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Mangrove microbiomes play an essential role in the fate of mangroves in our changing
planet, but the factors regulating the biogeographical distribution of mangrove microbial
communities remain essentially vague. This paper contributes to our understanding
of mangrove microbiomes distributed along three biogeographical provinces and
ecoregions, covering the exuberant mangroves of Amazonia ecoregion (North Brazil
Shelf) as well as mangroves located in the southern limit of distribution (Southeastern
ecoregion, Warm Temperate Southwestern Atlantic) and mangroves localized on the
drier semi-arid coast (Northeastern ecoregion, Tropical Southwestern Atlantic), two
important ecotones where poleward and landward shifts, respectively, are expected
to occur related to climate change. This study compared the microbiomes associated
with the conspicuous red mangrove (Rhizophora mangle) root soils encompassing soil
properties, latitudinal factors, and amplicon sequence variants of 105 samples. We
demonstrated that, although the northern and southern sites are over 4,000 km apart,
and despite R. mangle genetic divergences between north and south populations, their
microbiomes resemble each other more than the northern and northeastern neighbors.
In addition, the northeastern semi-arid microbiomes were more diverse and displayed
a higher level of complexity than the northern and southern ones. This finding may
reflect the endurance of the northeast microbial communities tailored to deal with the
stressful conditions of semi-aridity and may play a role in the resistance and growing
landward expansion observed in such mangroves. Minimum temperature, precipitation,
organic carbon, and potential evapotranspiration were the main microbiota variation
drivers and should be considered in mangrove conservation and recovery strategies
in the Anthropocene. In the face of changes in climate, land cover, biodiversity, and
chemical composition, the richness and complexity harbored by semi-arid mangrove
microbiomes may hold the key to mangrove adaptability in our changing planet.

Keywords: soil microbial community, Rhizophora mangle, red mangrove, blue carbon, amplicon sequence
variants, network co-occurrence analysis
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GRAPHICAL ABSTRACT

INTRODUCTION

Mangroves cover 75% of tropical and subtropical coastlines (Giri
et al., 2011), comprising 137,600 km2 distributed throughout 118
countries. Due to their high primary productivity (218 ± 72 Tg
C yr−1) (Bouillon et al., 2008) and high carbon-storage
capacity (24 Tg C yr−1) (Alongi, 2014), mangroves can play
a crucial role as blue-carbon sinks (Mcleod et al., 2011),
provide valuable ecosystems services (Barbier et al., 2011) and
support adaptation to climate change (Lovelock and Duarte,
2019). However, when disturbed through land-use changes,
mangroves can become a source of large quantities of greenhouse
gases (GHG) (Kauffman et al., 2020). For instance, mangrove
conversion to agriculture or aquaculture can result in greenhouse
gas emissions of 1,067–3,003 Mg CO2e ha−1, most of this
emissions originated from soil carbon pool losses (Kauffman
et al., 2018a,b). Indeed, under “business as usual” scenario rates
of mangrove loss, emissions could reach 3,394 Tg CO2eq when
considering foregone soil carbon sequestration (Adame et al.,
2021). Microbes are the main players that contribute to these
and other mangrove ecosystem services (Allard et al., 2020).
They constitute the mangrove microbiome, which comprises
taxonomically and functionally diverse microorganisms that
participate in element cycling, organic matter decomposition and
mineralization (Ochoa-Gómez et al., 2019), and promote plant
growth (Tong et al., 2019), being directly or indirectly related to
mangrove ecosystems services.

Forces shaping soil microbial dynamics have become recently
well understood (Fierer, 2017). However, this knowledge can
be helpful to understand how microbes mediate ecosystem

functioning and improve mangrove conservation and
management (Tong et al., 2019). Several factors have been
reported as drivers of the distribution and structure of bacterial
communities of mangrove soils, such as the presence or absence
of vegetation (Jiang et al., 2013; Gomes et al., 2014; Prakash et al.,
2015; Chen et al., 2016; Liu et al., 2017), depth (Taketani et al.,
2010; Andrade et al., 2012; Otero et al., 2014; Basak et al., 2016;
Luis et al., 2019), human activities (Dias et al., 2011; Peixoto
et al., 2011; Fernandes et al., 2014; Nogueira et al., 2015; Basak
et al., 2016; Erazo and Bowman, 2021), tidal cycles (Zhang
et al., 2018), and physicochemical properties (Mendes et al.,
2012; Colares and Melo, 2013; Mendes and Tsai, 2014, 2018;
Chen et al., 2016; Zhu et al., 2018). However, many of them
cover different areas of a certain mangrove or compare pristine
versus impacted ecosystems, demonstrating microbial shifts
associated with preservation status in a local scale. In contrast,
few researchers have considered microbial communities on a
latitudinal scale (Li et al., 2021; Zhang et al., 2021). Consequently,
the factors regulating the biogeographical distribution of
mangrove microbial communities remain understudied.

In Brazil, mangroves cover 9,900 km2 (Diniz et al., 2019),
the third-largest worldwide mangrove area in a single country
(8.5% of the global mangrove area) (Giri et al., 2011), but
also face the fourth highest potential annual CO2 emission
due to deforestation (Atwood et al., 2017). Brazilian mangroves
extend from the far-northern Brazilian coast (04◦20′N) to
the southern coast (28◦30′S) (Schaeffer-Novelli et al., 2000)
in a patchy distribution (Pil et al., 2011) where mangrove
tree species, such as the conspicuous Rhizophora mangle (red
mangrove), display a genetic subdivision between northern and
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southern populations, linked to climatic and oceanographic
characteristics (Francisco et al., 2018). In general, mangroves are
more abundant, diverse, and productive in humid climates, while
freezing temperatures can lead to mortality, loss of above-ground
biomass, and reduced productivity and reproduction. Mangrove
forests are also sensitive to hypersaline conditions; prevalent
in low precipitation areas displaying reduced freshwater inputs
(Lovelock et al., 2016), which can limit the distribution and
diversity of mangroves on arid and semi-arid coasts (Osland et al.,
2018). Still, ecosystem carbon stocks of wet Amazon mangroves
and dry semi-arid Brazilian Northeast were not significantly
different, with soils and roots comprising ∼69% of the total
ecosystem carbon stocks (Kauffman et al., 2018b). Microbial
communities play crucial roles in mangrove biogeochemistry,
nutrient cycling, and plant productivity (Allard et al., 2020),
however, knowledge on how mangrove microbiota act in
contrasting conditions remains sparse. In addition, there are
no studies on the role of microorganisms on the processes of
expansion or retraction of mangrove forests linked to sea level
rise (Ward and Lacerda, 2021). Thus, considering mangroves as
climate change sentinels (Alongi, 2015), understanding the role of
microorganisms in their stability can provide crucial information
to protect and restore them in such a changing world.

