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The current obesity epidemic and lack of efficient therapeutics demand a clear understand-
ing of the mechanism underlying body weight regulation. Despite intensive research focus
on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still
lacking. Exciting studies in last decades have established the importance of hypothalamic
agouti-related protein-expressing neurons (AgRP neurons) in the regulation of body weight
homeostasis. AgRP neurons are both required and sufficient for feeding regulation. The
activity of AgRP neurons is intricately regulated by nutritional hormones as well as synap-
tic inputs from upstream neurons. Changes in AgRP neuron activity lead to alterations in
the release of mediators, including neuropeptides Neuropeptide Y (NPY) and AgRP, and
fast-acting neurotransmitter GABA. Recent studies based on mouse genetics, novel opto-
genetics, and designer receptor exclusively activated by designer drugs have identified a
critical role for GABA release from AgRP neurons in the parabrachial nucleus and paraven-
tricular hypothalamus in feeding control. This review will summarize recent findings about
AgRP neuron-mediated control of feeding circuits with a focus on the role of neurotrans-
mitters. Given the limited knowledge on feeding regulation, understanding the action of
neurotransmitters may be a key to unlock neurocircuitry that governs feeding.
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INTRODUCTION
The ability to harness energy from a variety of metabolic pathways
is a property of all living organisms. For a multi-organ system
like rodents and mammals, different organs have evolved to per-
form distinct functions to maintain energy balance. For example,
the brain controls the intake of energy (mostly carbohydrates, fats,
and proteins), which is absorbed by the digestive system, trafficked
by the liver, and distributed to the body via the circulation system
(Schwartz et al., 2000; Saper et al., 2002; Elmquist and Flier, 2004).
A disturbance in the delicate balance between energy intake and
energy requirements in the body will lead to changes in metab-
olism and body growth (body weight). During evolution when
food is not always available, excess energy is stored as fat, which
can be used when food is scarce. Thus, for a given living subject,
energy balance is depicted as energy intake = internal heat pro-
duced + external work + energy storage (fat; Saper et al., 2002).
Obesity is defined as the excessive fat accumulation. The current
obesity epidemic and lack of efficient therapeutics demand a clear
understanding of the mechanisms underlying body weight reg-
ulation. It is now well established that the brain, especially the
hypothalamus, maintains body weight homeostasis by effectively
adjusting food intake and energy expenditure (internal heat pro-
duction and external work) in response to changes in the levels of
various nutritional status indicators such as leptin, insulin, ghre-
lin, and others (Elmquist et al., 1999; Pinto et al., 2004; Nogueiras
et al., 2008; Friedman, 2009; Yang et al., 2011; Heppner et al., 2012;
Liu et al., 2012). Recent studies have identified important groups
of neurons and genes in the hypothalamus for energy balance
regulation (Cone, 2005; Elmquist et al., 2005).

In regard to feeding control, emerging results demonstrate
orexigenic Agouti-related protein (AgRP) neurons in the arcuate
nucleus (Arc) of the hypothalamus are critical regulators of feed-
ing and food-seeking behavior (Ollmann et al., 1997; Cone, 2005;
Flier, 2006). Activation of AgRP neurons in mice causes hyperpha-
gia, increases motivation to work for food, and initiates intense
food-seeking behavior (Aponte et al., 2011; Krashes et al., 2011),
while inhibition of AgRP activity or ablation of AgRP neurons
leads to reduced feeding or starvation (Bewick et al., 2005; Gropp
et al., 2005; Luquet et al., 2005; Xu et al., 2005a; Wu et al., 2009).
Since the activity level of AgRP neurons is a determinant for feed-
ing, it will be important to understand how the activity of AgRP
neurons is controlled. The ultimate result of changes in AgRP
neuron activity is alterations in neurotransmitter release, which is
the only way for neurons to transmit signals to downstream tar-
gets. Deciphering the function of neurotransmitters released from
AgRP neurons and their downstream targets represents a critical
step toward understanding the AgRP neural pathway for feeding
control. This review discusses recent findings on the control the
AgRP activity and the function of neurotransmitters from AgRP
neurons.

