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Assessing the Impact of Tissue Target Concentration
Data on Uncertainty in In Vivo Target Coverage
Predictions

A Tiwari1, H Luo2, X Chen1, P Singh1, I Bhattacharya3, P Jasper2, JE Tolsma2, HM Jones1, A Zutshi4 and AK Abraham5

Understanding pharmacological target coverage is fundamental in drug discovery and development as it helps establish a
sequence of research activities, from laboratory objectives to clinical doses. To this end, we evaluated the impact of tissue
target concentration data on the level of confidence in tissue coverage predictions using a site of action (SoA) model for
antibodies. By fitting the model to increasing amounts of synthetic tissue data and comparing the uncertainty in SoA
coverage predictions, we confirmed that, in general, uncertainty decreases with longitudinal tissue data. Furthermore, a global
sensitivity analysis showed that coverage is sensitive to experimentally identifiable parameters, such as baseline target
concentration in plasma and target turnover half-life and fixing them reduces uncertainty in coverage predictions. Overall, our
computational analysis indicates that measurement of baseline tissue target concentration reduces the uncertainty in
coverage predictions and identifies target-related parameters that greatly impact the confidence in coverage predictions.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 565–574; doi:10.1002/psp4.12126; published online 22 October 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
� Minimal PK/PD models have been used to study and

predict the distribution of mAbs and their coverage of

target in various tissues. The utility of these models

depend on our understanding of the minimal data

requirements for such models and the key parameters

that significantly influence predictions. It is currently not

known how tissue data or its lack thereof and which

model parameters impact target coverage predictions.
WHAT QUESTION DID THIS STUDY ADDRESS?
� This study evaluates the impact of (i) increasing

quantities of tissue target concentration data and

(ii) information about model parameters on uncertainty

in tissue target coverage predictions of a minimal PK/

PD model.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This study shows that measurement of baseline tar-
get concentration in tissue substantially reduces the
uncertainty in target coverage predictions. Additionally,
it identifies key model parameters that greatly impact
the confidence in coverage predictions.
HOW THIS MIGHT CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
� Understanding the determinants of uncertainty in tar-
get coverage predictions and the basic data require-
ments of minimal PK/PD models enhances their utility
in ensuring the mechanism has been tested at ade-
quate target engagement and guiding subsequent
decision-making with regard to dose selection in early
clinical trials.

Protein-based therapeutics, such as monoclonal antibodies

(mAbs), bispecific antibodies, Fc-fusion proteins, hormones,

cytokines, and antibody-drug conjugates are increasingly being

developed to treat a variety of diseases.1,2 This interest is main-

ly due to their high target specificity and longer half-lives com-

pared to small molecule drugs. The distribution of mAb-based

therapeutics into tissues is limited because of their large

size,3,4 but is nevertheless crucial for understanding the ability

of the drug to effectively engage the target in diseased tissues.

In drug discovery, mathematical models are often used to

select compounds and identify safe and efficacious doses,

thereby offering a quantitative approach to improve drug devel-

opment and decision-making.5 Several models describing stan-

dard target-mediated drug disposition6–9 to more complex

physiologically-based pharmacokinetics (PK)10–12 incorporate

distribution of protein-based therapeutics into peripheral tis-

sues. These models have been used extensively to predict tis-

sue PK and in some cases pharmacodynamics (PD) and

efficacy. Recently, minimal models of drug binding and distribu-

tion13–16 have gained popularity. Minimal models are amenable

to characterizing PK/PD relationships in specific tissues, like

the gastrointestinal tract in Crohn’s disease and synovium in

rheumatoid arthritis (RA). These disorders are marked by tis-

sue overexpression of cytokines, like tumor necrosis factor a
(TNFa) and mAb therapies neutralizing TNFa have been shown

to be effective.17,18 Here after, we refer to these minimal mod-

els characterizing specific tissues as site of action (SoA)

models.
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Pharmacological target coverage, defined here as the

percentage of target bound by drug, is fundamental to drug
discovery and development. The lack of understanding of
coverage and/or its relationship to safety and efficacy could
increase the risk of failure for a promising molecule. The

