomy. Freeman, San Francisco.
- Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E.S., Fischer, A., Bock, R., Greiner, S., 2017. GeSeq versatile and accurate annotation of organelle genomes. Nuc. Acids Res. 45, W6–W11.
- Timme, R.E., Kuehl, J.V., Boore, J.L., Jansen, R.K., 2007. A comparative analysis of the *Lactuca* and *Helianthus* (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 94, 302–312.
- Tsai, L.C., Wang, J.C., Hsieh, H.M., Liu, K.L., Linacre, A., Lee, J.C., 2008. Bidens identification using the noncoding regions of chloroplast genome and nuclear ribosomal DNA. Forensic Sci. Int. Genet. 2, 35–40.
- Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680.
- Urumarudappa, S.K., Gogna, N., Newmaster, S.G., Venkatarangaiah, K., Subramanyam, R., Saroja, S.G., Gudasalamani, R., Dorai, K., Ramanan, U.S., 2016. DNA barcoding and NMR spectroscopy-based assessment of species adulteration in the raw herbal trade of *Saraca asoca* (Roxb.) Willd, an important medicinal plant. Int. J. Legal. Med. 130 (6), 1457–1470.
- Wambugu, P.W., Ndjiondjop, M.-N., Henry, R.J., 2018. Role of genomics in promoting the utilization of plantgenetic resources in genebanks. Functional Genom. 17 (3), 198–206.
- Wendel, J.F., Jackson, S.A., Meyers, B.C., Wing, R.A., 2016. Evolution of plant genome architecture. Genome Biol. 17, 37.
- Yang, M., Zhang, X., Liu, G., Yin, Y., Chen, K., Yun, Q., Zhao, D., Al-Mssallem, I.S., Yu, J., 2010. The complete chloroplast genome sequence of date palm (*Phoenix dactylifera* L.). PLoS One 5, e12762.
- Yang, Z., Rannala, B., 2012. Molecular phylogenetics: principles and practice. Nat. Rev. Genet. 13 (5), 303–314.