In this study, we examined the biogeographical distribution
of the prokaryotic community associated with the roots of
R. mangle populations, a widespread dominant mangrove tree
species in the Atlantic and Eastern Pacific biogeographic regions,
whose forests display high soil carbon stocks (Atwood et al.,
2017). We hypothesized that such microbial communities would
differ along the latitudinal transect, with increasing differences
upon distance. We tested this hypothesis on soil samples
collected from R. mangle root zones from seven Brazilian
mangroves concentrated in three regions: north (Amazonia
ecoregion), northeast (northeastern Brazil ecoregion), and south
(southeastern Brazil ecoregion) (Spalding et al., 2007). We
evaluated the diversity and composition of these microbial
communities, explored the influence of soil physical and chemical
properties as well as latitudinal factors, and examined co-
occurrence patterns in the microbial communities based on
16S rDNA amplicons. Considering the vast extent of Brazilian
mangroves, their potential value for climate mitigation, the
role of microbial processes, and the possibilities of developing
microbial-based interventions for monitoring and ecosystem
rehabilitation, this study is a timely opportunity to advance in
the understanding of the responses of mangroves and associated
microbiomes to climate change.

MATERIALS AND METHODS

Study Sites and Sampling
The dataset consisted of 105 soil samples collected across
northern, northeastern and southern Brazil: two northern
(Bragança–BRA-N, 00◦50′28.1′′S 46◦38′24.4′′W; and
Salinópolis–SAL-N, 00◦37′56.1′′S 47◦21′44.8′′W), three
northeastern (Cocó–COC-NE, 03◦46′44.2′′S 38◦26′22.9′′W;

Jaguaribe–JAG-NE, 04◦26′50.3′′S 37◦46′53.2′′W; and Icapuí–
ICA-NE, 04◦41′31.0′′S 37◦21′11.2′′W), and two southern
(Paranaguá–PAR-S, 25◦32′55.3′′S 48◦28′17.6′′W; and
Guaratuba–GUA-S, 25◦52′29.2′′S 48◦37′39.1′′W) mangroves
(Figure 1). The physiographic characteristics of Brazilian
mangroves (Schaeffer-Novelli et al., 1990, 2000) and the
regionalization of Brazilian coastline regarding bioclimatic
factors (Ximenes et al., 2016) were considered in the soil
sampling delineation in order to cover different habitats
for R. mangle.

Five triplicate samples were obtained at each mangrove
from R. mangle-vegetated root zones, totaling 15 samples per
mangrove. Each of the five points was between 10 to 50 m
apart. Soil samples were collected from the top 20 cm, with the
uppermost 1 mm eliminated, using a soil core sampler of 10 cm in
diameter and 1.5 L of volume. Sampling was done during low tide
(max. tidal amplitude of 0.2 m) between August and November
2013. From the collected samples, an equivalent of 50 mg of soil
were destined to DNA extraction, which were kept on ice during
transport and stored at −20◦C until processing. The remaining
soil was destined to physical and chemical characterizations and
was maintained at room temperature until analysis. All the 105
soil samples were used for physical and chemical characterization
as well as for DNA sequencing.

Physical and Chemical Characterization
Soil physical and chemical properties were determined in
triplicate for all samples, using standard laboratory protocols,
except for salinity, which was measured in situ. Soil pH was
determined in a 1:2.5 soil/water extract. Particle size was analyzed
using the pipette method (Teixeira et al., 2017). Organic-matter
and organic-carbon contents were determined by the loss-by-
ignition method (Wright et al., 2008; Schulte and Hopkins,
2015). Total nitrogen was measured by the micro-Kjeldahl
method with adaptations (Baethgen and Alley, 1989). Data
on annual accumulated precipitation, average annual potential
evapotranspiration, average annual maximum and minimum
temperatures, and average annual humidity were obtained from
the HidroWeb and INMET (Brazilian National Institute of
Meteorology) databases.

DNA Extraction and Library Preparation
Total DNA was extracted using the PowerLyzer PowerSoil
DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA,
United States), following the manufacturer’s instructions.
DNA quality was verified with a NanoDrop ND-1000
spectrophotometer (Thermo Scientific, Waltham, MA,
United States). The V4 region of 16S rRNA gene was targeted
and amplified using the 515F/806R primer set (Caporaso
et al., 2011), with barcodes in the forward primer using the
following program: 95◦C for 4 min, 60◦C for 1 min, 72◦C
for 2 min, followed by 25 cycles at 94◦C for 1 min, 60◦C for
1 min, and 72◦C for 2 min. PCR products were purified using
calibrated AMPure XP beads (Beckman Coulter, Indianapolis,
IN, United States), and paired-end sequenced using an Illumina
MiSeq Reagent Kit v2 (500 cycles, 2 × 250 bp) on an Illumina
MiSeq sequencer (Illumina, San Diego, CA, United States) at the
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FIGURE 1 | Map indicating the geographical locations of the sampling sites. Five sampling points were sampled at each mangrove, each comprising three
subsamples. A total of seven mangroves were studied; in the North: Salinópolis (SAL) and Bragança (BRA); in the Northeast: Cocó (COC), Jaguaribe (JAG), and
Icapuí (ICA); and in the South: Paranaguá (PAR) and Guaratuba (GUA).

Genomic and Bioinformatic Facility (CEGENBIO) of the Drug
Research and Development Center (NPDM), belonging to the
Federal University of Ceará.

Sequence Data Processing
After sequencing, Illumina adapter sequences were trimmed
from already-demultiplexed raw fastq files using Cutadapt v1.8
(Martin, 2011) in paired-end mode, and the reads quality
was assessed using FastQC v.0.11.8 (Andrews, 2012) and
vsearch v2.10.4 (Rognes et al., 2016). Subsequent analyses were
performed in the R v3.5.3 environment (R Core Team, 2016),
following the DADA2 v1.11.1 package (Callahan et al., 2016)
pipeline for obtaining a table of non-chimeric amplicon sequence
variants (ASVs) free of low-quality and non-prokaryotic
sequences (ASVs; sequences differing by as little as one
nucleotide) (Callahan et al., 2017). Taxonomy assignment and
removal of non-prokaryotic sequences was performed against the
SILVA reference database (release 132) (Yilmaz et al., 2014). The
16S rRNA data were deposited in the NCBI Bioproject database
with accession no. PRJNA2839361.