SoA models (Figure 1) have been used to study and pre-
dict mAb distribution and target coverage in various tis-
sues.11,13,14,19 For example, an SoA model examined
interactions between adalimumab and TNFa in central,

peripheral, and synovium compartments and compared the
efficacy of intra-articular vs. systemic administration of ada-
limumab for treatment of RA.19 In another example, an SoA

model for anti-interleukin (IL)21b mAb ACZ885 was used
to characterize total target concentrations in plasma and
predict target-engagement in peripheral tissues.13 Another
model examined the efficacy of bispecific antibodies against

soluble and membrane-bound targets for treatment of sys-
temic lupus erythematosus and against two other soluble
targets in ulcerative colitis and asthma.14 Lastly, an SoA

model integrated antibody PK and total CXCL13 levels in
mouse serum and spleen to predict target coverage, which
was in turn linked to germinal center response.20 The
above examples highlight the utility of SoA models in pre-

dicting target coverage (using free target suppression pro-
files), which is increasingly being used to select doses for
clinical trials. Understanding coverage becomes particularly

important in cases where a sensitive biomarker is unavail-
able to understand downstream pharmacology. Additionally,
target coverage enables design of preclinical toxicology
studies, calculations of safety margins, and ultimately

design of clinical studies.
The importance of SoA models to predict tissue target

coverage depends on our understanding of the minimal
data requirements for such models and key parameters

that significantly influence predictions. Currently, it is not
known how tissue data or its lack thereof impacts coverage
predictions. Typically, tissue data represent measurements

using a total target assay that measures free target at
baseline (pre-dose sample) and total target (free 1 drug-
bound) after drug administration. The objective of this study
is to evaluate the impact of increasing quantities of longitu-
dinal tissue target concentration data on uncertainty in tar-
get coverage predictions.

METHODS
Mathematical model
An ordinary differential equation-based model with plasma,
SoA, and peripheral tissue compartments was developed
for this analysis (Figure 1). Below is the system of ordinary
differential equations:
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drug, drug-target complex, and free target in plasma i5Pð Þ
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Figure 1 Site of action (SoA) model. Drug is administered intravenously and then distributes into the tissue of interest (SoA) and
peripheral tissue. In the central and site of action compartments, drug binds reversibly to target protein to form drug-target complex.
Both the target and complex can distribute between these two compartments. Target protein is synthesized only in the SoA compart-
ment but gets eliminated in both compartments. Drug and complex are eliminated only in the central compartment.
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concentration in the peripheral tissue compartment. Initial

conditions for ordinary differential equations are: DP 0ð Þ5
Dose�BWT�106
� �

= MWT�VPð Þ, TP 0ð Þ 5 TP0, TS 0ð Þ5 TS0,

and DT 0ð Þ5DS 0ð Þ5DTP 0ð Þ5DTS 0ð Þ50. BW570 kg is typi-

cal body weight of human, MWT 5150;000 daltons is drug

(mAb) molecular weight, and VP is plasma compartment

volume in liters.

Intravenous (i.v.) administration of a drug is modeled as

a bolus into a plasma compartment. A drug not bound to

target distributes into peripheral VTð Þ and SoA VSð Þ com-

partments. For this analysis, gut tissue was selected as an

example of SoA. Drug reversibly binds the target to form a

drug-target complex. Binding kinetics is characterized by

second-order association konð Þ and first-order dissociation

Figure 2 Flow chart of coverage uncertainty analysis. First, a parameter set selected from Table 1 together with fixed values of
remaining model parameters is used to simulate the site of action (SoA) model for 1 mg/kg (blue) and 10 mg/kg (red) i.v. dosing of
drug to generate synthetic data: DP , T tot

P , and T tot
S time profiles (blue and red circles). Next, the SoA model is fit at least 3,000 times

(blue and red curves) to synthetic data for three different cases: 0, 1, or 2 T tot
S data points. Each curve in these panels represents an

independent model fit. Finally, the uncertainty in target coverage predictions at a given time is quantified as SD of all the predicted val-
ues. Each curve in target coverage panels represents a model prediction corresponding to one of the model fits.
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koffð Þ rate constants. The kon was fixed to a diffusion-limited
maximum value21 and koff 5konKD , in which KD is the equi-
librium dissociation constant for drug-target binding. Note
that we performed all our analysis with respect to KD

instead of koff , as it is relatively easier to determine experi-
mentally and available more widely.

This version of an SoA model assumes the drug, target,
and complex can distribute between plasma and SoA com-
partments, which is only valid for soluble targets as their
distribution is primarily governed by diffusion. In many
cases, we lack information regarding distribution rates, par-
ticularly for target. In such cases, a reduced model that
ignores such processes may be used.20 To emulate a dis-
ease state, it is assumed that free target is primarily synthe-
sized in SoA (typically overexpressed), but is degraded both
in plasma and SoA. Drug and complex are assumed to be
eliminated systemically from the plasma compartment. Mod-
el parameters are listed in Supplementary Tables S1 and
S2.

