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Abstract

Variation in longitudinal control in driving has been discussed in both traffic psychology and

transportation engineering. Traffic psychologists have concerned themselves with “driving

style”, a habitual form of behavior marked by it’s stability, and its basis in psychological traits.

Those working in traffic microsimulation have searched for quantitative ways to represent

different driver-car systems in car following models. There has been unfortunately little over-

lap or theoretical consistency between these literatures. Here, we investigated relationships

between directly observable measures (time headway, acceleration and jerk) in a simulated

driving task where the driving context, vehicle and environment were controlled. We found

individual differences in the way a trade-off was made between close but jerky vs. far and

smooth following behavior. We call these “intensive” and “calm” driving, and suggest this

trade-off can serve as an indicator of a possible latent factor underlying driving style. We

posit that pursuing such latent factors for driving style may have implications for modelling

driver heterogeneity across various domains in traffic simulation.

1 Introduction

In any biological system, including human behavior, variability is the norm. Average behavior,

“ideal” forms, or population means may capture overall central tendencies, but to understand

the complexity and dynamical interactions of most real systems it is necessary to take into

account the fact that for any system of interacting agents capable of complex individual behav-

ior—be that birds in flock or motorists travelling down a freeway—real behavior rarely follows

a single, simple rule.

Such rules can provide deep insight into system properties, and describe the dynamics at a

level of detail that are sufficient for improving understanding and even deriving practical

applications. Nevertheless, models that make a simplifying assumption of population homoge-

neity have their limits. To make progress, the issue of heterogeneity needs to be addressed.

This is the situation currently in the domain of traffic flow modelling—a domain at the

intersection of physics (dynamic systems), engineering (transportation systems design) and

behavioral science (driver psychology and behavior). Here, we look a the problem of car
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following (CF), a core behavior in road traffic flow. A deep understanding of CF would have

important implications in alleviating congestion and improving traffic system performance.

CF is also a fundamental form of vehicle-vehicle interaction that needs to be understood to

better design autonomous vehicles that will need to interact with human drivers in mixed

fleets.

Traditionally, CF models used in traffic simulation have assumed a fleet of identical drivers,

modeled as a simple rule that associates their observations (such as distance to the leading

vehicle or current speed) to desired behavior (acceleration or target headway). The validation

of model parameters has typically been done by reference to an “average” driver. In recent

years, interest in heterogeneous driver modelling has been increasing, with several studies

addressing the problem [1–4]. In some commercial traffic simulation software the user is

given a choice to include randomness into the parameters of a particular CF model, however

the deviations are drawn per-parameter from a parametric distribution [5]. So, although the

concept of individual variability in “driving style” has been well established in traffic psychol-

ogy and engineering for decades [6, 7], these studies rarely overlap with each other or agree on

the terms of discussion.

Despite decades of theoretical and empirical work, the field of traffic psychology has failed

to converge on a clear and precise definition of the concept of “driving style”, and its psycho-

logical underpinnings and relation to important issues such as accident causation remain

debated. Work on high-level traffic psychology concepts could benefit from a more concrete

approach, such as direct performance measures and experimentally simple scenarios, which

are susceptible to rigorous computational modelling.

In this article, we investigate individual variation of car following dynamics, particularly

through the relationships between time headway, acceleration and jerk. Previous research has

been lacking a theoretical framework to discuss variation in observable CF dynamics, which is

something that Sagberg et al. [8] have recently proposed. We take their work as a starting

point. Our study differs from past research by drawing from theoretical as well as practical

considerations, and providing a controlled simulated driving task, where all participants drive

through the same maneuvers for an extended period of time. This kind of data set is good for

investigating between-driver differences, as it effectively controls for the differences in the

vehicle and the environment, which in this case are identical for all participants.

1.1 Driving style in traffic psychology

Within traffic psychology, the question of stable individual differences in how a driver chooses

to go about the business of normal everyday driving, “driving style”, has been the subject of

extensive discussion for decades. In a comprehensive review of the literature, Sagberg et al. [8]

find that the various proposed definitions share three common aspects:

1. driving styles differ across individuals or groups of individuals,

2. driving style is a stable, habitual feature in driving behaviour,

3. driving style is a choice, which many authors equate with a conscious preference.

