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Abstract: Herein, we investigated the influence of two types of nanoparticle fillers, i.e., amorphous
SiO2 and crystalline ZrO2, on the structural properties of their nanocomposites with high-density
polyethylene (HDPE). The composite films were prepared by melt-blending with a filler content
that varied from 1% to 20% v/v. The composites were characterized by small- and wide-angle
x-ray scattering (SAXS and WAXS), small-angle neutron scattering (SANS), Raman spectroscopy,
differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). For both fillers, the
nanoaggregates were evenly distributed in the polymer matrix and their initial state in the powders
determined their surface roughness and fractal character. In the case of the nano-ZrO2 filler, the
lamellar thickness and crystallinity degree remain unchanged over a broad range of filler concen-
trations. SANS and SEM investigation showed poor interfacial adhesion and the presence of voids
in the interfacial region. Temperature-programmed SANS investigations showed that at elevated
temperatures, these voids become filled due to the flipping motions of polymer chains. The effect
was accompanied by a partial aggregation of the filler. For nano-SiO2 filler, the lamellar thickness and
the degree of crystallinity increased with increasing the filler loading. SAXS measurements show that
the ordering of the lamellae is disrupted even at a filler content of only a few percent. SEM images
confirmed good interfacial adhesion and integrity of the SiO2/HDPE composite. This markedly
different impact of both fillers on the composite structure is discussed in terms of nanoparticle surface
properties and their affinity to the HDPE matrix.
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1. Introduction

The study of the structure and properties of polymer nanocomposites is one of the
most important and interesting areas of materials science. This is because nano-sized
fillers allow for reaching a high total volume in the filler/matrix interfacial region while
preserving its relatively small thickness [1–4]. Hence, compared with traditional com-
posites, it is possible to alter the properties of the material in different ways, even at low
nano-filler concentrations.

Interfacial compatibility and adhesion are crucial for achieving the desired properties
of composite materials [5,6]. Typically, high interfacial compatibility and adhesion are re-
quired since they allow researchers to obtain fatigue-resistant materials of high mechanical
performance [7–10]. In particular, high interfacial compatibility and adhesion are key fac-
tors to achieve an effective transfer of the interfacial stress under mechanical load [7,9,11,12].
This in turn allows them to avoid undesired phenomena like the debonding of the filler
particles from the matrix [7,13] and delamination in the vicinity of nanoparticles [12,14,15].
One special case is that of nanocomposites with weak interfacial adhesion [16]. These mate-
rials often have a closed-cell cellular structure, formed by interfacial voids and low-density
regions. Since the presence of interfacial voids enables the accumulation of an electric
charge, such composites are often used as piezoelectric materials [16]. Several studies have
shown that interfacial adhesion depends not only on the mutual compatibility of the com-
ponents (i.e., the matrix and the filler) but is also influenced by the composite preparation
method and conditions. For instance, the composites prepared by melt blending with
different quenching rates showed substantially different levels of interfacial adhesion and
residual stress. From this standpoint, the level of interfacial integrity and adhesion appears
to result from the interplay of various factors and requires further investigation.

Over the interfacial region, the polymer matrix can be perturbed; in particular, polymer
chains can have different conformations, arrangements, packing types, and densities. The
size of the lamellae and the degree of crystallinity can be influenced as well. The problem
of how and to what extent the presence of the nano-sized filler alters the structure of the
polymer matrix is of particular importance for obtaining materials with tailored properties.
Even for the nanocomposites based on high-density polyethylene (HDPE), which are those
that are most studied, the reported results are frequently contradictory or show no clear
tendencies and relations. The types of nano-sized fillers applied so far for the preparation
of HDPE-based composites include carbon nanomaterials (e.g., graphene oxide, reduced
graphene, expanded graphite, glassy carbons, nanotubes [8,9,11,13,14,17–19]) particles
of inorganic oxides (e.g., Al2O3 [20], MgO [21], TiO2 [10]), metals (e.g., Cu [22]), nano-
clay [12] and organic nanoparticles [23,24]. These particles can have a different effect on
the degree of crystallinity, including significant increase [12,15], decrease [17], and low- or
no influence [10,25] on this parameter. Since crystallinity is the key factor responsible for a
composite’s application characteristics, additional fundamental studies on the influence of
the nanoparticles’ surface properties on the polymer matrix are required.