UPSTREAM REGULATORS OF AgRP NEURONS
UPSTREAM HUMORAL REGULATORS OF AgRP NEURONS – LEPTIN,
GHRELIN, INSULIN
Agouti-related protein neurons in the hypothalamic Arc are crucial
targets of feeding hormones. One of these hormones is ghre-
lin, which promotes positive energy balance (Tschop et al., 2000;
Nakazato et al., 2001; Nogueiras et al., 2008). Ghrelin was first
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identified in 1999 as an endogenous ligand of the growth hormone
secretagogue receptor (GHSR) and is synthesized and secreted
mainly from endocrine cells of the stomach and intestine (Kojima
et al., 1999; Wierup et al., 2007). Both central and peripheral
administrations of ghrelin stimulate appetite and food intake,
increase body weight, and promote adiposity and decrease energy
expenditure in rodents indicating an orexigenic impact via cen-
tral signaling (Tschop et al., 2000; Wren et al., 2000; Asakawa
et al., 2001; Nakazato et al., 2001). Histological examination of
GHSR showed its presence in several hypothalamic nuclei includ-
ing Arc and paraventricular nucleus of the hypothalamus (PVH)
and direct binding of ghrelin in these hypothalamic regions was
also found (Cowley et al., 2003; Zigman et al., 2006). In these
potential sites of ghrelin action, the Arc where GHSR mRNA is
abundantly expressed, is thought to contain the primary ghrelin-
responsive neurons mediating effects on feeding and body weight.
GHSRs are predominantly expressed in the orexigenic cell popula-
tion in the Arc,AgRP neurons (Figure 1), in contrast to few GHSRs
in proopiomelanocortin (POMC) neurons, the anorexigenic pop-
ulation in the Arc (Willesen et al., 1999; Nogueiras et al., 2008).
The neuronal activity of AgRP neurons is triggered by ghrelin indi-
cated by increased electrical activity and c-fos immunoreactivity
(Cowley et al., 2003; Andrews et al., 2008). Therefore, ghrelin is

suggested to inhibit POMC neurons indirectly by activating AgRP
neurons (Cowley et al., 2003; Tong et al., 2008; Wu et al., 2008a;
Atasoy et al., 2012). Feeding stimulation by ghrelin is abolished in
AgRP/Neuropeptide Y (NPY) double knockout mice and ablation
of AgRP neurons in adulthood indicating that ghrelin signaling in
AgRP neurons is important for controlling feeding (Chen et al.,
2004; Bewick et al., 2005).

Leptin, which counter-acts the effects of ghrelin to regulate
energy balance and food intake, is a hormone produced by fat tis-
sue. The gene for leptin was first cloned in 1994 (Zhang et al.,
1994) followed by the gene for the leptin receptor (LEPR) in
1995 (Tartaglia et al., 1995). Mice with leptin deficiency (ob/ob) or
deficits in its receptor (db/db) show severe obesity phenotype thus
supporting a crucial role for leptin signaling to regulate feeding
and energy expenditure (Friedman, 1998; Friedman and Halaas,
1998). LEPR mRNA is highly expressed within the hypothalamus
including the ventromedial nucleus of the hypothalamus (VMH),
the dorsomedial nucleus of the hypothalamus (DMH), and the Arc
where LEPR is densely expressed in both AgRP and POMC neu-
rons (Figure 1; Mercer et al., 1996a,b; Elmquist et al., 1998, 1999;
Elias et al., 1999). Indeed, direct leptin action on AgRP neurons
has been revealed by the obesity phenotype caused by specific
deletion of LEPR in AgRP neurons (van de Wall et al., 2008).

FIGURE 1 | Model underlying the AgRP Neuron Feeding Circuit. A summary about upstream and downstream mediators of AgRP neurons including (1)
neuronal regulators-glutamate, GABA, AgRP, NPY, and β-endorphin; (2) humoral regulators – leptin, ghrelin, insulin.
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Activation of leptin-responsive neurons involves induction of the
JAK-STAT3 signaling pathway, which regulates the gene expres-
sion (Bates et al., 2003; Bates and Myers, 2004). Consistent with its
anorexigenic role, leptin administration directly inhibits neuronal
activity of AgRP neurons and depolarizes POMC neurons (Span-
swick et al., 1997; Cowley et al., 2001; Elmquist et al., 2005). The
direct but opposite actions of leptin in AgRP and POMC neurons
are further confirmed by (1) induction of STAT3 in both popu-
lations; (2) increased c-fos immunoreactivity in POMC neurons,
but not in AgRP neurons after leptin treatment (Elias et al., 1999).
Although GHSR and LEPR are co-expressed in the medial part
of the Arc, the function of LEPR is likely to be independent of
GHSR indicated by the evidence that anorectic effects of exoge-
nously administrated leptin were similar in wild-type and GHSR
knockout mice (Perello et al., 2012).