The authors themselves omit the last criterion of consciousness, and define driving style as

“a habitual way of driving, which is characteristic for a driver or a group of drivers”. In this

article, we adopt their definition. According to Sagberg et al. [8], driving behaviour includes all

the actions taken by the driver in the course of the task. Driving style is a subset of this behav-

iour, marked by its stability and persistence. We interpret this to mean that—unlike driving

skill which is also a stable feature of driving behaviour that varies between individuals—driving
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style refers exclusively to routine behaviors that the individual repeatedly engages in. For

example, panic reactions in a sudden emergency would not be part of a driver’s “style”.

In traffic psychology, driving style is operationalized in terms of a whole host individual

preferences, such as speed control, time gap acceptance and thresholds for overtaking or merg-

ing into traffic, time headways (e.g. tailgating), and tendency to display emotions to other road

users or commit driving violations [8, 9]. The early studies on driving style concentrated more

on background factors, such as socio-economic history and personality [6], with more recent

studies using both self-report and both qualitative and quantitative observational measures

[10, 11].

Sagberg et al. [8] propose a distinction between global and specific driving styles. Here, a

global driving style is composed of all the specific styles that comprise the whole of the given

driver’s or group’s characteristic driving habits. Specific styles are determined by their domain,

e.g. overspeeding, tailgating, or jerky driving.

Empirical research has not yet addressed the question of whether these specific styles are

correlated, but Sagberg et al. suggest that they should be: a global style, e.g. “aggressive driving”

is a latent factor that will be expressed in specific situations as tailgating, honking the horn, or

accelerating hard from traffic lights.

A large part of the research has approached driving style as the search of such latent factors

in the hope that they in turn would be correlated with individual crash risk [12]. The goal here

trying to find means to identify the “accident prone” type, or other individual differences such

as sensation-seeking or aggressive personality traits that predispose people to behaviors that

are seen as violations of societally acceptable safe behavior. These underlying traits would then

be candidates for psychological intervention. (Driving style is here contrasted with driving

skill, which encompasses the perceptual, motor and cognitive skill at which the driver per-

forms the driving task [13]—and could also be a candidate of intervention, namely, driver

training).

While questionnaire-based studies to uncover these latent motivations and goals are abun-

dant, there is no consensus yet on the proper taxonomy of global or specific styles. According

to Sagberg et al. [8], relevant specific longitudinal control styles are speeding, jerky driving and

tailgating. Our primary interest here lies in habits concerning longitudinal control, a specific

style, and in particular longitudinal control in car following rather than free flow conditions.

Hence, from a traffic psychological perspective, our study focuses on tailgating and jerky driv-

ing habits. (The naming itself seems to take a normative stand in the “appropriateness” of

these behaviors—we will approach the study habits of longitudinal control purely from a

descriptive viewpoint and use the terms merely as legacy terms from traffic safety research).

Usually, shorter time headways have been associated with a record of collisions and traffic vio-

lations [14, 15].

1.2 Driving style classification for advanced driving assistance systems

and hybrid vehicles

Several observable measures (usually derived from velocity) have been used for driving style

classification for the purpose of developing vehicles themselves, with particular emphasis on

cruise control and fuel consumption [16]. “Driving style” in engineering literature is less well

defined than in psychology, and the definition varies greatly from paper to paper. Thus what is

in this section called driving style does not necessarily conform to the definitions of the previ-

ous section. However, it is useful to review some of the findings in this literature, as they relate

directly to the measures of interest in this paper.
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A report on a Field Operational Test for Intelligent Cruise Control [17] describes a method

of driver classification based on time spent in different parts of a normalized range-versus-

range-rate space. They use the tail ends of the respective distributions to classify drivers as

“ultraconservatives”, “planners”, “hunter/tailgaters”, “extremists” or, if no suitable classifica-

tion is found, as “flow conformists”. They also rank drivers based on a measure called conflic-
tion, which indicates time spent in the near region behind a leading vehicle.

Murphey et al. [18] proposed a four-category driving style classifier for the purpose of opti-

mizing fuel consumption. This online classifier looks at a driver jerk profile within a nine-

second time window and outputs a style classification to be used by a power management algo-

rithm. The final classification depends on the coeffiecient of variation for a particular time

window and a reference value (average jerk of the road type that the vehicle is on). Here, driv-

ing style is considered as transient behaviour and as such is not easily related to the concepts of

driving style as defined in the previous section.