In this study, we investigated nanocomposite films prepared by filling the HDPE
matrix with two fillers (ZrO2 and SiO2). Nano-SiO2 is a common polymeric additive that is
successfully used as a filler in various fields [7,26]. Its polymer composites have excellent
dielectric properties [27], high optical transparency [28], resistance to weathering [29] and
abrasion [30]. Crystalline ZrO2 is known for its high chemical inertness and thermal stabil-
ity. Nano-ZrO2 is a very promising material for creating radiation-resistant materials [31]
with high mechanical and heat-shielding properties [32,33].

The problem of obtaining uniform dispersion of nano-fillers in a polymer matrix
remains complicated. The quality of the dispersion as well as the size/shape and concen-
tration of fillers are important for establishing the macroscopic properties of the resulting
nanocomposite materials [34–36]. These effects have not yet been sufficiently studied.

The aim of this study is to partially fill the knowledge gap on the impact of metal
oxide nano-fillers on an HDPE structure. The choice of ZrO2 and SiO2 as polymer fillers
was dictated by their substantially different surface properties and adsorption affinity
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toward HDPE chains. This set of filler particles made it possible to partially elucidate the
relationship between the surface properties of the filler and their impact on the structure
and morphology of the HDPE matrix. As we show, the selected nanoparticles change the
structure of the HDPE matrix in a completely different way. Based on this, we will classify
nano-ZrO2 and nano-SiO2 as “inactive” and “active” and show that such an attribution is
supported by the particle’s fractal characteristics.

2. Materials and Methods
2.1. Materials

Powdered high-density polyethylene (HDPE), identical to the one used in the work
of [37], was used as a polymer matrix.

As fillers, we used two types of metal oxide nanoparticles: α-SiO2 and ZrO2 (Sky
Spring Nanomaterials, Inc., Houston, TX, USA). The silica nanoparticles were amor-
phous [38] and 20~30 nm in diameter (specific surface area—S = 160 m2/g, density—
2.65 g/cm3). The ZrO2 nanoparticles were crystalline (monoclinic phase) [38], with sizes in
the range of 20~30 nm (specific surface area—S = 35 m2/g, density—5.68 g/cm3).

2.2. Nanocomposite Films Preparation

Polymer nanocomposite films of HDPE/α-SiO2 and HDPE/ZrO2 were prepared by
the following steps. First, a mixture of HDPE with the desired amount of the nanoparticle
filler (ZrO2 or SiO2) was prepared by melt-blending. Then, the mixture was subjected to
hot pressing for 10 min (at 165 ◦C and 15 MPa). The final step was rapid quenching in the
ice-water bath.

This approach, despite some drawbacks, like the limited mobility of polymer chains
even at the molten state [36], is versatile and can be applied to a variety of thermoplastic
polymers [39,40]. In addition, under carefully chosen conditions, it allows researchers
to obtain composites with desirable properties. The volume fractions of nano-SiO2 and
nano-ZrO2 in the composite were 1%, 3%, 5%, 10% and 20% v/v.

Pure HDPE films were used as a reference. The average diameter and thickness of
nanocomposite films were ~5 cm and ~80–100 µm, respectively.

2.3. Small-Angle X-ray Scattering and Wide-Angle X-ray Scattering

Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measure-
ments were performed using two spectrometers. The SAXS patterns of HDPE composites
with nano-SiO2 particles were obtained on a Rigaku X-ray instrument at MIPT, Dolgo-
prudny, Russia. An X-ray wavelength of λ = 1.54 Å was used, resulting in a momentum
transfer Q in the range of (0.006–0.5) Å−1, where Q = (4π/λ)·sin (θ/2) and θ is the scattering
angle [41].

The SAXS and WAXS measurements for HDPE and its composites with nano-ZrO2
particles were performed using a pinhole camera at the Institute of Macromolecular Chem-
istry CAS (Prague, Czech Republic). The momentum transfer (Q) range was 0.005—3.5 Å−1.
And Q = (4π/λ)·sinθ, λ (in the given case 1.54 Å) is the wavelength and 2θ is the scattering
angle [42–44].

2.4. Small-Angle Neutron Scattering

Small-angle neutron scattering (SANS) measurements were performed on the IBR-2
pulsed reactor on the YUMO spectrometer (JINR, Dubna, Russia) [45,46]. Experimental
parameters: (1) the temperature range was 25–120 ◦C [47], (2) the distances from the
sample to the detector were 5.28 and 13.04 m. The range of the scattering vector Q was
(0.006–0.6) Å−1.