Insulin is a hormone made and secreted by beta cells in the pan-
creas and plays a pivotal role in regulating blood glucose. An ele-
vation of blood glucose stimulates pancreatic beta cells to secrete
insulin. The increase in circulating insulin leads to accelerated glu-
cose uptake into peripheral tissues, which is essential to maintain
glucose homeostasis (Shepherd and Kahn, 1999). In addition to
well known gluco-regulatory actions of insulin on peripheral tis-
sues, insulin signaling in the brain (especially the hypothalamus)
also critically regulates blood glucose (Obici et al., 2002; Plum et al.,
2006; Paranjape et al., 2010; Levin and Sherwin, 2011). Insulin
receptors (INSR) are expressed in many CNS regions including
the hypothalamus (Figure 1; Werther et al., 1987; Unger et al.,
1991). Among these hypothalamic neurons, insulin/PI3K signal-
ing in both AgRP and POMC neurons is required for maintaining
glucose homeostasis (Konner et al., 2007; Hill et al., 2010; Lin
et al., 2010). As early as 1979, intracerebroventricular infusion
of insulin was shown to reduce body weight and food intake in
baboons, a feature of anorexigenic hormone (Woods et al., 1979).
Recent studies suggest that insulin acts on AgRP neurons to exert
this anorexigenic role, which is mediated by activation of phos-
phatidylinositol 3-kinases (PI3K) and the nuclear export of the
forkhead transcription factor (Foxo1; Kim et al., 2006; Ren et al.,
2012). Like leptin, insulin hyperpolarizes AgRP neurons, which is
consistent with its role to reduce food intake and body weight
(Spanswick et al., 2000; Konner et al., 2007). Although LEPR
and INSR co-express in both AgRP and POMC cell populations,
the actions of LEPR and INSR are integrated by PI3K in POMC
neurons, but not in AgRP neurons (Xu et al., 2005b).

UPSTREAM NEURONAL REGULATORS OF AgRP
NEURONS – GLUTAMATE
Agouti-related protein neurons are regulated by numerous
humoral and neural inputs. While intense focus has been placed
on identifying and understanding humoral inputs to AgRP neu-
rons (e.g., leptin, ghrelin, insulin; Elmquist et al., 1999; Belgardt
et al., 2009; Friedman, 2009; Castaneda et al., 2010; Perello and Zig-
man, 2012), very little is known about neural regulation of AgRP
neurons. Recent findings that neurotransmitter inputs to AgRP
neurons (e.g., glutamate and GABA) regulate food intake suggest
that abnormal eating behaviors and dramatic weight change may
be linked to disturbances in neural regulation of AgRP neurons
(Pinto et al., 2004; Yang et al., 2011; Liu et al., 2012).

In a series of elegant in vitro electrophysiological, pharmacoge-
netic, and optogenetic experiments on acute brain slices in fed and
food-deprived mice,Yang et al. (2011) found that fasting activation
of AgRP neurons doubled the frequency of excitatory postsynap-
tic currents, but not amplitude. They also investigated in great
detail the paired-pulse ratio (PPR) in wild-type mice and con-
cluded that the very low PPR of glutamatergic inputs onto AgRP
neurons in ad libitum fed mice limits the capability to observe
any further reduction of PPR after food deprivation. Consistent
with this, they showed a dissociation of PPR in fed and fasted
mice upon lowering extracellular calcium (a common method for
revealing changes in presynaptic release properties of high release
probability synapses). Together, these lines of evidence suggest
a ghrelin/ghrelin receptor/AMP-activated protein kinase pathway
operating in presynaptic glutamatergic neurons (Figure 1).

Other potential mechanisms have also been suggested. Pinto
and colleagues measured EPSCs on AgRP neurons (via in vitro
electrophysiological recordings) and analyzed excitatory synapses
on perikarya (using electron microscopic stereology) and pro-
vided data suggesting a postsynaptic mechanism. Specifically, they
found that increased frequency of EPSCs on NPY/AgRP neurons
in leptin-deficient ob/ob mice was associated with increased exci-
tatory synapses on the perikarya of NPY/AgRP neurons (Pinto
et al., 2004).