Figure 2 describes various steps in the analysis. Step 1:
select parameter set and simulate SoA model to generate
synthetic data. Step 2: fit model to synthetic data (drug PK,
plasma target kinetics, and three different quantities of tis-
sue target data). Step 3: compare uncertainty in target cov-
erage predictions across three cases. Details of each step
are discussed below.

Step 1: Select parameter set and simulate model to
generate synthetic data
Five SoA model parameters, KD , baseline target concentra-
tion in plasma TP0ð Þ, ratio of baseline target concentrations in
SoA to plasma RatioTð Þ, target half-life in plasma (thalfTpÞ,
and target half-life in SoA thalfTsð Þ, were set to a low/high

value to obtain 32 (25) partial parameter sets that satisfy three
different criteria: TP0 < KD � TS0, KD < TP0 < TS0, and
TP0 < TS0 < KD (Table 1). Low and high values for each
parameter were selected to represent physiologically rele-
vant bounds. Each of these partial parameter sets was
combined with fixed values for the remaining model
parameters (Supplementary Tables S1 and S2) to obtain
complete parameter sets. These fixed values describe the
typical PK of an mAb22,23 and the distribution of mAbs
and target between plasma and SoA. The model was then
simulated using these complete parameter sets for 1 and
10 mg/kg single i.v. doses to generate synthetic data:
concentration-time profiles of DP, total target concentration
in plasma (T tot

P Þ and SoA T tot
S

� �
, up to 56 days. We con-

sidered 16 data points in plasma, 8 each for DP and T tot
P

at days 0, 1, 3, 7, 14, 28, 42, and 56. The sampling
schedule was based on a typical internal clinical trial
design. We considered three different cases of tissue data
(T tot

S ) – 0, 1, or 2 data points per dose. The first case is
self-explanatory, whereas the second and third cases corre-
spond to baseline target measurement (day 0) only, and
baseline and end-of-treatment (day 56) total target meas-
urements, respectively. We assumed lack of access to
tissue-level data during treatment. In addition, to account for
experimental variability, a maximum of 5% noise (random
variability) was added to each synthetic data point.

Step 2: Fit model to synthetic data
The control parameterization method24 implemented in J2
Dynamic Modeling and Optimization Software (RES Group,
2016) was used to minimize the following objective function
for
~p5 CLDt ; CLDs;CLTs;KD ; TP0;RatioT ; thalfTp; thalfTsf g:

O ~pð Þ5
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� �
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� �� �2
 vuut

where t represents time points.
The model was fit to each synthetic dataset 10,000 times

and only those fits were accepted, which resulted in <7%
error for each fitted data point. For each of the 10,000 opti-
mizations, initial guesses for model parameters were ran-
domly generated using a uniform and independent
sampling (in logarithmic space) within bounds listed in Sup-
plementary Table S3.

Step 3: Uncertainty in target coverage predictions
Target coverage at SoA was calculated as follows:

coverage512
TS

TS0

where TS0 and TS are baseline and free target concentra-
tion in SoA. Note TS05T tot

S t50ð Þ. Uncertainty in coverage
predictions at a given time is quantified as its SD for all
accepted fits. Uncertainty analysis was performed twice,
first when all parameters in ~p were estimated and second

when a sensitive parameter (TP0 or thalfTp) was fixed and

the remaining parameters were estimated.

RESULTS
Uncertainty in target coverage predictions decreases

with additional tissue data
We systematically investigated the impact of increasing

amounts of tissue data on uncertainty in target coverage

predictions in SoA. Hereafter, coverage predictions always

refer to predictions in the SoA compartment. We sampled

32 different parameter sets (Table 1, see Methods) based

on physiologically relevant upper/lower bounds for five

target-related parameters – KD , TP0, RatioT , thalfTp, and

thalfTs. These parameter sets were used to generate syn-

thetic data (for 1 and 10 mg/kg i.v. doses) that included

concentration-time profiles for the drug, total target in plas-

ma, and total target in SoA. Subsequently, we fit the model
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to the synthetic data and calculated uncertainty in target
coverage predictions at end-of-treatment.

Results from this analysis are presented in Table 2, in
which rows represent parameter sets 1 to 32 and columns
represent the number of tissue data points (0, 1, or 2). In
the majority of cases that were analyzed, uncertainty in tar-
get coverage predictions decreased with additional tissue
data (compare the numbers along a row in Table 2) for
both 1 and 10 mg/kg i.v. doses. This trend of reduction in
uncertainty with additional tissue data also holds true for
multiple doses (Supplementary Figure S1), treatment
duration of 28 days (Supplementary Table S4), and higher
maximum noise (20%) in synthetic data (Supplementary
Table S5), although the degree of uncertainty is different.
Uncertainty in coverage predictions dropped substantially
with inclusion of one tissue data point. Results for 1 and
10 mg/kg contain 5 and 14 cases, respectively, in which
color changes (compare across a row in Table 2) between

the first and second columns, signifying a reduction in
uncertainty. However, if the number of tissue data points in
these cases is increased to two, then <30% of these cases
(1/5 for 1 mg/kg and 4/14 for 10 mg/kg) show a substantial
reduction in uncertainty in coverage predictions.