1https://www.ncbi.nlm.nih.gov/bioproject/PRJNA283936

Data Analyses
Environmental data were analyzed by a principal component
analysis (PCA), with measurements transformed to log (x + 1),
except for pH. Alpha-diversity estimators were calculated and
tested for normality by the Shapiro–Wilk test. As the Shannon
diversity and Simpson evenness were parametric, a one-way
analysis of variance and Tukey’s honestly significant difference
(HSD) post hoc tests were used for multiple comparisons of
means at a 95% confidence interval. For Chao1 and Observed
ASVs, we used the Kruskal–Wallis non-parametric test.

The response patterns of alpha-diversity to the abiotic driving
factors were evaluated using simple linear models. Linear
regressions, coefficients of determination (R2), and significance
(P) were calculated in R environment using R base stats package.
Indicator analysis was performed using the package indicspecies
(de Cáceres et al., 2011).

Canonical correspondence analysis (CCA) was used to
visualize the differences in community structure among
the different mangroves and determine its correlation with
environmental parameters, using Hellinger-transformed
abundance matrix at ASV level and rarefied data. For this,
biotic and abiotic matrices were previously analyzed using
the detrended correspondence analysis (DCA) to evaluate
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the gradient size of ASV distribution, which indicated both
linear and unimodal methods as suitable (length of Axis
1 = 3.0064). Subsequently, a preliminary CCA was performed
with all available physical and chemical parameters. For variable
reduction and creation of an efficient model from the most
significant explanatory variables, forward selection of constraints
using the VEGAN ordistep function (Oksanen et al., 2019)
was performed, and only significant variables (P < 0.05) were
retained in the second CCA. In order to avoid the horseshoe and
arch effects, detrending (DCA) was initially used. It was followed
by external linear constraints (CCA), which are suitable for
preserving true arches (Palmer, 1993). The SIMPER (similarity
percentage) analysis was used to identify the taxa primarily
responsible for the differences observed in the ordination using
seq-scripts release v. 1.0. (Steinberger, 2020). All plots were
generated using the R v3.5.3 environment (R Core Team, 2016).

Functional analysis was performed using predict metagenomic
functional content on PICRUSt2 (Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States,
version 2.3.0.) with default settings (Douglas et al., 2020). The
predicted genes were classified by alignment to KEGG Orthology
(KO) database. The obtained gene predicted abundances were
normalized by 16S rRNA gene copy number, and then used to
predict the metagenomic functional content.

Network Co-occurrence Analysis
A network analysis was performed to assess the complexity of
interactions among microbial taxa. Non-random co-occurrence
analyses were performed using FastSpar (Watts et al., 2019).
For each network, P-values were obtained by 99 permutations
of random selections of the data table, subjected to the same
analytical pipeline. Statistically significant (P < 0.01) FastSpar
correlations with a magnitude of 0.7 or −0.7 were included
into the network analyses. The nodes in the reconstructed
network represent taxa at the ASV level, whereas the edges
represent significantly positive or negative correlations between
nodes. Network graphs were constructed based on a set of
measurements, including the number of nodes, number of edges,
modularity, number of communities, mean node connectivity,
mean path length, diameter, and cumulative degree distribution.
Visualization and property measurements were performed with
the Gephi interactive platform (Bastian et al., 2009).

RESULTS

Characterization of Abiotic Driving
Factors
We analyzed 105 mangrove soil samples distributed along
∼4,000 km spanning three climatic zones: tropical rainforest
(Af); hot semi-arid (BSh); and humid subtropical (Cfa) according
to Köppen (1936). The mangroves were separated based on
principal components into groups characterized by different
environmental conditions.

Northeastern mangroves were correlated with elevated
salinity, evapotranspiration, and minimum temperature as
well as low sulfur, precipitation, and humidity. Elevated

precipitation, pH, humidity, and sulfur content were the
main components for northern mangroves, while southern
samples were correlated with elevated precipitation, humidity,
organic carbon, nitrogen, iron, sulfur, and silt-clay contents.
Principal components 1 and 2 explained 82.4% of the dataset
variability and provided a clear separation of Northeastern
samples (Figure 2).

Richness and Diversity Estimations
The 105-mangrove soil 16S rRNA libraries analyzed in the
present work generated a total of 13,230,772 sequences, with
4,791,858 sequences remaining after processing (Supplementary
Table 1). The dataset was rarefied to 47,707 based on the
minimal sequence count per sample (Supplementary Figure 1),
resulting in a normalized dataset comprising 16,104 ASVs, of
which 14,992 and 1,112 were identified as Bacteria and Archaea,
respectively. All samples reached Good’s coverage above 99%
and rarefaction curves for the observed ASVs were very close
to reaching the asymptotes, confirming that sequencing and
sampling efforts sufficiently captured the diversity of taxa within
samples (Supplementary Figure 2).

The alpha diversity was highest in northeastern mangroves,
as indicated by both the Shannon index and Simpson evenness,
regardless of the dataset size. Interestingly, the southern
mangrove PAR-S, which resulted in the highest number of
sequences (Supplementary Figures 1, 2 and Supplementary
Table 2), displayed the lowest Shannon and inverted Simpson
indices, indicating that this microbial community is the least
diverse, followed by southern GUA-S and northern BRA-N.
COC-NE and ICA-NE displayed higher evenness, while JAG-NE
did not possess as even a distribution as its counterparts in the
northeast. Also, BRA-N and PAR-S exhibited a high dominance
level (Figure 3).

Furthermore, we explored the response patterns of alpha-
diversity to the abiotic driving factors and found significant linear
regressions with a potential tendency of higher alpha-diversity
along with increased salinity, potential evapotranspiration, and
minimum temperature as well as decreased alpha-diversity
with increased precipitation (Figure 4). This contributed
to separate northeastern mangrove samples from northern
and southern ones.

Microbial Community Composition
High-resolution community profiles were generated by
processing reads using a denoised pipeline to resolve 16S
rRNA gene ASV at the single-nucleotide level. Microbiomes’
members were classified into 63 phyla, 16 of which displaying
abundances above 1%. Bacterial sequences were predominant in
most samples (52–86%), while Archaea was present in elevated
abundances (13–48%) only in some mangroves. The distribution
of the dominant members displayed Deltaproteobacteria as
the most prevalent class in most samples (30–40% in COC-NE
and JAG-NE; 40–60% in BRA-N and SAL-N; and 55% in
PAR-S), except for GUA-S and ICA-NE, where Thermoplasmata
(Phylum Euryarchaeota) was dominant (∼40–50%). In all
northern mangroves and PAR-S, Deltaproteobacteria still
predominated but was followed by Thermoplasmata (20–25%).
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FIGURE 2 | Triplot diagram of the Principal component analysis (PCA) indicating the orientation pattern based on the variability of abiotic variables in the seven
studied mangroves. The two first principal components are plotted with the proportion of variance explained by each component shown in parentheses in the axis
titles. Abbreviated abiotic variables: Tmin (Minimum Temperature); PCT (Precipitation); Evapotrans (Potential Evapotranspiration); Fe (iron); N (Total Nitrogen); OC
(Organic Carbon); SiltClay (Silt and Clay content); and S (Sulfur).