There is additional support for a postsynaptic mechanism. A
recent study by Liu et al. (2012) evaluated the role of glutamatergic
input to AgRP neurons and excitatory synapses on the dendritic
spines of AgRP neurons. Their strategy was to decrease glutamate
input to AgRP neurons by selectively deleting the ionotropic glu-
tamate receptor, NMDARs (Malenka and Nicoll, 1999; Kessels and
Malinow, 2009; Collingridge et al., 2010). Using Cre-loxP tech-
nology, the authors crossed Agrp-ires-Cre mice (Tong et al., 2008)
with lox-NR1 mice (Tsien et al., 1996; NR1 is a required sub-
unit of the NMDA receptor, deletion of NR1 subunits causes total
loss of NMDAR activity) to generate Agrp-ires-Cre, NR1lox/lox

mice (Voglis and Tavernarakis, 2006; Higley and Sabatini, 2008;
Bito, 2010). They found that decreased glutamate input to AgRP
neurons was associated with decreased body weight, food intake,
rates of re-feeding, EPSC frequency, and dendritic spine number.
Importantly, fasting did not alter the PPR in wild-type mice. Liu
and colleagues suggested that postsynaptic NMDARs are required
for the fasting-induced increase in EPSC frequency that is paral-
leled by dendritic spinogenesis. They propose a tentative model
to explain how fasting regulates the activation of AgRP neurons:
fasting → dendritic spinogenesis → formation of new excitatory
synapses → increased glutamatergic transmission → activation of
AgRP neurons.

However, the findings of Liu et al. could not rule out the
possibility of a presynaptic mechanism, suggesting that presynap-
tic and/or postsynaptic mechanisms may apply concurrently or
assume dominance depending on nutritional status.

The obvious question is to identify the source(s) of gluta-
matergic input to AgRP neurons. Candidates will be glutamatergic
neurons expressing ghrelin receptors (Atasoy et al.,2012) including
the Arc, VMH, DMH, PVH, basolateral nucleus of the amygdala
(BLA), and ventral premammillary nucleus (PMv; Figure 1; Zig-
man et al., 2006; Johnson et al., 2009; Vong et al., 2011; Perello

www.frontiersin.org January 2013 | Volume 6 | Article 200 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


Liu et al. Neurotransmitter action and AgRP neuron regulation

et al., 2012). One possible method is to use a monosynaptic
rabies approach to determine the source(s) of presynaptic input to
AgRP neurons. Rabies virus, a neuronal circuit tracer in the retro-
grade direction, can be used to target the monosynaptic input to
AgRP neurons (Marshel et al., 2010; Wall et al., 2010). Compared
to standard electrophysiological techniques, this approach will
reveal direct monosynaptic inputs to AgRP neurons by control-
ling the initial rabies virus infection and subsequent monosynaptic
retrograde spread. These studies should identify glutamatergic
neurons directly projecting to AgRP neurons to drive feeding
behavior.

DOWNSTREAM MEDIATORS OF AgRP NEURONS
Agouti-related protein neurons directly sense changes in nutri-
tional status hormones such as leptin, insulin, ghrelin, and others,
and neurotransmitters such as glutamate, GABA, and others to
modulate energy homeostasis. As a result, AgRP neuron activ-
ity dramatically increases in response to fasting, signaling a need
to eat (Takahashi and Cone, 2005). AgRP neurons also release
downstream effectors (neural-GABA, AgRP, and NPY) to drive
feeding (Figure 1). Interestingly, compared to controls, increasing
the activity level of AgRP neurons induces hyperphagia whereas
reducing the activity level of those neurons induces hypophagia
(Krashes et al., 2011), suggesting that the activity level of AgRP
neurons correlates with the level of feeding. These data suggest
that AgRP neurons are both sufficient and required for feeding
regulation.

DOWNSTREAM NEUROPEPTIDE MEDIATORS OF AgRP
NEURONS – AgRP AND NPY
Neuropeptide Y and AgRP are two neuropeptides released from
AgRP neurons that potently induce feeding, consistent with the
role of AgRP neurons to promote feeding (Elmquist et al., 2005).
Ghrelin increases feeding behavior by stimulating production of
NPY and AgRP in AgRP neurons whereas leptin and insulin
inhibits food intake and body weight by decreasing their expres-
sion (Schwartz et al., 1992; Korner et al., 2001; Zigman and
Elmquist, 2003; Chen et al., 2004; Morrison et al., 2005; Goto
et al., 2006).