Results for 1 and 10 mg/kg also contain 27 and 18
cases, respectively, in which the color does not change
between the first and second columns, implying a marginal
or no reduction in coverage uncertainty. Finally, if the num-
ber of tissue data points for the remaining cases (after
removing the ones with intrinsically low or high uncertainty)
is increased from one to two, then coverage uncertainty
drops considerably (i.e., color change) for all of them. In all
cases except one, inclusion of two tissue data points
resulted in <10% uncertainty.

Table 2 Uncertainty in target coverage predictions decreases with additional

tissue data

1 mg/kg 10 mg/kg

Case 0 pt 1 pt 2 pt 0 pt 1 pt 2 pt

1 0.19 0.07 0.07 0.2 0.1 0.09

2 0.19 0.16 0.11 0.22 0.15 0.09

3 0.22 0.11 0.07 0.12 0.03 0.02

4 0.05 0.02 0.02 0.01 0 0

5 0.02 0.02 0.01 0.08 0.05 0.07

6 0.23 0.13 0.02 0.11 0.03 0.01

7 0.03 0.03 0.01 0.05 0.05 0.02

8 0.08 0.02 0.02 0.01 0 0

9 0 0 0 0.03 0.01 0.01

10 0.31 0.3 0.01 0.3 0.08 0.01

11 0 0 0 0.02 0.02 0.01

12 0.12 0.09 0 0.04 0.02 0

13 0.05 0.02 0.01 0.19 0.1 0.05

14 0.09 0.04 0.01 0.25 0.04 0.04

15 0.01 0.02 0.01 0.01 0.01 0.01

16 0.05 0.02 0.02 0 0 0

17 0 0 0 0.01 0 0

18 0.18 0.19 0.01 0.03 0.01 0

19 0 0 0 0 0 0

20 0.08 0.07 0.01 0 0 0

21 0.02 0.02 0 0.11 0.07 0.01

22 0.07 0.05 0 0.23 0.14 0.01

23 0.03 0.01 0.01 0.06 0.02 0.02

24 0.29 0.18 0.01 0.2 0.06 0.02

25 0.01 0.01 0 0.07 0.05 0.01

26 0.28 0.31 0.01 0.2 0.12 0

27 0.01 0.01 0.01 0.03 0.02 0.02

28 0.28 0.15 0 0.19 0.04 0

29 0.01 0.01 0 0.06 0.04 0

30 0.3 0.15 0 0.33 0.17 0.01

31 0.01 0.01 0.01 0.02 0.01 0.01

32 0.31 0.14 0 0.21 0.05 0.01

Heat maps depict the uncertainty in target coverage for 1 mg/kg (left) and

10 mg/kg (right) i.v. doses at the end-of-treatment (56 days). Colors red, yel-

low, and green represent uncertainty >0.1, between 0.05 and 0.1, and

<0.05, respectively. Each heat map shows uncertainty for 32 different cases

(listed in Table 1) with 0, 1, and 2 tissue data points (left, middle, and right

columns, respectively).

Table 1 Partial parameter sets used to generate the synthetic data

Case KD (nM) TP0 (nM) RatioT (-) thalfTp (h) thalfTs (h)