In northeastern mangroves, Gammaproteobacteria was the
second more prevalent class in COC-NE and JAG-NE. Another
notable composition feature was the presence of ∼7% of
Campylobacteria (Phylum Epsilonbacteraeota) in northern
mangroves. Other dominant phyla comprised Planctomycetes,
Acidobacteria, Bacteroidetes, and Chloroflexi in all mangroves
(Supplementary Figure 3).

Then, the indicator analysis revealed 33 out of 499 genera
as the main responsible for differences among groups of
samples reunited in three geographical regions: nine of
them were associated with northern mangroves, 22 with
northeastern mangroves, and two with southern ones
(Supplementary Table 3). Most indicator genera were part
of the rare biosphere, with abundance below 0.01%, and
some of them were moderately halophilic groups and almost
exclusive of mangroves from northeastern Brazil, such as
Pontibacillus, Halomonas, Magnetovibrio, Roseimarinus, and
Modicisalibacter (Figure 5).

Main Environmental Drivers of R. mangle
Microbial Community
Permutational multivariate analysis of variance (PERMANOVA)
with 1,000 permutations was used to test for significant effects
of geographical distance. We detected significant differences
between north × northeast (F = 4.2028; P = 0.002),
north × south (F = 6.0065; P = 0.001), and northeast × south

(F = 6.4463; P = 0.001), which evidenced the greater differences
between northeastern and southern mangroves. In order to
consider the influence of the plant genotype on the microbial
communities, we also tested the genetic differences between
northern, northeastern, and southern R. mangle populations.
Therefore, we used data on the number of effective alleles and
observed heterozygosity extracted from Francisco et al. (2018).
The PERMANOVA detected a significant relationship between
the associated soil bacterial communities and both the number
of effective alleles (F = 4.9676; P < 0.001) and the observed
heterozygosity (F = 5.9111; P < 0.001).

Along the assessed latitudinal transect, minimum
temperature, precipitation, organic carbon, and potential
evapotranspiration were the main variation drivers of the
root-associated microbiome of R. mangle (F = 2.2378;
df = 4; P = 0.001). The root-associated communities from
northern mangroves were closer to those in the south than
those in the northeast. In the ordination, there was possible
to separate a group containing samples from northern
and southern mangroves, mostly correlated with higher
precipitation and organic carbon, as well as lower minimum
temperature and potential evapotranspiration. On the other side,
northeastern microbiomes were characterized by high potential
evapotranspiration and minimum temperature, as well as low
precipitation and organic carbon. Axis 1 and 2 explained 62.85%
of the dataset variability (Figure 6).
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FIGURE 3 | Box plots showing the richness (Observed richness and Chao1) and alpha diversity (Shannon and Inverted Simpson indices) of microbial communities in
the root zone of Rhizophora mangle from seven mangroves in the north (green), northeast (red), and south (blue) Brazilian regions. Taxonomic diversity is based on
ASV level. Error bars represent the standard deviation of 15 independent replicates (five sampling points with three replicates from each mangrove). Different
lowercase letters refer to significant differences between treatments based on Tukey’s HSD test (P < 0.05) for the Shannon and Inverted Simpson indices and the
Kruskal–Wallis test for Observed richness and Chao1.

The SIMPER (similarity percentage) analysis displayed that
the dissimilarity observed in the ordination was mainly due
to variations in the abundance of the orders archaean Marine
Benthic Group D and DHVEG, bacteria Desulfobacterales
and Campylobacterales, and the genus Thiofractor, the latter
associated with northern mangroves.

Functional characterization using PICRUSt2 displayed
that despite the environmental differences among northern,
northeastern, and southern mangroves, in general, they did not
differ on predicted functionality (Supplementary Figure 4).
Nevertheless, differences in conventional anaerobic ammonium
oxidation (Anamox) plus sulfate-reduction with ammonium
oxidation (SRAO) and Nitrification, pre-eminent in JAG-NE
and COC-NE (northeastern mangroves), should be highlighted
(Supplementary Figure 5).

Network Co-occurrence Patterns
When exploring the complexity of connections within the
R. mangle root-soil microbiomes, the northeastern mangroves
displayed the highest level of complexity and modular structure,
whereas the southern mangroves were less complex and
displayed the fewest modular networks. Furthermore,

southern networks showed lower negative: positive link
ratios when compared to northeastern networks (Table 1 and
Figure 7).

Co-occurrence networks captured 131 (number of edges in
GUA-S) to 1,402 (number of edges in COC-NE) associations
among 39 (number of nodes in GUA-S) to 120 (number of nodes
in ICA-NE) ASVs. The mean degree (node connectivity) was
highest in the northeastern samples (NE mean value = 11.588;
N mean value = 7.128; and S mean value = 5.399), indicating
higher connectivity among northeastern mangrove populations.
GUA-S samples displayed a low mean degree compared with
other mangroves, even with PAR-S, indicating a poorly connected
community. Besides, modularity, a topology feature that indicates
compartmentalization, reached higher values in the northeastern
samples, along with BRA-N. GUA-S stood out for the lowest
modularity. The mean path length between all pairs of nodes of
northeastern mangroves did not differ from the other mangroves,
and their diameters were comparable with the mangroves from
the north, despite exhibiting higher numbers of nodes and
edges. The clustering coefficient, which indicates how nodes
are embedded in their neighborhood and, thus, the degree to
which they tend to cluster together, was higher in northeastern
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FIGURE 4 | Relationships between Shannon index and Salinity, Potential Evapotranspiration, Precipitation, and Minimum temperature in the Rhizophora mangle
root-associated soil microbiomes. The black lines represent linear regressions, and the shaded areas show the 95% confidence interval.

samples (NE mean value= 0.351; N mean value= 0.254; S mean
value= 0.222), indicating highly connected networks.