Neutron scattering intensities in absolute units (cm−1) were obtained by correcting the
measured scattering spectra for transmission and sample thickness, background scattering
on a film substrate, and on a reference vanadium sample using the small-angle scattering
(SAS) software [48].
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2.5. Transmission Electron Microscopy and Scanning Electron Microscopy

Transmission electron microscopy (TEM) analysis of the nanoparticles was performed
on a Tecnai G2 F20 X-Twin high-resolution electron microscope (Eindhoven, Netherlands)
with an operating voltage of 200 keV. The nanoparticles were dispersed in ethanol under
pulsed low-power ultrasonication and then the suspension was dropped onto a formvar-
coated TEM grid.

The cross-sectional fracture of nanocomposite films and the dispersion quality of the
nanoparticles in the matrix were examined by scanning electron microscopy (SEM) using a
JEOL JSM-6490LV microscope (Peabody, MA, USA) operating at 10 kV. To avoid deforma-
tions on the examined surface, the nanocomposite films were cryogenically fractured in
liquid nitrogen.

2.6. Differential Scanning Calorimetry and Thermogravimetric Analysis

The thermal properties of composite films were analyzed using a NETZSCH 204 F1
Phoenix differential scanning calorimetry (DSC) Instrument (Selb, Germany). Samples of
approximately 5–8 mg were placed in an aluminum crucible (with a diameter of 6 mm
and a volume of 25/40 µL). For reference, an empty Al crucible was used. The DSC
instrument was programmed to execute two consecutive heating/cooling cycles (from
25 to 200 ◦C and from 200 ◦C to 25 ◦C) for all samples. All measurements were performed
in an argon atmosphere (70 mL/min) at a heating/cooling rate of 10 ◦C/min. Typical
thermal parameters, e.g., enthalpy of fusion (∆Hm), enthalpy of crystallization (∆Hc), and
the degree of supercooling (∆T = Tm − Tc) were calculated for both the first and second
cycle and were denoted with superscript “*” and “**”, respectively. The lamellar thickness
was calculated from the Gibbs-Thomson equation [49,50]:

lc =
2σe · 103

∆Hmρc

(
1− Tm

To
m

) , nm (1)

where To
m is the theoretical melting point of polyethylene (To

m = 145.7 ◦C) and Tm is the experi-
mental value; ∆Hm = 293 J× g−1, σe is the lamellar surface free energy (σe = 90× 10−3 J×m−2,
and ρc is the density of crystalline polyethylene (ρc = 0.94 kg × cm−3).

Thermogravimetric analysis (TGA) analysis was employed to determine the weight
loss of the nanoparticle samples and to confirm the actual filler content in the composites.
The TGA and differential thermogravimetric (DTG) curves were recorded using a TG 209
F1 Libra NETZSCH (Selb, Germany). About 10 mg of the sample was placed in an Al2O3
crucible (with 6.8 mm diameter and 85 µL volume). The nanopowder samples were heated
under an argon flow (20 mL/min) in the thermobalance under dynamic conditions, over
the temperature range of 30–900 ◦C at a heating rate of 10 ◦C/min. Here, the filler content
was assumed as the residual mass, at 900 ◦C.

2.7. Vibrational Spectroscopy

Raman spectra were collected with 473 and 633 nm laser excitation sources on a
Nanofinder 30 SOL Instruments spectrometer (Minsk, Belarus). Fourier transform-infrared
(FT-IR) spectra were recorded using a single-reflection Smart iTR attenuated total reflection
(ATR) accessory coupled to a Nicolet 6700 Thermo Scientific spectrophotometer (Lausanne,
Switzerland). To minimize band shifts and intensity distortion related to the nature of ATR
experiments, an advanced ATR correction algorithm implemented in OMNIC 9.2 software
was used.
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3. Results and Discussion
3.1. Characterization of the SiO2 and ZrO2 Nanoparticle Powders

First, we will discuss the small-angle scattering results for the nanoparticle powders.
The combination of both SANS and SAXS, due to different scattering length density (SLD)
values for X-rays and neutrons (Table 1), provides additional information on the size and
dispersion of nanoparticles.

Table 1. X-ray and neutron-scattering length densities (SLD) for polymer/filler complex.