Ectopic expression of agouti protein in mice (Ay/a) causes an
obese phenotype (Bultman et al., 1992). AgRP, a homology of
Agouti, was identified to be up-regulated in obese mice suggesting
a potential role of AgRP in feeding and energy balance regulation
(Shutter et al., 1997). Introcerebroventricular injection of AgRP or
its expression in a transgenic mouse model both lead to hyperpha-
gia, lowered energy expenditure, and obesity (Graham et al., 1997;
Rossi et al., 1998; Small et al., 2001). The effect of a single injection
of AgRP to promote feeding is long-lasting, which is different from
other orexigenic hormones including ghrelin and NPY (Schwartz
et al., 2000; Hagan et al., 2001). AgRP affects feeding behavior and
metabolism by antagonizing the melanocortin receptors, MC3R
and MC4R, which are stimulated by POMC cleavage products
(Fan et al., 1997; Ollmann et al., 1997). Besides the mechanism
of competitive antagonism, AgRP is also suggested to regulate
feeding behavior and energy balance as an inverse agonist of the
central melanocortin system (Haskell-Luevano and Monck, 2001;
Nijenhuis et al., 2001; Tolle and Low, 2008). Distinctive from

other modulators mentioned above, NPY is the only one widely
expressed throughout the body, both the CNS and PNS in mam-
mals (Lundberg et al., 1982; Tatemoto et al., 1982). It is present
in many brain regions including the hippocampus, hypothala-
mus, amygdala, cortex (Gray and Morley, 1986; Wahlestedt et al.,
1989), and the peripheral nervous system including sympathetic
post-ganglionic neurons and the adrenal medulla, and peripheral
organs such as the pancreas and spleen (Lundberg et al., 1982; Eric-
sson et al., 1987; Klimaschewski et al., 1996; Whim, 2006, 2011).
The known NPY receptors include Y1, Y2, Y4, and Y5 as well as
Y6 in the mouse. All Y receptors are G protein coupled receptors
and their activation usually causes inhibitory responses such as
inhibition of cAMP accumulation (Michel et al., 1998).

In the CNS, NPY is most highly co-expressed with AgRP in the
Arc and substantial amounts of NPY are also found in other hypo-
thalamic nuclei including the dorsomedial nucleus, and numerous
NPYergic neurons project into the PVH (Chronwall et al., 1985;
van den Pol et al., 2009). NPY was first found to promote hyper-
phagia based on evidence that intraventricular administration of
this peptide significantly induced feeding behavior in rats (Clark
et al., 1984, 1985; Levine and Morley, 1984; Stanley and Leibowitz,
1984). Moreover, central administration of NPY reduces energy
expenditure and chronic infusion of NPY can induce obesity
due to overeating (Billington et al., 1991; Flier and Maratos-Flier,
1998).

Surprisingly, NPY knockout mice on a 129/SvCp-J background
did not show a phenotype of reduced feeding, body weight, or adi-
posity under normal conditions (Erickson et al., 1996a). However,
genetic removal of NPY attenuated hyperphagia and obesity phe-
notype in leptin-deficient mice (Erickson et al., 1996b). In addi-
tion, when NPY knockout mice were backcrossed onto a C57BL/6
background, they showed decreased re-feeding after fasting (Ban-
non et al., 2000). This is similar to Y1 knockout mice that display
slightly diminished feeding and strongly reduced fasting-induced
re-feeding (Pedrazzini et al., 1998). The Y2 knockout mouse model
exhibits decreased body weight gain and deletion of Y2 recep-
tors in the adult mouse hypothalamus led to transiently decreased
body weight, but increased food intake indicating a functional
role of hypothalamic Y2 receptors to control feeding (Sainsbury
et al., 2002a,b). In addition, Y5-deficient mice show normal food
intake and body weight, but develop obesity after 30 weeks of age
(Marsh et al., 1998). Collectively, this literature studying roles
of NPY and NPY receptors in feeding and energy balance sup-
ports the importance of central NPY signaling in regulating energy
homeostasis.