The diversity of taxa present in each network and their
respective importance in the communities’ connections, i.e.,
their degree, demonstrated that northeastern mangroves
networks contained taxa with higher degrees, while the
northern and southern networks displayed lower degrees. The
number of phyla in each network ranged from 12 (PAR-S
and GUA-S) to 20 (COC-NE and SAL-N), but nine phyla
were responsible for the highest degrees in these networks,
namely Proteobacteria and Epsilonbacteraeota in BRA-N;
Planctomycetes, Euryarchaeota and Proteobacteria in SAL-
N; Proteobacteria, Entotheonellaeota, and Dependentiae in
COC-NE; Proteobacteria and Epsilonbacteraeota in JAG-NE;
Planctomycetes and Proteobacteria in ICA-NE and PAR-S; and
Epsilonbacteraeota, Spirochaeta, Proteobacteria, Calditrichaeota,
and Verrucomicrobia in GUA-S. Some non-dominant

phyla proved to be important based on the co-occurrence
networks, such as Entotheonellaeota, Dependentiae, Spirochaeta,
Calditrichaeota, and Verrucomicrobia.

DISCUSSION

The soil microbial communities under R. mangle root zones
were analyzed herein using a metabarcoding approach in
three geographical regions: north and south (extremes of
distribution), and northeastern Brazil. We demonstrated that
precipitation and organic carbon were the strongest selection
factors for the north and south, while high evapotranspiration
and temperature were the main drivers in the northeast
(Figure 6). Accordingly, although we analyzed the root zone of
the same species of plant (R. mangle), the assessed microbial
communities exhibited different richness and compositions.
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FIGURE 5 | Box plots showing the abundance distribution of the main indicator genera of Rhizophora mangle root-associated soil microbiomes at North (N),
Northeast (NE), and South (S).

Also, the co-occurrence networks from southern-mangroves
were less-complex compared to northeastern ones. This finding
may reflect the endurance of microbial communities tailored to
deal with the more stressful conditions of semi-aridity in the
Brazilian northeast.

Herein, we worked with ASVs, which allows for the
discrimination of only one nucleotide in a sequence, resulting
in higher taxonomic resolution, which may reveal the
distribution of ecotypes across environments and aid in
revealing overlooked ecological patterns (Chafee et al., 2018;
Garcia-Garcia et al., 2019).

Microbial Communities From
Northeastern Mangroves Displayed
Higher Alpha Diversity
Soil microbiomes associated to R. mangle of northeastern
mangroves were more diverse than the northern and
southern ones, even though the southern mangrove PAR-
S displayed the highest total number of sequences. This is
in line with previous studies that have been showing site
specific differences in bacterial richness and composition
(Fernandes et al., 2014; Gomes et al., 2014; Basak et al., 2016;
Liu et al., 2017; Ullah et al., 2017; Yun et al., 2017; Zhou
et al., 2017; Zhu et al., 2018; Tong et al., 2019; Erazo and
Bowman, 2021) and indicate that soil or site conditions
should be considered along with geographical distance
to understand microbial community patterns. Northern
and southern mangroves, for instance, displayed more

similar microbial diversity than expected considering their
geographical distance.

Most datasets were dominated by Proteobacteria, mainly by
Deltaproteobacteria and Gammaproteobacteria, which are part of
the core microbiome of mangroves worldwide (Dias et al., 2011;
Andreote et al., 2012; Zhu et al., 2018; Cotta et al., 2019; Luis et al.,
2019; Sadaiappan et al., 2019). Other abundant phyla comprise
Planctomycetes, Acidobacteria, Bacteroidetes, and Chloroflexi,
in line with the literature on mangrove microbiomes (Marcos
et al., 2018; Zhang et al., 2018; Zhu et al., 2018; Cotta et al.,
2019; Luis et al., 2019; Sadaiappan et al., 2019; Tong et al., 2019).
Desulfobacterales was the most abundant order, as commonly
observed in mangrove surface soils (Mendes and Tsai, 2014;
Zhang et al., 2018; Zhu et al., 2018; Luis et al., 2019; Sadaiappan
et al., 2019), and was highlighted by SIMPER analysis as
one of the main responsible for the differences between the
studied mangroves. This order comprises anaerobic members
involved in sulfur and carbon cycling (Mendes and Tsai, 2014;
Zhu et al., 2018) as well as in the transformation of methane
and nitrogen, which indicates their importance for mangrove
ecosystems (Andreote et al., 2012).

Another important group was Euryarchaeota, especially in
ICA-NE and GUA-S. Observing this phylum in such high
amounts is a novel finding, since it has been reported in
mangroves, but in lower abundances (Andreote et al., 2012;
Mendes and Tsai, 2014; Basak et al., 2016). Nevertheless, it
is important to highlight that those studies utilized different
methodological approaches and primers, which can affect the
ratio of retrieved sequences. Euryarchaeota comprises members
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FIGURE 6 | Triplot diagram of the canonical correspondence analysis (CCA) calculated from the dataset containing 35 samples (five sampling points from each
mangrove) containing only significant explanatory variables (P < 0.05) and prokaryotic ASV composition for samples from the seven studied mangroves
[BRA = Bragança (N); SAL = Salinópolis (N); COC = Cocó (NE); JAG = Jaguaribe (NE); ICA = Icapuí (NE); GUA = Guaratuba (S); and PAR = Paranaguá (S)]. CCA 1
(F = 3.0563, P = 0.001) and CCA 2 (F = 2.5695, P = 0.001) axes were significant and explained 62.85% of the data. Abbreviated abiotic variables: Tmin (Minimum
Temperature); PCT (Precipitation); Evapotrans (Potential Evapotranspiration); and OC (Organic Carbon).

related to active carbon transformation through methanogenesis,
which occurs in the anaerobic sediments found in mangroves
(Taketani et al., 2010).

Thermoplasmata class dominated Euryarchaeota sequences
from R. mangle roots in Florida (United States) mangroves under
neutral pH and high sulfur content (Marcos et al., 2018), in
pH neutral upper soil layers in a mangrove creek in Cardoso
Island (SP, Brazil) (Dias et al., 2011; Otero et al., 2014), and in
surface neutral to slightly acidic and rich in iron mangrove soils in
New Caledonia (Luis et al., 2019). This preference for acidic and
sulfur- or iron-enriched soils may explain the high amounts of
Thermoplasmata in GUA-S, but its enrichment in ICA-NE needs
to be further investigated (Supplementary Figure 3). Herein,
most Euryarchaeota were assigned to the Marine Benthic Group
D order (MBG-D), long recognized from 16S rRNA gene surveys
in benthic environments (Zhou et al., 2019), and also highlighted
by SIMPER analysis.