Bellem et al. [19] have discussed acceleration and jerk as indicators of comfortability in

driving with the purpose of developing a driving style for autonomous vehicles. They devised

an experiment where maneuver-specific (e.g. acceleration from non-zero speed) metrics—such

as acceleration, jerk and quickness—were shown to differentiate between “comfortable”,

“dynamic” and “everyday” driving styles. These driving behaviours were cued by correspond-

ing instruction to the participants. The results suggest that the participant’s conception of

comfort is linked to verifiable physical measures.

Most often, the studies mentioned have concentrated on one measure. While these studies

are relevant to the discussion of driving style and driver heterogeneity, they lack an attempt to

study the interplay of several variables to describe variation in longitudinal control. The catego-

ries of classification are important for singular applications, but may be difficult to generalize.

1.3 Driver heterogeneity in traffic microsimulation

It’s been acknowledged since the very beginning of car following modeling that different driv-

ers and different vehicles can have substantially different car following dynamics, and that this

has effects on the traffic flow [7, 20]. In practice, most effort has been put in finding a single set

of parameters for a simulation of homogeneous drivers and vehicles and calibration results are

generally reported as a single set of parameters [21]. This is likely due to the homogeneous

case admitting to simpler derivation of analytical traffic stability results [1].

However, some recent work has more rigorously studied the heterogeneity and its results

on traffic flow. Heterogenous traffic population, especially a mixture of cars and trucks, has

been found to explain some of the complex traffic flow dynamics observed in congested traffic

[22]. Further studies have found that between-driver differences may be fundamental enough

to warrant different model formulations, not only different parameter values, to properly cap-

ture the variation [1, 2].

Kim and Mahmassani [3] investigated variability in CF models by looking at the correla-

tions between model parameters when calibrated per driver using the NGSIM dataset [23].

They also show numerically that these correlations should be taken into account when hetero-

geneous driver populations are generated in a simulation setting. Kim et al. [4] investigated

the same issue, and used the same dataset, but instead of studying parameter distributions

from independently calibrated datasets, presented a method for directly estimating the distri-

bution by assuming per-driver parameters to follow a multivariate normal distribution. They

too found significant correlations between the parameters.

Direct usage of CF model parameterizations has obvious benefits for establishing more real-

istic parameter distributions for simulation software. However, estimating parameters for
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modern CF models is a rather complex issue [24], and results based on them are dependent on

both the model and the estimation method used. The model specificity of the parameters

makes it rather difficult to generalize the results to e.g. traffic psychological theories and stud-

ies, which usually discuss the driving process using more direct physical measures.

Also, many of the recent results are based on relatively short trajectories recorded in normal

traffic, which makes it difficult to estimate how much of the parameter variance and correla-

tion is due to driver heterogeneity, and how much due to vehicle and driving situation hetero-

geneity. Pariota et al. [25] measured a large and representative sample of drivers using an

instrumented car, thus controlling for the vehicle-specific variation. They found substantial

variation between and within different drivers’ car following behavior, operationalized as esti-

mated equilibrium time headway and spacing. The between driver variation was found to be

substantially larger than within driver. However, due to lack of controlled environment, their

dataset didn’t admit to a more detailed study of per-driver driving style measures and their

correlations.

1.4 Aims of the study

It has been well established that individual differences in longitudinal driver behaviour occur,

and that they have an effect on traffic flows and are correlated to risky road behavior. While

the measures of acceleration, jerk, and time headway have been used to parameterize driving

style in particular contexts and for specific reasons, most studies use only one of those for clas-

sification and have no theoretical framework to build on or generalize the results in a compa-

rable way. Following Sagberg et al. [8], a hypothesis of their correlatedness can be formulated,

assuming one or more latent factors which underlie different driving styles. Furthermore, cor-

relations between CF model parameters have been observed, which can be taken to suggest

that this might be the case for physical measures as well.

We tested this hypothesis in a driving simulator, where 15 drivers drove in controlled car-

following conditions for an extended period of time. Measuring acceleration, jerk and time

headway, our aim was to discover the connection between these measures to provide an tenta-

tive account of the physical characteristics of longitudinal driving style.

2 Methods

2.1 Participants

15 participants (5 Male, 10 Female, mean age 31 years, SD = 8.26) took part in the study. The

participants were required to hold a valid driver’s license for a passenger vehicle (Finnish driv-

ing license class B), and have over 30 000km of self-assessed driving experience or to have held

a driver’s license for more than 5 years. Participants were recruited through personal contacts

and university mailing lists.