Sample Density
(g/cm3)

SLD (Neutron)
(cm−2)

X-ray
(cm−2)

ZrO2 5.68 5.21 × 1010 43.1 × 1010

SiO2 2.65 4.19 × 1010 22.6 × 1010

Polyethylene
(semi-crystalline) 0.95 −0.340 × 1010 9.21 × 1010

Polyethylene (crystalline) 1.01 −0.361 × 1010 9.79 × 1010

Polyethylene (amorphous) 0.85 −0.304 × 1010 8.24 × 1010

H2O 1.0 −0.561 × 1010 9.44 × 1010

In the SANS and SAXS spectra of the pure nanoparticles, two power-law regimes,
Q−D, can be distinguished (Figure 1a–d). Here, D denotes the negative value of the
power-law exponent. According to Teixeira [51,52], the behavior of I (Q) at high Q values
(Q > 0.02 Å−1) describes the surface of aggregates, whereas at Q < 0.02 Å−1 it characterizes
their shape. The surface of the SiO2 clusters is described by D~3.8 (SAXS) and ~3.7 (SANS),
characteristic of a rough surface. In the case of the ZrO2 nanoparticles, the D values of
4.08 and 4.12 (SAXS and SANS, respectively) are close to the Porod law (Q−4) describing
scattering on a smooth aggregate surface (Table 2).

For small Q values (<0.02 Å−1), the X-ray scattering spectra are fitted, giving D the
values of 3.08 and 2.2 for SiO2 and ZrO2 nanoparticles, respectively. In the case of neutron
scattering, the respective D values were 2.65 and 2.12 (Table 2). In this Q range, the
scattering power-law Q−D with D < 3 is characteristic of the so-called mass fractals (ZrO2
case), whereas with 3 < D < 4 it describes surface fractals (SiO2 case).

Pair correlation functions P(r) for the X-ray and neutron scattering of nanoparticle
powders obtained by the program GNOM [53,54] are shown in Figure 1e,f. If one considers
the maximum at P(r) as the average distance between the particles and assumes that
the particles are aggregated, the estimated mean size of ZrO2 nanoparticles is 13 nm for
neutrons and X-rays. In the case of SiO2 nanoparticles, their mean size as deduced from
neutron scattering (~15 nm) is much smaller than that obtained from X-ray scattering
(~33 nm).

It is known that adsorbed water gives a sharp contrast to the surface of the aggregate,
due to its negative scattering density in the case of neutrons; it effectively increases the size
of the aggregates, due to the same effect of the scattering densities in the case of X-rays (see
Table 1). This leads to a strong shift of the maxima on the P(r) curves obtained for the SiO2
sample from the SANS and SAXS data (Figure 1e).

Note also that because of the “smoothing” of the SiO2 particles’ surface due to adsorbed
water, the Q exponents obtained from SANS are smaller than those from SAXS patterns.

Now, we will discuss the above experimental results. For ZrO2 nanoparticles, closely
similar shapes of pair correlations functions and values of D exponents for SANS and SAXS
measurements can be attributed to the fact that their surface is smooth, with only a low
content of hydroxyl functional groups, and it adsorbs only negligible amounts of water.
This is confirmed by supplementary TGA and FT-IR measurements, showing that the
intensity of the hydroxyl (OH) stretching band at ~3500 cm−1 [55] is small, and the weight
loss is only 0.8%, with a single peak in the differential thermogravimetric (DTG) curve
at a temperature of 84 ◦C, suggesting the presence of weakly adsorbed water (Figure 2).
The TEM image of the ZrO2 sample confirms that the particles are crystalline, and their
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surface is smooth. In addition, the particle size distribution, determined from TEM images,
is in fairly good agreement with those figures deduced from the SAXS and SANS data
(Figure 3).
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Table 2. Characteristic values of the D exponent in the scattering power-law Q−D for nanoparticle
powders.

Nanoparticle
SAXS SANS

Q < 0.02 Å−1 Q > 0.02Å−1 Q < 0.02Å−1 Q > 0.02Å−1

SiO2 3.08 3.82 2.65 3.72
ZrO2 2.21 4.08 2.12 4.12
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In the case of the nano-SiO2 particles, the intensity of the hydroxyl-stretching band,
due to the hydroxyl groups and adsorbed water, is much higher. This is reflected by a
higher weight loss of ~6.3% and a more complex shape to the differential thermogravimetric
(DTG) curve. Namely, a well-defined differential thermogravimetric (DTG) peak at ~98 ◦C,
due to weakly adsorbed water, is accompanied by a long tail extending to temperatures as
high as 650 ◦C. This highlights the presence of chemisorbed water and hydroxyl surface
groups, which are known to decompose at ca. 400 ◦C [56]. Here, the TEM images show that
the α-SiO2 particles are amorphous, of irregular shape, and with a highly rough surface.
The average size of the particles is in the range of 25–35 nm (Figure 3).
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3.2. Small-Angle X-ray Scattering of Pure HDPE