DOWNSTREAM NEURONAL MEDIATORS OF AgRP NEURONS-GABA
As reviewed above, extensive studies have been focused on the role
of neuropeptides NPY and AgRP from AgRP neurons. The role
of fast-acting neurotransmitter GABA has also been speculated
to be important (Horvath et al., 1997; van den Pol, 2003), but
was largely neglected until recently. To directly examine the role
of GABA release from AgRP neurons, Tong et al. (2008) generated
mice with disruption of GABA release specifically from AgRP neu-
rons by inactivating vesicular GABA transporter (VGAT). Tong
et al. (2008) found that GABA release from AgRP neurons is
required for normal body weight regulation, and disruption of
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GABA leads to increased energy expenditure and resistance to
diet induced obesity. However, the degree in change of body
weight due to disruption of GABA release is mild, suggesting that
either other neurotransmitters released from AgRP neurons are
important or that disruption of GABA release during early embry-
onic phases invokes developmental compensation which masks
physiological effects of GABA release. Consistent with the lat-
ter hypothesis, mice with lesions of AgRP neurons in neonates
exhibit a mild reduction in body weight while those with lesions
of AgRP neurons in adults exhibit significantly reduced food
intake or starved to death (Bewick et al., 2005; Gropp et al.,
2005; Luquet et al., 2005; Xu et al., 2005a; Wu et al., 2009).
It is interesting to point out that mice with lesions of AgRP
neurons have been made in several laboratories, and the phe-
notypes of these mice range from mild reduction, more pro-
nounced reduction in body weight, or starvation-induced death
(Bewick et al., 2005; Gropp et al., 2005; Luquet et al., 2005; Xu
et al., 2005a). These variant results might be due to different
approaches used to lesion AgRP neurons. Lesion of AgRP neu-
rons through inactivating mitochondria might take more time
to kill AgRP neurons, allowing for developmental compensation,
resulting in mild effects on body weight (Xu et al., 2005a). Lesion
of AgRP neurons mediated by diphtheria toxin (DTX) is a rapid
process, resulting in more pronounced effects on body weight
and feeding (Gropp et al., 2005; Luquet et al., 2005). Nonethe-
less, these studies demonstrate powerful developmental compen-
sation in response to loss of AgRP neurons in neonatal stages.
Mice with AgRP neuron lesions exhibit abundant c-fos expres-
sion in known AgRP neuron projection sites including the PVH
and parabrachial nucleus (PBN; Wu et al., 2008b). Strong c-fos
expression is consistent with loss of GABA projection. However,
accompanying with the c-fos expression, there are also abundant
gliosis responses in both Arc and AgRP neuron projection sites
(Wu et al., 2008b). Whether the gliosis contributes to hypopha-
gia in these mice has not been explored. It would be interesting
to directly examine the role of GABA release from AgRP neu-
rons in adult mice through inducible deletion of VGAT. Notably,
mild phenotypes by NPY knockout might not be due to develop-
mental compensations since mice with NPY deletion in adults
show minimal phenotype in energy balance (Ste Marie et al.,
2005).

Given the established importance of AgRP neurons in feeding
regulation, intense interests have been generated to look for the
responsible neurotransmitters from these neurons. Recent excit-
ing results from Sternson and Palmiter laboratories suggest that
GABA is the responsible neurotransmitter and more importantly,
they have identified that the neurons in the PVH and PBN, but
not POMC neurons, are the direct downstream sites that receive
GABA to mediate feeding regulation by AgRP neurons (Wu et al.,
2009; Atasoy et al., 2012).

Previous electrophysiological data suggest that AgRP neu-
rons send direct GABAergic projections to nearby POMC neu-
rons (Cowley et al., 2001). Coupled with an important role of
the melanocortin system in feeding regulation (Elmquist et al.,
2005), these results triggered the speculation that POMC neu-
rons are one of downstream sites to mediate AgPR neuron
action on feeding (Cone, 2005). This speculation has not been