An informed consent to participate was obtained in writing from each participant before

starting the experiment. This was done in accordance with the instructions of the ethics com-

mittee in the form of a fixed-format consent form explaining the purpose of the study, the pro-

cedure, and intended use of the data (for scientific purposes only). The study was conducted

following the research ethical guidelines of Finnish National Advisory Board on Research Eth-

ics and Helsinki Ethical Review Board in the Humanities and Social and Behavioural Sciences.

As per the guidelines, ethical review for the experiment was waived, as the experiment didn’t

include any of the criteria that warrant for such review. Apart from e-mail addresses, no identi-

fying information was gathered in the study. The e-mail addresses were removed from the

data set in the first step of preprocessing and were stored in a separate file only on the data log-

ging computer and one workstation.
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After giving consent, the participants filled an electronic questionnaire with nine questions.

This included information about their age, gender, driving license class, driving experience

and habits of playing video games. The majority, 73% only had a passenger car driving license

(Finnish class B). The subject’s self-reported lifetime driving experience varied between 1000–

300 000 km, with gaming experience ranging from “none” to “daily”. The detailed background

information can be found in the S1 Table in the supplement.

2.2 Driving simulator

The driving simulator was located in the Traffic Research Unit, Faculty of Behavioral Sciences,

Uni. Helsinki. The experimental space was a small room which was closed at the time of exper-

imentation. The simulator consisted of a 55” screen (LG 55UF851V), driving game controller

with a steering wheel and pedals (Logitech G25) and an adjustable driving seat (Playseat Evolu-

tion Alcantara). The seat could be manually adjusted with sliders, allowing the participant to

choose a comfortable distance from the wheel. The exact viewing distance to the screen

depended on the participant’s body size and preference, but was generally within 80–90 cm.

This created an approximately 70 degree viewing angle to the 55” screen, which is the same as

the virtual angle of view used in the software. Simulated engine noise was presented through

the screen’s speakers. For a more detailed description of the driving simulator, see [26].

The driving simulator software was developed in-house and is available under an open

source license [27]. The parameters of the simulated vehicle dynamics were decided by infor-

mal pilot testing to give a comfortable compromise of good controllability but not overly ner-

vous responses.

2.3 Experimental design

The experiment consisted of a training phase and a car-following phase. The purpose of the

training phase was to familiarize the participant with the dynamics and dimensions of the vir-

tual vehicle. In the car-following phase all visual dials were removed from the screen and the

participant had to judge his own speed with no objective speedometer. A braking light was

present in the leading vehicle. Steering was disabled for the entire duration of the experiment,

and the participant controlled the vehicle only through the gas and brake pedals.

The driving environment consisted of a single road with two lanes, separated by a center

line. The right-hand lane was used for the experiment, with no oncoming traffic present. The

landscape consisted of a sand-like ground texture, with some rocks scattered in the scenery.

The textures and rocks provided for an optic flow pattern when the subject vehicle was mov-

ing, which aided the participants in determining their own speed. See screenshot in Fig 1.

In order to create a car-following scenario, a speed profile for the leading vehicle was

decided. Four speeds were chosen as the targets of the leading vehicle:

• 10 km/h: Very slow. Crawling speed.

• 30 km/h: Slow. Residential area speed limit.

• 50 km/h: Moderate. City limit.

• 80 km/h: Fast. Basic speed limit for non-motorway traffic in rural areas.

The entire course of the car-following phase consisted of a series of blocks. Each block

started and ended in a standstill, with a unique permutation of the four leader target speeds in

between. The entire car-following phase was formed by 24 blocks, representing the 24 possible

permutations of the four target speeds. Order of the blocks was randomized for each
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participant. To prevent participant fatigue, the series was divided into four block segments, in

between which the participants were allowed take a short pause.

The throttle and brake of the leading vehicle were controlled by a proportional-integral

controller, which was given an per-transition independently randomized target acceleration/

deceleration from the set of 1.5m/s2, 4.0m/s2 and 7.0m/s2.

As the leading vehicle reached a particular non-zero target speed, it stayed at that speed for

20 seconds with a ±5 second random deviation. When the vehicle came to a full stop between

the blocks, it remained stationary for 5 ± 2 seconds after the participant vehicle had come to a

full stop. The stochasticity was introduced to prevent the participant from being able to guess

when the next accelerating or decelerating maneuver was required.

The duration of the entire experiment was within 46–56 minutes and the car following task

analyzed amounted to approximately 30 kilometers of driving per participant.