1 0.1 0.02 5 0.5 0.5

2 0.1 0.02 5 0.5 24

3 0.1 0.02 5 24 0.5

4 0.1 0.02 5 24 24

5 0.1 0.02 100 0.5 0.5

6 0.1 0.02 100 0.5 24

7 0.1 0.02 100 24 0.5

8 0.1 0.02 100 24 24

9 10 0.2 100 0.5 0.5

10 10 0.2 100 0.5 24

11 10 0.2 100 24 0.5

12 10 0.2 100 24 24

13 0.1 0.2 5 0.5 0.5

14 0.1 0.2 5 0.5 24

15 0.1 0.2 5 24 0.5

16 0.1 0.2 5 24 24

17 0.1 0.2 100 0.5 0.5

18 0.1 0.2 100 0.5 24

19 0.1 0.2 100 24 0.5

20 0.1 0.2 100 24 24

21 10 0.02 5 0.5 0.5

22 10 0.02 5 0.5 24

23 10 0.02 5 24 0.5

24 10 0.02 5 24 24

25 10 0.02 100 0.5 0.5

26 10 0.02 100 0.5 24

27 10 0.02 100 24 0.5

28 10 0.02 100 24 24

29 10 0.2 5 0.5 0.5

30 10 0.2 5 0.5 24

31 10 0.2 5 24 0.5

32 10 0.2 5 24 24

Each of the five parameters – KD , TP0, RatioT , thalfTp, and thalfTs – was

set to a low or a high value to arrive at 32 (25) partial parameter sets, which

lie in three different regimes: TP0 < KD � TS0 (orange), KD < TP0 < TS0

(yellow), and TP0 < TS0 < KD (green). All these were then combined with

the fixed values for the remaining parameters to obtain complete parameter

sets that were used to generate synthetic data.
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Target coverage is most sensitive to TP0 and thalfTs

Next, we used two different global sensitivity analysis

(GSA) methods (see Supplementary Material for details),

the partial rank correlation coefficients25 (PRCCs) and the

derivative-based global sensitivity measure,26 to examine

the sensitivity of target coverage to various model parame-

ters (Figure 3 and Supplementary Figure S1). Both meth-

ods showed coverage is most sensitive to TP0 and thalfTs,

and relatively less sensitive to KD. On the other hand, cov-

erage was least sensitive to the distribution clearance of

the drug between plasma and peripheral compartments

(CLDt ) and the distribution clearance of the target between

plasma and SoA compartment (CLTs), irrespective of the

method used. Likewise, the distribution clearance (CLDsÞ of

the drug between plasma and SoA compartment was found

to have minimal impact on coverage by the derivative-

based global sensitivity measure method. However, the

PRCC method scored it as a moderately sensitive parame-

ter. For the remaining two parameters, RatioT and thalfTp,

the impact was classified as low to moderate depending on

the method used. PRCC classified these two as having a

small impact on coverage, whereas derivative-based global

sensitivity measure categorized them as having moderate

impact. Overall, sensitivity analysis provided a global under-

standing of the sensitivity of target coverage to various

parameters.

Fixing sensitive parameters further reduces

uncertainty in target coverage predictions
GSA showed target coverage is most sensitive to TP0 and

thalfTs, thereby suggesting that including information about

either of these parameters in the model will reduce uncer-

tainty in coverage predictions. Generally, prior knowledge of

in vivo thalfTs is either nonexistent or challenging to obtain

through experiments. On the other hand, it is relatively

easy to measure baseline target concentration in plasma

(i.e., TP0Þ. Therefore, we fixed TP0 and repeated the uncer-

tainty analysis for all single-tissue data point (middle col-

umn) cases in Table 2 with >5% uncertainty (orange and

red cases) in coverage predictions at 1 mg/kg. We found

fixing TP0 reduced uncertainty in coverage predictions for 6

of 13 cases, albeit by only a small amount, as evident from
the color gradient (Table 3, third column). We also repeated

our uncertainty analysis after fixing thalfTp. Fixing thalfTp

reduces uncertainty in coverage predictions (more than after

fixing Tp0), especially in cases that represent an optimized

mAb (TP0 < KD � TS0 and KD < TP0 < TS0, case numbers
�24; Table 3, second column). This trend of reduction in

uncertainty after fixing TP0 and thalfTp also holds true for

treatment duration of 28 days (Supplementary Table S6).

Finally, although GSA showed KD to be moderately sensi-

tive, we did not perform a comprehensive analysis after fix-
ing it, as initial estimates are often based on in vitro

methods that depend on measurement technique and may

not be consistent with the in vivo estimate. Instead, we

selected case 1 as an example to demonstrate the impact of

fixing KD . Figure 4a shows fixing KD substantially reduces
uncertainty in coverage predictions when the baseline target

concentration in tissue is known. Notably, this reduction in

uncertainty was greater than that achieved after fixing

RatioT ; thalfTp, and TP0 (Figure 4b–d), thereby underscor-
ing the importance of obtaining an accurate KD measure-

ment. For all these parameters, inclusion of a second tissue

data point at end-of-treatment contributed marginally to reduc-

tion in uncertainty (Figure 4, third column).