The phylum Epsilonbacteraeota (phyl. nov.) (Waite et al.,
2017), which was noteworthy in northern mangroves, emerged
after recent studies reassigned the Epsilonproteobacteria class
to a new phylum for constituting a monophyletic unit. Despite
possessing autotrophic and thermophilic ancestors, this phylum
also comprises heterotrophic and mesophilic members from

the Campylobacterales order, involved in carbon and nitrogen
fixation, assimilatory nitrate and nitrite reduction, thiosulfate
oxidation, and polysulfide reduction (Waite et al., 2017), which
explains their detection in mangroves. Also, Campylobacterales
was one of the orders highlighted by SIMPER for the effects of its
abundance on the ordination.

Rare Biosphere Comprises Most of the
Indicator Genera
The indicator analysis displayed that of the 33 genera selected
as indicators, most of them were associated with northeastern
mangroves and comprise rare members of the community. The
main genera were assigned to representatives from non-common
phyla, such as Elusimicrobia and Deinococcus-Thermus, as
well as Proteobacteria (Modicisalibacter). These genera comprise
bacteria capable of reducing nitrate or sulfur compounds,
some of them with particular features, such as Blastocatella
(Elusimicrobia), previously isolated from semi-arid savanna
soil; Truepera (Deinococcus-Thermus), resistant to ionizing
radiation; Algiphilus (Proteobacteria), aromatic hydrocarbon-
degrading; and Thiovulum (Proteobacteria), rapid swimming
bacteria. On the other side, southern mangroves were associated
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TABLE 1 | Topological measures of Rhizophora mangle root-zone microbiome co-occurrence networks in seven Brazilian mangroves [BRA = Bragança (N);
SAL = Salinópolis (N); COC = Cocó (NE); JAG = Jaguaribe (NE); ICA = Icapuí (NE); GUA = Guaratuba (S); and PAR = Paranaguá (S)].

Network properties BRA SAL COC JAG ICA PAR GUA

Number of nodesa 104 56 95 94 120 91 39

Number of edgesb 529 369 1,402 958 638 357 131

Positive edgesc 331 247 791 561 393 237 103

Negative edgesd 198 122 611 397 245 120 28

Negative: Positive links ratioe 0.60 0.49 0.77 0.71 0.62 0.51 0.27

Modularityf 1.833 1.280 3.438 2.617 1.673 1.425 0.704

Number of communitiesg 41 9 6 11 6 47 3

Network diameterh 6 5 6 6 4 3 4

Mean path lengthi 1.885 1.805 1.714 1.823 1.595 1.562 1.806

Mean degreej 7.667 6.589 14.758 10.191 9.815 7.438 3.359

Mean clustering coefficientk 0.206 0.301 0.381 0.324 0.348 0.198 0.246

aMicrobial taxon (at ASV level) with at least one significant (P < 0.01) and strong correlation (FastSpar >0.7 or <−0.7).
bNumber of connections/correlations obtained by FastSpar analysis.
cFastSpar positive correlation (>0.7 with P < 0.01).
dFastSpar negative correlation (<−0.7 with P < 0.01).
eRatio between the number of negative and positive edges.
f The capability of the nodes to form highly connected communities, that is, a structure with high density of between node connections (inferred by Gephi).
gA community is defined as a group of nodes densely connected internally (Gephi).
hThe longest distance between nodes in the network, measured in number of edges (Gephi).
iMean network distance between all pairs of nodes or the mean length of all edges in the network (Gephi).
jThe mean number of connections per node in the network, that is, the node connectivity (Gephi).
kHow nodes are embedded in their neighborhood and the degree to which they tend to cluster together.

with only two indicator genera, which were Planktotalea
(Proteobacteria) and SEEP-SRB1 (Sulfate-reducing bacteria
cluster). The former was previously isolated from seawater or
marine organisms from cold regions (Parte et al., 2020).

Rare species can have a preponderant role for local
biodiversity and species turnover, being keystone species
for regulating the functioning of ecosystems. In addition,
rare species that are considered non-relevant under a
given environmental condition may become important
under changing situations, offering a pool of genetic
resources that may be activated under appropriate conditions
(Jousset et al., 2017).

Microbial Community’s Abiotic Drivers
Differed Along the Latitudinal Transect
At a global scale, no single biotic or abiotic feature has
consistently emerged as the most important determinant
of mangrove soil microbial community. Mangrove forests
exist in a very broad range of environmental conditions
(Kauffman et al., 2020), and the sampled mangrove sites
reflected the broad precipitation, salinity, temperature, and
evapotranspiration gradients in which they exist and their
influence on the associated microbiomes. Traditionally, the main
forcing functions over mangrove forests along the Brazilian coast
are tides, rainfall, evapotranspiration, and temperature, which
vary widely over more than 8,000 Km of coastline (Schaeffer-
Novelli et al., 1990). Most factors, such as temperature, rainfall,
and evapotranspiration, are related to latitude and have influence
on biogeographical distributions (Prosser et al., 2007) with
important consequences on the microbial activity at upper soil
layers (Gomez et al., 2020).

Many factors have been identified as change drivers
concerning the structure and distribution of mangrove microbial
communities, but all consisted of local factors, such as the
presence/absence of plants and plant species (Jiang et al., 2013;
Gomes et al., 2014; Prakash et al., 2015; Chen et al., 2016; Liu
et al., 2017; Tong et al., 2019), soil or sediment depth (Taketani
et al., 2010; Otero et al., 2014; Basak et al., 2016; Luis et al., 2019),
anthropogenic activities (Dias et al., 2011; Fernandes et al., 2014;
Nogueira et al., 2015; Erazo and Bowman, 2021), tidal cycles
(Zhang et al., 2018), organic carbon and nitrogen (Chen et al.,
2016), ammonia nitrogen (Zhu et al., 2018), and silt-clay content
(Colares and Melo, 2013). Herein, examining the microbiota
below R. mangle along a latitudinal transect, regional factors
(temperature, precipitation, and evapotranspiration) were
identified as the main drivers of the prokaryotic community,
with only organic carbon considered a local factor. Another
important factor, the tidal cycle, was not analyzed in this study.
However, tidal regimen differs widely between the northern,
northeastern, and southern coastal systems with a macrotidal
regimen in the north, mesotidal regimen in the northeast, and
microtidal regimen in the south (Knoppers et al., 1999).