The small-angle X-ray scattering from pure high-density polyethylene (HDPE) was
well described by the paracrystalline model, in which the scattered intensity of a stack of
layers is determined by:

I(Q) = N · ∆ρ2 · P(Q) · S(Q)

P(Q) = 4 ·
π/2∫
0

(
J1(QR sin(φ))

QR sin(φ) ·
sin(QT cos(φ/2))

QT cos(φ/2)

)2
sin(φ)dφ

S(Q) = 1 + 2
N ·

N−1
∑

k=1
(N − k) · cos(kQd) · exp

(
−k (Qσ)2

2

) (2)

where N is the number of layers forming the finite domain, S (Q) is the structure factor, d is
the period distance, and σ is the parameter responsible for the degree of disorder of the
second kind, i.e., where the long-range order gradually decreases with increasing σ. For
simplicity, the form factor of one layer P (Q) is taken as a disk with the thickness as T and
the radius, R [57,58].

The fitting of the experimental data using Equation (2), together with the form factor
and the structure factor components, are shown in Figure 4.
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The average cluster size in the pure polymer is about Nlayer = 7 layers, with a thickness
of the crystallized part of lc = 8.6 nm, and a linear size of L ~2R = 15.4 nm. The thickness
of the amorphous layer between the lamellae is about la = 10.2 nm. Taking into account
the different densities of the amorphous (0.85 g/cm3) and crystalline phases (1.01 g/cm3),
the estimated crystallinity degree of HDPE is ca. 50% and is consistent with DSC and
WAXS results.

3.3. Effect of Filler Type and Concentration on the Crystallinity of the HDPE Matrix

In this article, we discuss the effect of adding both fillers on the crystal structure of the
HDPE matrix. The WAXS patterns of HDPE and its composites with ZrO2 are presented in
Figure 5. The WAXS pattern of pure HDPE shows strong (110) and (200) reflexes, which
can be assigned to the orthorhombic structure [59].

We note that the (200) peak overlapped with (110), a reflection of the monoclinic
ZrO2. The amorphous phase is represented by a broad peak at the Q range of ~1 to 2 Å−1.
With the addition of ZrO2 filler, the parameters of the (110) diffraction peak, such as
height, width, and position, practically do not change in the investigated range of filler
content (0–20% v/v). In addition, the fraction of the polymer in the crystalline state remains
relatively constant. This behavior qualitatively indicates that the lamellar size and the
crystallinity degree of HDPE were almost unchanged for all filler concentrations.

This result is confirmed by DSC and Raman analysis. The DSC thermograms of HDPE
and HDPE/%ZrO2 are presented in Figure 6a. Since the samples were rapidly quenched
in an ice bath, their crystal structure may have differed markedly from the structure
obtained by slow cooling. To analyze these differences, we performed two consecutive
heating/cooling DSC cycles. The first heating cycle gives insight into the actual state of
the sample, whereas the second one describes the state it achieves with a cooling rate of
10 ◦C/min. For a whole range of ZrO2 content, the peak melting temperatures (both Tm *
and Tm **) did not vary significantly (Table 3).
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The resulting lamellar thickness, calculated for the first cycle according to Equation (1),
is in the range of 6.0–6.7 nm and is in agreement with the SAXS-based paracrystalline model
(Equation (2)). Since the thickness of the lamellae in polyethylene is usually related to the
degree of crystallinity, it can be expected that the degree of crystallinity will be almost unaf-
fected by the addition of ZrO2 (up to 10% v/v). This is indirectly confirmed by the constant
ratios of the enthalpies of fusion/crystallization, i.e., for all samples ∆Hm */∆Hc * ~0.94
and ∆Hm **/∆Hc ** ~1. Some increase in the lamellar thickness and degree of supercooling
∆T * is observed only at the highest ZrO2 loading of 20%. Direct information on the
changes in crystallinity degree is provided by Raman spectroscopy. In the Raman spectra,
the presence of the amorphous phase is manifested by several broad peaks at ~865, 1069,
1302, and 1443.5 cm−1 (overlapped with the σ (CH2) modes of the crystalline phase). The
most prominent peaks, due to the crystalline phase, are at 1063, 1130, 1295, and 1416 cm−1.
For nanocomposite films, the relative intensity of the signals due to the amorphous phase
does not change with the addition of nano-ZrO2 [60].

Based on the above results, we classify the ZrO2 particles as “inactive” filler, i.e.,
virtually not influencing the crystalline structure of the HDPE matrix.