DISCUSSION

Quantitative understanding of clinical endpoints and their

relationship to target coverage is fundamental to drug

development. For therapeutic areas, such as oncology or

immune-mediated disorders in which coverage require-

ments are generally unknown, dose selection and escala-
tion are primarily driven by safety (i.e., maximum tolerated

dose). Under this empirical paradigm, doses required for

efficacy may not be tested adequately and may be either

too low or too high. Furthermore, relationships among

exposure, coverage, efficacy, and safety signals may be
unknown, which could lead to suboptimal use of patients

and resources. To address these inefficiencies in the

absence of a biomarker, predicted tissue coverage could be
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Figure 3 Global sensitivity analysis identifies parameters that affect target coverage. (a) Partial rank correlation coefficients (PRCCs)
and (b) derivative-based global sensitivity measure (DGSM) quantify the sensitivity of coverage to various model parameters at 56
days after a 1 mg/kg i.v. treatment. A PRCC greater (less) than 0 signifies that target coverage increases (decreases) with increase in
the parameter.
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used to provide confidence that the mechanism has been

tested. A key challenge is whether one can trust tissue-level

predictions, when target levels have been measured only in

plasma and relevant tissue data is unavailable. To alleviate

this risk, we adopted a computational approach to under-

stand uncertainty in coverage predictions for any soluble tar-

get and this can be easily extended to include membrane-

bound targets. Of late, physiologically-based SoA models

are increasingly being used to characterize PK/PD data.10–12

However, to the best of our knowledge, a detailed analysis

of data requirements for such models is lacking. These mod-

els are reasonably complex with numerous parameters, and,

therefore, fitting them to limited data could result in signifi-

cant parameter uncertainty.27 This uncertainty may under-

mine model predictions related to target coverage and

subsequent dose selection. Suboptimal doses significantly

contribute toward cost-of-failure by increasing development

and opportunity costs. Assuming the proposed SoA model

reasonably characterizes underlying dynamics, our analysis

identifies important model features and minimal data require-

ments to increase confidence in model predictions.
Our analysis focused on mAbs, which, unlike lipophilic

small molecules, do not distribute extensively and rapidly

within tissues and are primarily limited to interstitial spaces.

Generally, clinically viable doses for mAbs range from 0.1 to

10 mg/kg.28 Irrespective of the absolute dose levels used

here, the key goal was to ensure a sufficient range of mAb

concentrations relative to target, and thereby a range of tar-

get coverage. In tissue interstitium, mAb concentration was

constrained to be lower than plasma, an assumption recently

validated by experiments that measured plasma and dermal

interstitial concentration of IL-17 and anti-IL-17 mAb (secuki-

numab) in healthy volunteers and patients with moderate to

severe psoriasis.3 The mAb concentrations observed in der-

mal interstitial perfusate of healthy volunteers and patients

with psoriasis were 23% and 35% of plasma levels, respec-
tively. The interstitium of most tissues, except skin, which
are important from a disease perspective, may not have a
distribution volume large enough to impart the biphasic PK
characteristic of mAbs.23 Hence, a tissue compartment signi-
fying “rest of body” was included to impart biphasic PK. This
“rest of body” nonspecific interstitium tissue volume equals
peripheral volume (3.1 L) reported for mAbs.23 In many
inflammatory disorders, only certain tissues are affected
(e.g., synovial joints in RA, gut in Crohn’s disease, and skin
in psoriasis). This does not prevent distribution of soluble tar-
gets to other tissues; however, their impact on disease
effects or target kinetics at SoA may be negligible. From a
model parsimony standpoint, selecting a tissue that is most
relevant as the SoA seems appropriate. Alternatively, for dis-
eases such as lupus, multiple organ involvement may need
to be considered, and, in such a scenario, a lumped tissue
interstitial volume could represent SoA. In various diseases,
select cytokines are elevated in specific tissues and their
high local concentrations are generally thought to be respon-
sible for the underlying inflammation. For example, high con-
centrations of TNFa, IL-1b, IL-8, and IL-6 have been
reported in the synovial fluid of RA and psoriatic arthritis
patients.29,30 Another study reported TNFa, TNFb, interferon-
a, interferon-c, and IL-8 levels in psoriatic lesional samples
were >10 times higher than normal heel skin.31 High TNFa
concentrations have also been measured in patients with
inflammatory bowel disease.32 To maintain mass balance,
the model assumes that cytokine degradation occurs either
locally through specific target interactions or systemically
through nonspecific clearance mechanisms in blood.33