The mangroves from northern and southern Brazil represent
extremes in R. mangle distribution, but are not extremes in
terms of temperature, precipitation, potential evapotranspiration,
and organic matter. Although all mangroves grow in fluctuating
environmental conditions, such as tidal cycles, high salinity,
high temperatures, and anaerobic muddy soils (Jacotot et al.,
2019), among the analyzed mangroves, northeastern mangroves
are the ones that inhabit the most extreme conditions.
Located on the semi-arid coast of Brazil (Fernandez et al.,
2019), these mangroves are subjected to the highest minimum
temperatures and potential evapotranspiration, as well as the
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FIGURE 7 | Co-occurrence network based on correlation analysis. A connection stands for a Spearman’s correlation with magnitude >0.7 (positive correlation–blue
edges) or <–0.7 (negative correlation–red edges) and statistically significant (P < 0.01). The size of each node is proportional to the number of connections (degree).
Each node was labeled at the phylum level.

lowest precipitation and organic-matter contents. Based on the
physical and chemical variables alone (Figure 2), northern
and southern mangroves already displayed a certain degree
of similarity, which was reinforced by adding the biological
information on the ASVs through CCA ordination (Figure 6).
Thus, through the CCA it is possible to display the effect of the
biotic interactions on the distribution of the study areas.

The drivers identified in this study strongly influence
the ecology and life history of almost all life forms, from
macro-organisms to microbes. Changes in temperature and

precipitation can lead to variations in mangrove species
composition and growth (Alongi, 2008). Indeed, the temperature
is one of the main ecological drivers worldwide, and the low
annual mean air temperature is one of the main Neotropical
mangrove structure and productivity limiters (Ochoa-Gómez
et al., 2019). Minimum temperature was one of the main
factors for the proximity of northern and southern mangrove
microbiomes and the separation from northeastern samples. The
semi-arid coast (Northeast Brazil) displays dominant features
that help to differentiate it from others, such as water deficit
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caused by the low rainfall, water impoundment by dams, and high
evapotranspiration rates, which contribute to increased saline
intrusion and the expansion or landward migration of mangroves
(Godoy and Lacerda, 2015).

Precipitation is another pivotal factor, especially important for
mangrove trees, which develop better in areas with precipitation
above 1,500 mm yr−1 and reach their maximum in areas
receiving more than 2,500 mm yr−1 (Schaeffer-Novelli et al.,
1990). Nevertheless, southern mangroves are usually composed
of shorter trees and less structurally complex mangrove swamps
(Lana et al., 2001), due to lower sea surface temperature (Ximenes
et al., 2018). Our data indicate that the microbial community
responded similarly, as samples from the south (PAR-S and GUA-
S) consisted in less diverse and complex microbial communities.

Northeast Mangroves Are Inhabited by
Rich and Complex Microbial
Communities
Herein, we started from a hypothesis that northern and
northeastern mangroves would exhibit more similar microbial
communities as R. mangle propagules dispersion had originated
in the north and was constrained by temperature decreases
southward in South America (Francisco et al., 2018), which
resulted in genetic divergence between north and south R. mangle
populations. However, we observed a greater similarity between
northern and southern red-mangrove microbiomes and higher
diversity in northeastern mangroves.

It is well known that the diversity of the plant community and
the genotypes of individual plants can influence the composition
of associated microbial communities. This happens because
microorganisms that live in the rhizosphere are attracted by
and feed on rhizodeposits, such as nutrients, exudates, border
cells, and mucilage released by the plant root, factors related
to the plant genotype. Also, differences in root architecture
as well as in the amount and type of rhizodeposits influence
greatly the composition of associated microbiota (Craig et al.,
2020). Another factor to be considered is plant physiological
activity as specific metabolites released into the rhizosphere can
trigger multiple responses by different soil microorganisms, such
as germination, branching, quorum sensing, or metabolization,
which will lead to the establishment of symbiosis or to ward
off pathogens and pests (Philippot et al., 2013). R. mangle
populations from the South of Brazil have been previously
reported for showing a low genetic diversity (Francisco et al.,
2018), which is alarming considering the structural role
Rhizophora spp. have in the species-pool of Neotropical (AEP)
mangroves. R. mangle populations from the South of Brazil
were reported to possess insignificant heterozygosity related to
dispersion limitation (Francisco et al., 2018), a process that can
also affect associated microbial community assembly. However,
these southern populations possess an important role in the
southward expansion of mangrove forests in the face of climate
change and this low genetic diversity can result in less chance
to have the necessary traits to deal with environmental changes.
When we combine such low genetic diversity with the less diverse
and complex associated soil microbial communities observed

herein, we have indicators that the ecosystem biodiversity and
functioning may be threatened. Soil microbial diversity is usually
not considered in conservation efforts, although they are key
to soil functionality and provide many important ecosystem
functions and services, such as biogeochemical cycling, plant
growth, and carbon sequestration for and beyond the whole
ecosystem (Dubey et al., 2019).

Reduced microbial diversity and less complex networks,
observed in the southern mangroves, are thought to lead to
lower levels of soil functioning due to fewer taxa to support
functional redundancy and/or different functions (Wagg et al.,
2019). However, when analyzing data from PICRUSt2, we did
not observe functional differences among all studied mangroves,
which can indicate that functional redundancy is still maintained.
Nevertheless, one could question if this is enough to guarantee
ecosystem resistance to ongoing and future environmental
changes. Considering the limitations of this approach, which is
based on potential or predicted pathways, and the importance of
southern mangroves in the southward migration of mangroves,
more attention should be dedicated to this aspect using functional
approaches, such as metatranscriptomics and metabolomics.

When we change the focus to mangroves of the Northeast,
we have an opposite situation in which, possibly, the harsh
environmental conditions of the semi-arid coast have made
unique niches available, in which microbial populations interact
differently from their northern and southern counterparts. In
the northeast, only ICA-NE differed from the other northeastern
samples. This could be due to its lagoon estuarine system, in
which a channel directs waters from a coastal lagoon and aquifers
toward the mangrove throughout the year (Meireles et al., 2017),
maintaining freshwater input despite low rainfall. This system
does not operate in the other two northeastern mangroves, which
may indicate water deficit as a strong selection force for microbial
communities. Nevertheless, as with its northeastern counterparts,
ICA-NE is subject to regional climatic factors, such as low
rainfall as well as elevated temperature, evapotranspiration, and
salinity, which could explain its difference from northern and
southern mangroves.

Despite rainfall decreases may limit seed germination due
to higher soil salinities (McKee et al., 2012), mangroves in
northeastern Brazil appear to be expanding landward, in
the opposite direction to the observed global trend (Godoy
and Lacerda, 2015). Considering the important role soil
microbiomes play in nutrient cycling and plant fitness, detecting
more-complex microbial networks in northeastern samples
suggests that microbes may play a role in the resistance and
successful expansion of such mangroves, which should be
further investigated.