directly tested until recently. Using a combination of optogenetic
and designer receptor exclusively activated by designer drugs
(DREADD) approaches, Sternson laboratory elegantly demon-
strated that, indeed, AgRP neurons send direct GABAergic projec-
tions to POMC neurons; however, surprisingly, POMC neurons
play a minimal role in mediating AgRP neurons on acute feed-
ing (Atasoy et al., 2012). Consistently with this finding, results
from Palmiter laboratory suggested that starvation resulted from
AgRP neurons is independent of the melanocortin pathway (Wu
et al., 2009). These data demonstrate that POMC neurons are
not a major part of AgRP neuron feeding pathway, at least in
acute hyperphagia response. Strikingly, there is no direct pro-
jection from POMC neurons to AgRP neurons, or no reciprocal
projections between POMC or AgRP neurons, suggesting a rather
simple, one way circuit from AgRP to POMC neurons (Atasoy
et al., 2012). Whether the physiological significance of GABAergic
regulation of POMC neurons by AgRP neuron lies in long term
regulation of feeding or in energy expenditure regulation remains
to be established. Likewise, the function of potential GABAergic
projection from AgRP neurons to non-POMC neurons in the Arc
is unknown.

Previous data also suggest the importance of Arc projections
to the PVH in energy balance (Elmquist et al., 2005) including
feeding and energy expenditure. For example, the melanocortin
pathway from POMC neurons to the PVH has been suggested to
selectively control feeding (Balthasar et al., 2005). It has also been
speculated that GABAergic neurons in the Arc mediate a major
part of leptin action on body weight through projections to the
PVH (Cone and Simerly, 2011). Recent data from Lowell labo-
ratory demonstrated that direct GABAergic projections from a
novel subset of Arc neurons expressing Cre in Rip-Cre mice to
the PVH play a selective role in energy expenditure (Kong et al.,
2012). It is well accepted that the PVH is one major downstream
site of AgRP neurons (Cone, 2005; Elmquist et al., 2005). How-
ever, a direct demonstration of a role of AgRP neuron projection
to the PVH in feeding regulation is lacking until recently. Based on
similar sets of elegant experiments to those for POMC neurons,
Sternson laboratory demonstrated a critical role for GABAergic
projections from AgRP neurons to the PVH in promoting feeding
by AgRP neuron activation (Atasoy et al., 2012). Specifically, by
concurrent activation of PVH neurons and AgRP neurons, they
showed that activation of PVH neurons effectively reverses hyper-
phagic effects by AgRP neurons activation (Atasoy et al., 2012),
suggesting that AgRP neuron induced hyperphaga is due to a
heightened GABAergic tone to the PVH and that suppression
of PVH neurons is required for AgRP neuron-mediated hyper-
phagia. Furthermore, by selectively photostimulating AgRP fibers
the PVH, their results showed that suppression of PVH neurons
by AgRP neurons is sufficient to mediate AgRP neuron-mediated
hyperphagia. Thus, suppression of PVH neurons is both sufficient
and necessary for AgRP neuron-mediated hyperphagia. Interest-
ingly, a marked strengthening of GABAergic innervations from
AgRP neurons to PVH neurons was found to be associated with
NPY deficiency. Given the importance to GABAergic innervations
from AgRP neurons to PVH neurons in feeding regulation, this
plastic changes in GABAergic action may provide an explanation
for lack of physiologic phenotypes by NPY deficiency. Consistently,
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NPY receptor blockage significantly blunted the hyperphagia effect
caused by photostimulation of either AgRP fibers in the PVH or
AgRP neurons, suggesting that both GABA and NPY signaling
appeared to be necessary for feeding evoked by the GABAergic
projection from AgRP neurons to PVH neurons (Atasoy et al.,
2012). It would be interesting to identify how NPY deficiency
causes changes in GABAergic action.