Some model assumptions have been discussed above,
like target and complex, do not distribute to any tissue
except SoA; target is only synthesized in SoA; drug does
not impact target synthesis; and drug and complex are not
eliminated in SoA. These assumptions can be modified
based on the mechanism of action of the drug and/or addi-
tional knowledge about the target. For example, the existing
model can be modified to include additional mechanisms,
like target synthesis in blood and other diseased tissues.
However, unless data are available to inform fractional tar-
get synthesis in each compartment, such a model may
quickly run into parameter identifiability issues. Fraction of
target synthesis occurring in blood vis-�a-vis SoA will also
affect target flux between these compartments. Further, if
target concentrations were rapidly equilibrating, then this
model would reduce to a standard drug-binding model and
SoA compartment would be unnecessary from a model-
fitting perspective. For diseases such as RA and Crohn’s
disease, in which target concentrations are much higher in
SoA than blood/plasma,29,30 the current model structure
represents a parsimonious approach to describe such phys-
iological complexities. Model structure can also be modified
to include membrane-bound targets, wherein target and
complex distribution could initially be ignored. If targets are
expressed on cells that distribute to other compartment
(e.g., lymphocytes), then the model proposed here would
be appropriate. A relevant starting assumption for the mod-
el with a membrane-bound target would be that drug-target
complex in both plasma and SoA is eliminated at a rate

Table 3 Fixing model parameters further reduces uncertainty in target cover-

age predictions

1 mg/kg 10 mg/kg

Case 1 pt

1 pt,

thalfTp

1 pt,

Tp0 1 pt

1 pt,

thalfTp

1 pt,

Tp0

1 0.07 0.03 0.07 0.1 0.02 0.1

2 0.16 0.03 0.09 0.15 0.01 0.08

3 0.11 0.01 0.06 0.03 0 0.02

6 0.13 0.02 0.06 0.03 0 0.02

10 0.3 0.22 0.05 0.08 0.05 0.05

12 0.09 0.01 0.07 0.02 0 0.01

18 0.19 0.16 0.17 0.01 0.02 0.02

20 0.07 0.04 0.07 0 0 0

24 0.18 0.2 0.08 0.06 0.06 0.02

26 0.31 0.23 0.23 0.12 0.06 0.09

28 0.15 0.02 0.07 0.04 0 0.02

30 0.15 0.16 0.14 0.17 0.19 0.23

32 0.14 0.11 0.16 0.05 0.03 0.06

Heat maps depict the uncertainty in target coverage for selected cases

before (left column) and after fixing thalfTp (middle column) and TP0 (right

column). Selected cases are the ones that had >5% uncertainty in target

coverage with 1 tissue data point (baseline target concentration) for 1 mg/kg

i.v. treatment in Table 2. Colors have the same meaning as in Table 2.
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similar to free target. This assumption is rooted in the
knowledge that many membrane-bound targets are inter-
nalized and drug binding does not hinder internalization.
However, mechanism-based modeling of membrane-bound
targets has shown that complex could be eliminated at a
rate faster than free target.34 The true elimination rate of
complex would have to be determined through a model-
fitting process. For the SoA model, complex elimination in
tissue could impact drug PK and, in turn, be important to
determine experimentally.

Pragmatically, a certain degree of uncertainty with model
predictions is inevitable and therefore here an initial cutoff
of 5% coverage uncertainty was considered acceptable in

early development. However, significant uncertainty was
observed in tissue-level predictions in absence of tissue
data. When baseline target data in tissue was excluded
during fitting, at least 50% of 32 datasets resulted in highly
uncertain (>10%) coverage predictions (Table 2). An unex-
pected finding was that inclusion of baseline target data
addressed this uncertainty inadequately (i.e., 13/32 data-
sets still had highly uncertain coverage predictions). These
datasets were associated with slow protein turnover from at
least one compartment. When both baseline and end-of-
treatment tissue data were included, uncertainty in cover-
age predictions reduced significantly and a mere 3 of 32
datasets had moderate uncertainty (between 5 and 10%).

Figure 4 Effect of fixing a parameter on uncertainty in target coverage predictions. Target coverage predictions for case 1 in Table 1
with fixed KD (a), RatioT (b), thalfTp (c), and TP0 (d) for 1 mg/kg (blue) and 10 mg/kg (red) i.v. dosing. Left, middle, and right panels
are predictions for 0, 1, or 2 T tot

S data points.
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These observations suggest that when tissue data has not
been characterized adequately one could wrongly predict
target coverage for slow turnover targets.