The drivers were instructed to drive normally, “like driving on a highway”, and that while

colliding was not forbidden, if a crash should occur they would have to drive the current seg-

ment again and the experiment would be prolonged accordingly. Only one collision in total

occurred in the experiment, and the segment where it occurred was omitted from the analyses.

Although the participants could not see other cars than the one ahead, they were told that

they were driving in the middle of a queue, and that this was the cause of the fluctuation in

traffic. Finally, the participants were instructed to keep the sort of gap which “feels appropri-

ate” and that there was no chance of overtaking.

2.4 Analysis

The car following dynamics were operationalized using acceleration, jerk and time headway

for each subject. For acceleration and jerk we use their absolute values averaged over time. For

time headway, we use a geometric mean in order to curtail the influence of the “long tail” of the

distribution. For brevity, these variables are simply referred as mean acceleration, mean jerk,

and mean time headway. The subject means are calculated from the entire length of the

experiment.

Fig 1. Sample screen from the training phase.

https://doi.org/10.1371/journal.pone.0185856.g001
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Acceleration is also analyzed as a function of time. For this analysis, we treat the different

speed changes (e.g. from 50km/h to 80km/h) separately, and refer to them as transitions, or

by their endpoints in brackets, e.g. {50, 80}. The beginning of a transition is marked by the

onset of a new target speed for the lead vehicle. We consider only the first 15 seconds from

that moment. We also further categorize the individual pass-throughs of these transitions

based on the time headway the driver held at the start of the transition, dividing them into

four quartiles. The first quartile contains the shortest observed time headways and the fourth

one the highest.

The quartile-clustered time series are re-sampled and averaged to provide a graph that

represents the average response to lead vehicle speed change. This process is illustrated

in Fig 2, representing the first quartile of transition {30,50}, with raw data shown in the

background.

After inspecting the linearity between the subject means for mean acceleration, mean jerk

and mean time headway, we use simple linear regression to model the connections. To avoid

multicollinearity in having several correlated predictors and more importantly, to show that

the measures can be adequately represented with a single factor, we use Principal Component

Analysis (PCA) to validate the central claim of the paper.

Fig 2. The first quartile of transition {30,50}, i.e. with a start time headway < 2.16s. In colour: the raw acceleration data from 23

pass-throughs belonging to this transition and quartile. Black: the average acceleration profile of the pass-throughs. Zero point is the

moment when the lead car changes it’s target speed.

https://doi.org/10.1371/journal.pone.0185856.g002
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3 Results

Average acceleration of the following vehicle shows systematic variation when categorized into

quartiles by time headway. From the averaged time series in Figs 3 and 4 it can be seen that

generally the acceleration response decreases in magnitude as the time headway grows. This

also prolongs the response, leading the vehicle to catch up more slowly with the new stable

velocity, thus reducing jerk. Only two examples are shown here; the remaining speed transi-

tions can be viewed in the Figs A-L in S1 File, in the supplementary information.

On subject mean level, the results show a clear relationship between time headway, acceler-

ation and jerk. From Fig 5 it can be seen that the measures correlate with each other and the

correspondence is highly linear. An enlarged view of mean time headway vs. mean jerk is pro-

vided in Fig 6.

Quantitative regression results for acceleration and jerk vs. time headway are shown in

Table 1. From Fig 5 and the tabulated results it is evident that each measure predicts the others

well, as mean time headway explains 66% and 68% of the variances of mean acceleration and

mean jerk, respectively. The highest correspondence is between mean acceleration and mean

jerk, with R2 = 0.92. Slopes of the regressions are significant at p< 0.001.

Fig 3. Average acceleration of the following vehicle in speed transition 50km/h to 80km/h. The coloured curves represent quartiles based on time

headway at the start of the transitio. The dotted lines are the three different acceleration profiles of the lead vehicle. For this transition, the quartiles (in

seconds) correspond to Q1 < 1.98, Q2 = {1.98, 2.90}, Q3 = {2.90, 4.12}, Q4 > 4.12. All curves have been smoothed by a Gaussian filter, with sigma

corresponding to 0.5s. For other transitions see supplementary figures.

https://doi.org/10.1371/journal.pone.0185856.g003
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In order to test whether the measures can be reduced to a single dimension, a Principal

Component Analysis (PCA) was performed. The PCA reveals that the first component

explains 91% of all between-subjects variation in these measures. The second component

explains 7%. This suggests that most across-driver variation in time headway, acceleration and

jerk can be attributed to variation in single latent “driving style” factor. Details, including load-

ings, of the PCA can be found in the supplements (Tables A-C in S2 File).