Thus, the divergence of northeastern mangroves was
confirmed by microbial co-occurrence networks, which
revealed more complex and intricate networks in northeastern
microbiomes and very simplified networks in southern samples.
Beyond the information provided by standard taxonomic
approaches and how environmental properties shape microbial
communities, co-occurrence networks provide insights on
community stability, ecosystem functioning, and biotic
factors (Barberán et al., 2012). Northeastern networks display
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highly connected ASVs, structured among densely connected
groups of nodes, forming a clustering topology. Modularity
(indicative of compartmentalization) reached higher levels in the
northeastern samples.

Biotic Interactions Respond to Stress or
Perturbation Gradient
The study of connectivity is essential for providing recruitment
sources for the whole community. Also, the ratios of
negative:positive association among taxa were lower in samples
of the south, which are indicative of lower stability in those
communities (Hernandez et al., 2021), in accordance with
the Stress Gradient Hypothesis. According to this hypothesis,
the frequency of competitive interactions (negative edges in the
network) decreases with the intensification of stress. On the other
side, facilitative interactions (positive edges) increases along
with stress increases. Positive relationships, such as mutualism,
represent higher niche overlap, while negative relationships,
such as parasitism and competition, indicate divergent niches.
As environmental stress increases, there can be a substitution
of competitive taxa by slow-growing stress-tolerant species
(Bertness and Callaway, 1994). Also, when considering the
community stability to disturbances, positive connections can
destabilize microbial communities by positive feedback loops
in which decreases in one taxon led to decreases also in reliant
taxa. More stable communities have more limited shifts in
composition in response to environmental perturbations and/or
are more likely to return to their equilibrium after a perturbation
(Hernandez et al., 2021).

On the other hand, network co-occurrence analyses of
microbial communities from other soil ecosystems have reported
increasing complexity related to more-disturbed areas, such as
Cd-contaminated soils (Wang et al., 2019), arid soil under grazing
(Marcos et al., 2019), PAH-contaminated riverine sediments (Yan
et al., 2019), and soils undergoing nutrient loss (Liu et al.,
2019). This greater co-occurrence pattern can be explained
by modifications in prevalent conditions that remove limits
on other taxa and introduce additional niches, similar to that
proposed by the Intermediate Disturbance Theory (Padisak
et al., 1993). According to this theory, higher diversity is
reached at an intermediate frequency or intensity of disturbances.
Thus, mangrove soil bacteria in the northeast may form more-
complex networks as a result of disturbances caused by water
deficit. Protection status also corroborates in demonstrating how
exposed northeastern mangroves are to disturbance, as only
23.09% of them are located in coastal protected areas, while 87.98
and 69.38% are protected in northern and southern mangroves
areas, respectively. In addition to this lower degree of legal
protection, northeastern Brazil mangroves are threatened by
extensive shrimp farming, the greatest cause of mangrove loss
worldwide (Pelage et al., 2019).

Historical data indicate that mangrove forests are considerably
resilient, displaying a significant ability to adapt to changing
conditions (Alongi, 2008). The northeastern mangroves assessed
herein, subject to high temperatures and low rainfall, seem to
possess an associated microbiota adapted to respond to these

harsh conditions, as demonstrated by the present results, i.e.,
high diversity and more-complex networks. Moreover, while
some changes can lead to mangrove mortality and loss, others
can lead to mangrove expansion. Mangroves are expected to
be sensitive to hypersalinity, most prevalent in arid and semi-
arid areas (Lovelock et al., 2016), such as northeastern Brazil.
Nevertheless, the mangroves in this region display a trend toward
landward expansion, related to low rainfall and consequent
saline intrusion (Godoy et al., 2018). This trend along with the
southward expansion at the southern limit are adaptations to
climate change (Godoy and Lacerda, 2015). For instance, Cocó
(COC-NE) and Jaguaribe (JAG-NE) mangroves have expanded,
respectively, 22.8 and 4.1% in the last 20 years (Godoy et al.,
2018). Considering the differences observed in the northeastern
microbial communities, one might consider what role they
have in this process. Although ecologists have long known that
precipitation and salinity regimes govern the global distribution,
abundance, and species richness of mangrove forests (Spalding
et al., 2010), the microbial communities in northeastern Brazil
were shown to be adapted and possibly responsible for mediating
the persistence and expansion of mangrove forests.

Rainfall variability and droughts are among the most
important harbingers of climate change for mangroves (Sippo
et al., 2018). Reductions in freshwater supply induce hydrological
droughts, reinforcing evapotranspiration effects and increasing
water and sediment salinity. These factors are thought to
weaken the competitive ability of mangroves relative to adjacent
communities, reducing their spatial area, productivity, and
health. Reduced precipitation may be responsible for 11% of
the global reduction in the spatial extent of mangroves (Mafi-
Gholami et al., 2019). Mangroves from the semi-arid coast of
Brazil have historically experienced these conditions and have
adapted to persist in such harsh circumstances. Our study
provides support for the role of microbes in this adaptability.

On the other hand, cold southern temperatures, which can
lead to mangrove mortality, loss of above-ground biomass,
lower productivity, and decreased reproduction (Lovelock
et al., 2016), also affect their less diverse and complex
root-associated microbial communities. These findings are
important, as a positive relationship between biodiversity
and marine ecosystems functioning is noted, which means
that biodiversity loss could result in impaired microbial
ecosystem functioning through reduced functional redundancy
and interaction networks (Konopka et al., 2015). This is
particularly important considering the poleward shifts in
mangrove distributions expected to occur due to global climate
change (Whitt et al., 2020). Here, semi-arid mangroves stand out
as important pools of microbial diversity and complexity, which
are pivotal to mangrove adaptation in the Anthropocene.

CONCLUSION

Considering the findings reported herein, it seems that
northeastern and southern Brazilian mangroves, as important
centers of mangrove dispersion in the Anthropocene, are
going in opposite directions. While we are concerned with
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global warming, the colder temperatures of the south are limiting
mangrove-associated microbial communities’ richness and
complexity while elevated temperatures and evapotranspiration,
as well as reduced precipitation, lead to saline intrusion and
the harboring of a diverse and complex pool of microorganisms
in the northeast.

Microorganisms could be used for ecosystem recovery from
anthropogenic disturbances or assisted ecological restoration
based on the role of microbial diversity in maintaining
the dynamic balance and functional equilibrium essential for
mangrove sustainability. Considering the differences among the
bacterial profiles of the mangroves studied herein, the impact
on or of this unseen diversity should be addressed in ecosystem
management as well as in the development of evidence-based
microbial interventions and the exploration of biotechnological
tools. The adaptive power provided by microorganisms may be
the answer to adaptability in our changing world.
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