Our analysis demonstrates that obtaining tissue biopsies
and quantifying target levels can provide critical information
on target coverage. Recently, baseline target levels in
accessible tissues, like gut35 and skin,36 have been quanti-
fied. For soluble targets secreted from cells, accessible
fraction is primarily localized to tissue interstitium with distri-
bution to vascular space. This presents unique but sur-
mountable challenges with regard to target quantification.
For techniques like open-flow microperfusion,3 drug and
target measurements are primarily a direct read of intersti-
tial fluid concentrations, whereas for tissue biopsy samples
they are measured in total tissue. For drugs and targets
that primarily reside in interstitial space, concentrations
obtained from total tissue should be corrected for biopsy
weight and interstitial volume, which is approximately one-
third to one-tenth for most tissues.4 If baseline and total tar-
get samples need to be assessed using different assays
due to lower limit of quantification and/or drug interference
limitations, then diligence in bridging both assays could
help mitigate issues related to assay differences. Potentially
one could conduct target spike-in experiments (drug na€ıve)
in vitro such that levels are above the theoretical lower limit
of quantification of both assays, and then determine wheth-
er the two assays can be bridged quantitatively. This bridge
would allow for inferring free target baseline concentrations
that would be consistent with total target assay. On the
other hand, membrane-bound targets, not included in this
work, are generally reported on a “number/cell” basis,
which can be combined with Avogadro’s number (6.023 3

10223 mol21) and number of target-expressing cells within
tissue to calculate an effective target concentration avail-
able in tissue interstitium for mAb binding. Unlike soluble
targets, mAb binding to membrane-bound targets does not
cause an increase in total target concentrations. Therefore,
an mAb with a long PK half-life does not reduce complex
elimination significantly relative to free target. In such
cases, unless cell occupancy can be confirmed in an
accessible compartment (e.g., peripheral blood) and used
as a surrogate for SoA coverage, baseline total target level
may be the only measure available to confirm model
predictions.

In many cases, obtaining multiple tissue biopsies may be
impossible due to physiological, technical, or ethical limita-
tions. In such cases, an SoA model may be used to pro-
spectively guide feasibility of achieving the required target
coverage. Thus, we explored additional strategies that
could reduce uncertainty in coverage predictions. GSA
identified model parameters that significantly impact uncer-
tainty in coverage predictions (Figure 3); thereby sugges-
ting that fixing certain parameters could reduce uncertainty.
Results from GSA can be method-dependent25 and, there-
fore, to increase confidence in our analysis we used two
established but different methods. Methods applied here
should be viewed as orthogonal approaches that guide next
steps toward fixing certain model parameters. Moreover,
GSA does not take into account experimental feasibility of
obtaining a parameter. For example, it showed coverage

predictions are sensitive to target turnover rates. Methods

exist for estimating protein turnover in tissues,37 however,

these are resource-intensive and require dosing of stable

isotope labeled amino acid and assessing its incorporation

into tissue proteins. By contrast, obtaining a plasma target

turnover rate is easier and for known targets the rate con-

stants can often be extracted from literature.38–40 In some

cases, clinical data on total target accumulation can be uti-

lized to estimate both target and complex turnover rates.41

In the absence of any information, in vivo studies with

recombinant proteins in preclinical species may be used to

estimate turnover rate, which can be allometrically scaled

to humans.
Without an end-of-treatment tissue measurement, fixing

thalfTp coupled with dose-ranging information (1 and

10 mg/kg; i.e., wide PK exposure) helped reduce uncertain-

ty in coverage predictions (Table 3). Fixing TP0, another

sensitive parameter, had minimal impact on reducing uncer-

tainty because we were already fitting TP0 within 7% error

in our previous uncertainty analysis (Table 2). By definition,

TP0 is the first data point for the time course of total target

concentration in plasma. Similarly, fixing RatioT (TS0/TP0)

will have minimal impact, as we already constrain it by

simultaneously fitting the time course of the total target

concentration in plasma and baseline target concentration

in tissue (1 tissue data point case). In a subset of scenarios

(cases 24, 26, 28, 30, and 32), fixing either parameter, thalf

Tp or TP0, did not reduce uncertainty. All these cases share

common features: mAb affinity to target is poor, target con-

centration (TP0 and TS0) � KD , and one of the target turn-

over rates is relatively slow (thalfTs or thalfTp 5 24 h). We

did not conduct a detailed analysis of this parameter space,

however, if one encounters such a system in which affinity

optimization is a challenge, then an end-of-treatment tissue

biopsy or a dose-ranging study providing a wide range of

PK exposures could be critical to inform tissue target

coverage.
In conclusion, we have shown that the SoA model is use-

ful for predicting target coverage in tissues in the presence

of necessary data and model parameters. In the absence

of biomarkers, this information is critical for ensuring the

mechanism has been engaged adequately and subsequent-

ly guiding clinical decisions. Our analysis also elucidates

basic tissue data requirements for successfully implement-

ing such a model for target coverage predictions. Finally,

alternative approaches for reducing coverage uncertainty

were also explored to account for scenarios in which target

measurement in tissues is impossible. However, it is recom-

mended that a serious effort should be made to understand

baseline levels of target in the relevant disease population.
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