A radically different picture emerges for the nanocomposite films filled with silica
particles. Here, Tm ** is still constant but Tm * gradually increases with increasing the
nano-SiO2 content, and eventually Tm * > Tm **, at a filler content of 20% v/v (Table 3).
Such behavior proves the thickening of the lamellae, from lc = 6 nm (pure HDPE) to 8.3 nm
(20% v/v SiO2).

On this basis, an increase in the crystallinity degree is expected to occur with the
addition of SiO2 filler. In this case, we do not analyze the WAXS patterns since the signals
of α-SiO2 and the amorphous polymer phase are strongly overlapped. However, the above
assumption is directly evidenced by a gradual disappearance of the amorphous peaks
in the Raman spectra (Figure 7b). Indirect evidence is also provided by comparing the
relative changes in the enthalpy ratios: ∆Hm */∆Hc ** and ∆Hm */∆Hm **. Here, again,
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∆Hm **/∆Hc ** is constant and close to 1, whereas both ∆Hm */∆Hc ** and ∆Hm */∆Hm **
increase with an increase in the filler concentration.
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Table 3. The DSC melting and crystallization characteristics for pure HDPE and its nanocomposites. Here: ω—filler content,
Tc—crystallization temperature, Tm—melting temperature, ∆Hm—enthalpy of melting, ∆Hc—enthalpy of crystallization,
lc—lamellar crystal thickness, and ∆T—degree of supercooling.

ω, vol.
%

ω

mass.%
Tm *
◦C

Tm **
◦C

Tc *
◦C

Tc **
◦C

∆Hm *
J·g−1

∆Hm **
J·g−1

lc *
nm

lc **
nm

∆Hc *
J·g−1

∆Hc **
J·g−1

∆T *
◦C

∆T **
◦C

HDPE + %SiO2

0 0.0 129.8 132.8 117.4 117.3 −170.5 −203.2 5.9 7.3 187.9 184.3 12.5 15.5
1 2.7 129.8 133.0 117.2 117.2 −170.0 −204.8 5.9 7.5 196.3 197.6 12.6 15.8
5 12.7 130.7 133.6 116.8 116.8 −142.4 −171.6 6.4 7.9 169.4 171.0 13.9 16.8
10 23.5 131.1 132.8 117.1 117.1 −132.1 −150.0 6.4 7.4 153.7 154.1 14.0 15.7
20 40.8 134.2 132.4 117.2 117.3 −115.9 −107.7 8.2 7.1 106.2 106.2 16.9 15.2

HDPE + %ZrO2

0 0.0 129.8 132.7 117.4 117.3 −170.5 −203.2 5.9 7.3 187.9 184.3 12.4 15.4
1 5.7 130.2 133.2 117.2 117.1 −165.6 −187.4 6.1 7.7 176.6 167.2 13.0 16.2
5 23.8 130.7 133.2 117.2 117.2 −151.5 −174.0 6.3 7.6 161.2 157.6 13.5 16.0
10 39.7 130.1 133.0 117.2 117.3 −119.6 −146.2 5.9 7.5 132.4 131.8 12.9 15.7
20 59.7 131.7 134.1 116.3 116.5 −82.4 −96.3 6.7 8.1 91.78 90.3 15.4 17.5

*—the values obtained from the 1st heating and cooling cycles; **—the values obtained from the 2nd heating and cooling cycles.

In conclusion, SiO2 nanoparticles can be classified as “active”, i.e., capturing the
crystallinity degree of HDPE and acting as a nucleation agent in rapid quenching conditions.
This assignment/ascription is in agreement with previous studies showing the nucleation
activity of silica particles on poly(ethylene terephthalate) [61] and polypropylene [62].

This behavior is explained within a thermodynamic approach, as used by Eben-
gou [63], assuming the nucleating activity to be an adsorption-driven process, and directly
relating a reduction in the thermodynamic potential for nucleation with the interaction
strength between the adsorbed polymer chains and the particles’ surfaces.
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3.4. Small-Angle Neutron and X-ray Scattering of Polymer Nanocomposite Films

The SAXS and SANS complete scattering curves from HDPE/SiO2 and HDPE/ZrO2
in the 0–20% v/v at t = 25 ◦C are shown in Figure 8. In both cases (SAXS and SANS), the
respective values of the D exponents for the composites are closely similar to those of pure
nanopowders. This allows us to conclude that the surface roughness and fractal character
of the particles do not change and are determined by their initial state in the powders. In
addition, the scattering intensity contribution of the composites (1–20% v/v) scales fairly
well with the filler mass fraction in the composite (ϕ).