Lastly, we investigated correlations between the physical measures and background infor-

mation. The correlations are generally small, with the largest ones found between age and

mean jerk, mean time headway and the first PCA component (PCA1). Correlation between

the second PCA component (PCA2) and driving distance in the past year also reached statisti-

cal significance at CL 95%. Full results can be seen in Table 2. Gender differences for PCA1 are

not significant in our sample (Mann-Whitney U = 20.0, n1 = 5, n2 = 10, p = 0.29).

4 Discussion

The results show a clear trade-off between jerky driving and time headway for the participants.

On average, drivers opt either to match the leader’s speed at close distance, necessitating more

intensive maneuvers when the leading vehicle accelerates or decelerates, or to stay further

Fig 4. Same as Fig 3, in a decelerating transition (from 80km/h to 30km/h). The quartiles (in seconds) correspond to Q1 < 2.12, Q2 = {2.12, 3.41},

Q3 = {3.41, 5.31}, Q4 > 5.31. For other transitions see supplementary figures.

https://doi.org/10.1371/journal.pone.0185856.g004
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behind and regulate their speed in a more “calm” manner. This main finding supports the

notion that the indicators of jerky driving and tailgating as outlined by Sagberg et al. [8] are

reflecting a common factor. This is in line with their assumption of correlatedness of specific

driving styles.

Fig 5. A pair plot of the relationships between mean acceleration, mean jerk and mean time headway and their distributions. The dots

represent subject averages, with frequency distributions of the measures on the diagonal.

https://doi.org/10.1371/journal.pone.0185856.g005
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We propose that the correspondence between time headway and jerky driving reflects a

trade-off that can be interpreted as an “intensity-calmness” parameter of driving style, i.e. the

psychological component. We prefer to use the term “intense” instead of “aggressive”, as

aggressiveness in traffic psychology literature most typically refers to an emotional state or

trait, characterized by feelings of anger and socially hostile behavior. Instead, intensity is used

to describe only the observed driving behavior, and may be a product of several psychological

mechanisms.

The latent structure of any global driving style is at present unknown, as shown by the vari-

able results of questionnaire-based studies [11, 12]. Questionnaire-based studies reveal only

Fig 6. Enlargement of the third panel in the middle row of Fig 5, showing mean time headway vs. mean jerk. The dots represent subject

averages. Additional figures, in which data is divided to accelerating and decelerating conditions is provided in the supplements (S1 Fig).

https://doi.org/10.1371/journal.pone.0185856.g006

Table 1. Regression results between direct measures.

Intercept a Slope b F R2

Mean time headway vs. mean acceleration 9.59 -7.39** 25.01** 0.66

Mean time headway vs. mean jerk 7.93 -3.59** 27.46** 0.68

Mean acceleration vs. mean jerk 0.25 0.45** 151.9** 0.92

**p < 0.001

https://doi.org/10.1371/journal.pone.0185856.t001
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things that the participants can introspect and wish to state, and if the results seem contradic-

tory, then it is best to turn to more objective measures. In any case, they are more easily put to

use by traffic simulation. It is however also important to engage in discussion about the under-

lying psychological mechanisms concerning driving style.

The influence of driving experience to our measures was found to be small or non-existent,

which could indicate that the differences are not a result of skill difference, but rather a learned

preference. Moderate correlation between the second principal component and self-reported

driving experience could be hypothesized to indicate differences in skill leading to “deviation

from the trade-off line”, but our participant sample isn’t large enough to make such conclusion.

A similar caveat should be recognized for gender and age, as our sample was predominantly

female (66%) and fairly young (mean age 31 years). Both variables are known to affect driving

behavior, with unsafe attitudes and risky driving often associated with males and young people

[15, 28]. While we found moderate correlations between age and the physical measures,

including the first PCA component for “intensity”, the evidence is not strong enough to indi-

cate a robust connection. Replicating the study with a larger, more diverse sample might reveal

a more convincing result. The data does not support evidence of gender differences; scatter

plots where participants have been differentiated by gender can be viewed in the S2 and S3

Figs in the supplement.