Given the strong feeding inhibition induced by AgRP neuron
inhibition (Aponte et al., 2011; Krashes et al., 2011), it would be
interesting to examine whether PVH neurons mediate feeding-
reducing effects by AgRP neurons. A direct testing of this has
not been reported. However, using a extreme case of AgRP neu-
rons inhibition, i.e., AgRP neuron lesion, Palmiter group found
that PVH specific administration of GABA-A agonist failed to res-
cue the starvation phenotype by AgRP neuron lesion, suggesting
that GABAergic projection from AgRP neurons to the PVH has
no contribution to the starvation phenotype produced by AgRP
neuron lesion (Wu et al., 2009). Of note, the failure in rescuing
is not due to insignificant GABAergic input from AgRP neu-
rons since abundant c-fos expression, an indicator of neuronal
activation, was observed in the PVH as a result of AgRP neu-
ron lesion, and importantly, the increased c-fos expression were
blunted by the application of GABA-A receptor. This data sug-
gest that excitation of PVH neurons contributes minimally to the
starvation phenotype by AgRP neurons lesion. Since PVH neu-
ron excitation by GABA-A antagonists suppresses feeding (Kelly
et al., 1979), this result suggests that GABAergic action in the
PVH from non-AgRP neurons might mediate feeding suppres-
sion. In pursuit of downstream targets to GABAergic projections
from AgRP neurons that mediate the starvation effects of AgRP
neuron lesion, Palmiter group found that the starvation phe-
notype can be rescued by specific delivery of GABA-A receptor
agonist in the PBN (Wu et al., 2009), highlighting an impor-
tant role for GABAergic projections from AgRP neurons to the
PBN. Consistently, adult lesion of AgRP neurons increases PBN
neuron activity (Wu et al., 2008b). Taken together, these data
suggest a role for a decreased GABAergic tone from AgRP neu-
rons to the PBN in modulating hypophagia response (Figure 1).
The PBN is traditionally viewed as a center for taste aversion
regulation, which, if activated by sensory inputs from the gut,
induces taste aversion, serving as a general protective mecha-
nism to avoid unpleasant food experienced before (Reilly, 1999).
Thus, it appears that both hypophagia and taste aversion responses
share the same neural pathway. In addition to GABAergic inputs
from AgRP neurons, it appears that PBN neurons are also con-
trolled by glutamatergic inputs from the nucleus of solitary tracts,
which might mediate inputs from other neurons such as sero-
toninergic neurons as well as sensory inputs from the gut (Wu
et al., 2012). An interesting question is whether this projection
also mediates hyperphagic effects produced by increased AgRP
neuron activity. Surprisingly, Sternson group found that spe-
cific photostimulation of AgRP fibers in the PBN fails to induce
the acute hyperphagic effects by AgRP neuron activation (Atasoy
et al., 2012), suggesting that acute hyperphagia induced by AgRP
neuron activation is not due to heightened GABAergic tone to
the PBN.

Caution should be exercised to directly compare the results
between Sternson and Palmiter groups since the former deals with
rapid changes in neuronal activity with acute feeding and the
latter deals with slow alterations in neuronal circuitry with long
term feeding effects. Nonetheless, the results from the two groups
taken together suggest that GABAergic action from AgRP neu-
rons to the PVH may preferentially mediate hyperphagic effects
by AgRP neuron excitation, and that to the PBN may preferen-
tially mediate hypophagic effects by AgRP neuron inhibition. This
speculation is in line with the minimal phenotypes observed in
mice with AgRP and NPY deficiency (Qian et al., 2002), although
the latter can be explained by potential compensatory changes in
GABAergic action (Atasoy et al., 2012). It may be the case that
GABAergic projection from AgRP neurons to the PVH projec-
tion is more engaged during fasting whereas that to the PBN
is more engaged during fed states. In addition to the PVH and
PBN, AgRP neurons also send GABAergic projections to several
other brain sites, and some of these sites might be important
to mediate AgRP neuron feeding effects (Atasoy et al., 2012),
but still await further demonstration. Further studies stemmed
from these results will shed new lights on AgRP neuron feeding
circuits.

SUMMARY
Several laboratories have used a combination of mouse genet-
ics and pharmacology to achieve specific lesion of adult AgRP
neurons, state-of-the-art optogenetics, and DREADD (Alexan-
der et al., 2009; Wu et al., 2009; Krashes et al., 2011; Atasoy
et al., 2012) to achieve specific manipulation of adult AgRP
neurons. Given the complexity of feeding behavior, these stud-
ies represent a significant leap in understanding of brain feed-
ing circuits. It appears that AgRP neurons have evolved to
be one of major determinants for an individual to harness
energy from the environment. With this in mind, modulating
the activity of AgRP neurons represents one strategy to control
appetite in contexts of the current obesity epidemic (Ren et al.,
2012).

It is certain that AgRP neurons are not the only key neurons
controlling feeding because lesion of the Arc including AgRP neu-
rons leads to hyperphagia and obesity. Thus, in the Arc, there must
be other food intake-inhibiting neurons, lesion of which overrides
the action of AgRP neuron lesion. Nonetheless, based on the excit-
ing results focusing on AgRP neurons and using newly developed
and highly informative techniques (mouse genetics, optogenetics,
and DREADD), future studies will provide more insights on brain
circuits controlling food intake.
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