Some differences and similarities between SANS and SAXS patterns can be explained,
based on the SLD values (Table 1). Both SANS and SAXS can barely distinguish between the
amorphous and crystalline polymer phases. In the case of composites, the contrast “seen”
by SANS mainly comes from the differential SLD of the nano-filler and the polymer. Based
on that finding, the main contribution to the total scattering is from the filler. In contrast,
the scattering of the polymer matrix of the composite can be seen in SAXS experiments.

The addition of SiO2 nanoparticles to the polymer leads to the loss of correlation
between the lamellae (Figure 8a). At 3% v/v HDPE/SiO2, there is still a weak correlation
peak at the same value of the scattering vector Q. With a further increase in the composite
concentration from 5% or higher, the correlations between the lamellae disappear. Schemat-
ically, the structures of pure HDPE and its composite with SiO2 particles are presented in
Figure 9.

This result brings important new insights into the imperfections of the HDPE crystal-
lization process in the presence of silica nanoparticles [64]. As is known, silica particles
act as a nucleation agent, i.e., increasing the crystallization rate of HDPE. At the same
time, SiO2 particles strongly adsorb polyethylene chains, thus limiting the mobility of
the molecular segments. As a result, the rearranging of the segments requires additional
energy [64]. In rapid cooling conditions, the rearrangement of HDPE segments seems to be
suppressed and results in the disruption of lamellae ordering.

One noticeable phenomenon in SANS experiments is found by subtracting the scat-
tering intensity of the nanoparticles, multiplied by the ϕ factor from the total scattering
intensity of the corresponding composite. In the case of HDPE/SiO2, the resulting I (Q) is
constant, reflecting the scattering of the polymer matrix, whereas in the case of HDPE/ZrO2,
additional scattering appears. We attribute this additional scattering to the presence of
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voids, with a low density of polymer chains, that appear in the immediate proximity of
ZrO2 nanoparticles. They are quite large and reach the order of ~10 nm (according to the
spherical model fitting), which is comparable to the size of ZrO2 particles. It should be
noted that the presence of voids was reported for some HDPE composites [16] and are
assumed to be a result of poor adhesion between components and internal stresses induced
in the matrix during quenching [16,65].
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Such a difference in HDPE/SiO2 and HDPE/ZrO2 composites is in line with the
above-presented conception of “active” (SiO2) and “inactive” (ZrO2) fillers. Particularly
rough SiO2 particles act during crystallization as nucleation and adsorption centers.

Since the crystallization begins on the particles, rather than in the bulk, no cavity
zones are present. Indeed, the SEM cross-sectional image of the HDPE/SiO2 composite
shows that silica particles are built into the HDPE fibers and constitute an integral part of
the nanocomposite (Figure 10a).

In the case of ZrO2 aggregates with an inert and smooth surface, the crystallization of
the molten HDPE starts in the bulk polymer, and thus, the particles behave as a geometrical
hindrance to the growing crystallites. Here, the cross-sectional SEM image of HDPE/ZrO2
is sharp, with clearly visible particle edges and holes resulting from detaching the particles
and aggregates from the HDPE matrix upon the sample’s breaking (Figure 10b). This
suggests that ZrO2 aggregates are not well adhered to the polymer matrix and that the
integrity of the composite is poorer.
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3.5. Thermal Stability of the Polymer Nanocomposite Structure

The effect of in-situ annealing on the structure of the nanocomposite films in the
temperature range of 25 to 120 ◦C and filler contents of 3 to 20% (v/v) was investigated by
SANS. Representative scattering curves for HDPE/SiO2 and HDPE/ZrO2 composite films,
recorded at temperatures of 25, 80, and 120 ◦C, are shown in Figure 11.

For HDPE/SiO2 nanocomposite films, no structural changes were observed in the
investigated range of temperatures and filler concentrations. Similarly, no changes for
HDPE/ZrO2 at the lowest filler level (3% v/v) were detected on the size scale 1–100 nm
(0.006–0.5 Å−1) and temperatures 25–120 ◦C. Starting from a ZrO2 content of 5% (v/v), at a
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temperature of 80 ◦C, there is a transition in the SANS spectra. This observed change is
related to the collapsing of the low-density polymer zones that surround the ZrO2 particles
and is accompanied by a partial aggregation of the nanoparticles [66].
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A rough estimation of the changes in the ZrO2 aggregates can be obtained from the
Porod equation:

I(Q) = 2π
(

ρnanoparticle − ρpolymer

)
·Q−4 · (S/V) (3)

where ρnanoparticle and ρpolymer are the neutron-scattering densities of nano-ZrO2 and high-
density polyethylene (HDPE). S/V is the total area of the interface per unit volume of the
ZrO2 aggregate. The specific surface area (S/V) of ZrO2 aggregates after heat treatment at
80 ◦C decreased by 3 and 10 times for filler concentrations of 5% and 20% v/v, respectively.
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For a threefold decrease in the S/V ratio, the predicted increase in the aggregate size is by
a factor of 3 or 10, depending on the model used.

It should be mentioned that the structural transition is accomplished at a temperature
of 80 ◦C, and a further increase in temperature up to 120 ◦C does not lead to any change in
the size scale from 1 to 100 nm. This temperature is much lower than the melting point of
the polymer matrix (130 ◦C). Evidently, the observed transition is due to the α-relaxation
process. As known from NMR experiments, α-relaxation in polyethylene is related to
helical jumps, i.e., 180◦ flip-flop motions accompanied by a displacement of the chain by
one CH2 unit [67,68]. These motions occur even at room temperature (~10 jumps/s), but
a considerable jump rate of ~104/s is attained only at a temperature of 360 K (~87 ◦C).
At this temperature, the chain displacement is several nm per second and can occur be-
tween amorphous and crystalline regions. Such a picture is in good relationship with
the transition temperature range at SANS measurements and the dynamic of α-relaxation
of the neat HDPE sample from temperature-dependent dielectric measurements [69,70].
These transformations in the nanoscale level give a new insight into the changes in me-
chanical properties (e.g., tensile strength [71]) observed in some quenched composites after
mild annealing.

Since the silica particles act as the adsorbing and nucleating agents of HDPE crystal-
lization, the low-density regions in the vicinity of the nanoparticles are absent and, thus,
no transition is observed in the SANS spectra.

4. Conclusions

We studied the interfacial effects in HDPE-nanoparticle composite films, prepared
using two different filler particles: nano-ZrO2 and nano-SiO2.

For both fillers, we found that particle nanoaggregates were evenly distributed in the
polymer matrix, and their surface roughness and fractal character were determined by
their initial state in the powders.

We demonstrated that the surface properties of the nanoparticles have a primary
impact on the structure of the polymer matrix. SAXS and SANS data, supported by TEM
imaging, revealed that ZrO2 particles show mass fractal characteristics (D ~4.08, SAXS
and 4.12, SANS) with inert and smooth surfaces, whereas the SiO2 particles were surface
fractals (D ~3.8, SAXS and ~3.7, SANS) of irregular shape and developed surface area.
These properties allowed us to categorize the particles as “inactive” (ZrO2) and “active”
(SiO2) and describe their fundamentally different effects on the HDPE matrix.

In the case of nano-ZrO2 filler, the lamellar thickness and crystallinity degree remain
unchanged over a wide range of filler concentrations. We propose that, in the presence of
nano-ZrO2 filler, the crystallization of HDPE starts in the body rather than at the surface.
Here, the nanoparticles act as a geometrical hindering factor for the growing lamellae. As
a result, the particles have poorly adhered to the matrix, and zones of reduced polymer
density (i.e., voids of ~10 nm in size) surrounding the particles are formed. As evidenced
by the temperature-dependent SANS measurements, these zones collapse at a temperature
of 80 ◦C with the simultaneous partial aggregation of the nanoparticles. The phenomenon
is driven by polymer chain displacements related to the α-relaxation process.

Silica nanoparticles exert a completely different impact on the crystallization of HDPE
under rapid quenching conditions. We found that both the lamellar thickness and the de-
gree of crystallinity increase with an increase in the filler loading. Based on this finding, we
conclude that nano-SiO2 particles are “active” in HDPE crystallization, acting as nucleation
centers for lamellae growth. Since the crystallization starts on the particles’ surface, not in
the body, no cavity zones are present, and also no changes in temperature-programmed
SANS experiments are visible. Based on SAXS measurements, we found that the ordering
of the lamellae is disrupted even at a filler content of a few percent. This result provides
new insight into peculiarities in HDPE/SiO2 crystallization related to the limited mobility
of the molecular segments adsorbed on the particles.
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The present results allow a better understanding of the changes in the polymer matrix
in a presence of nanoparticles of different surface properties and can be used in composite
design. The different behavior of both fillers is expected to lead to different mechani-
cal and dielectric properties in the nanocomposites, and this will be the subject of our
further studies.
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