4.1 Psychological mechanisms of driving style

One possible contender for the underlying mechanism for the trade-off is a difference in

“mental effort” that drivers allocate to the driving task. A car following study with very similar

setting to this article found that drivers strongly adapt their headway to attentional demands

[26], with similar links between headway control and attentional impairment having been sug-

gested earlier [29, 30]. To consistently keep a short headway, the driver has to track the leading

vehicle’s dynamics quite accurately, as otherwise the headway drifts to either a larger value, or

more importantly, leads to a crash. Conversely, with a longer headway, or “time margin”, it

takes larger deviations from the leading vehicle’s speed for the margin to get too small. Closer

tracking of the leading vehicle quite clearly demands more effort. In car following model litera-

ture such trade-off has been established from the very beginning in that higher “sensitivity”

(acceleration magnitude) requires more “attention” (shorter reaction time) if the driving is to

stay stable [7].

The theoretical discussion of speed control in traffic psychology has largely centered around

risk and the mechanisms that allow drivers to keep the risk level low enough not to crash,

while accepting some risk in order to accomplish speedy travel [31]. In a later synthesis by

Fuller [32] the concept of risk was replaced by analyzing the driving task as a trade-off between

“driving task demands” and “driving capability”. In our experiment the task’s demand can be

largely reduced to leading vehicle behaviour and headway control, and the results can be

Table 2. Spearman correlations between measures and background measures. Driving distances are self-reported.

Lifetime driving distance Driving distance in the past year Age Gaming frequency

Mean time headway -0.20 -0.28 0.53* -0.12

Mean acceleration -0.01 0.11 -0.48 -0.10

Mean jerk 0.04 -0.06 -0.52* -0.07

PCA Component 1 0.12 0.01 0.53* <0.01

PCA Component 2 -0.33 -0.52* -0.04 0.24

*p < 0.05

https://doi.org/10.1371/journal.pone.0185856.t002
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interpreted that drivers indeed modulate the task demands according to their driving capabil-

ity. Furthermore, in this interpretation the capability doesn’t seem to be dominated by driving

skill, but a choice to allocate less mental and/or physical effort to the task.

The theories of risk which aim to explain how such trade-off gets established have some-

what different views on the role of risk in speed control. In what are usually called “target-

risk theories” drivers continuously assess the risk in the situation and adapt their behavior

to stay at a some subjective non-zero risk level [33–35]. In our experiment this would mean

that the drivers select a risk level, which is kept constant by continuously adapting the

headway.

The “zero-risk theory” disagrees with this view and argues that drivers habituate to different

preferred safety margins (such as time headway or time to line crossing), which become “nor-

mal” for them, and any crash risk associated with the particular habitual choice of margins will

not be subjectively experienced [36, 37]. An extension of the zero-risk theory [38] further

notes that while keeping safety margins within a habituated “comfort zone”, drivers also con-

trol accelerations within comfortable limits. In this framework, the space and time margins

and accelerations the participants opt to maintain in our simulator experiment could reflect

these habitual values.

The heterogeneity among driver-vehicle systems in terms of longitudinal speed control

could and should be decomposed into a “psychological component” (probed by our experi-

ment where the vehicle dynamics were identical for all participants), a “vehicle” component

(e.g. differences between truck and passenger car driving) and an “ambient” component (visi-

bility, slippery roads). This psychological component would correspond to what in traffic psy-

chology is referred to as driving style.

4.2 Implications for traffic simulation

The suggested implication that this discussion has on modelling heterogeneous drivers for

traffic simulation is simple: With a more general description of inter-driver differences, one

can begin to formulate model parameters which affect driver heterogeneity across different

maneuvers.

It is by now well known that driver heterogeneity affects traffic flow [1, 2, 22]. Some recent

work has also shown that car following model parameters correlate when calibrated per-driver

and that this covariation should be taken into account when modeling driver heterogeneity in

simulation studies [3, 4]. This is an important and interesting finding and will hopefully be

reflected in future model development.

The usual approach to estimating the parameter distributions has been to calibrate car fol-

lowing models per-driver to trajectory data, which has practical benefits, but the results are

problematic to generalize across models and data sets. Establishing a more parsimonious and

“model independent” driving style parameterization could be used to generalize driver hetero-

geneity results across models and across traffic situations. We propose that, alongside model-

specific parameter studies, driver heterogeneity should be also studied using direct measures

in order to establish more general, quantitative understanding of how driver, vehicle and situa-

tion dependent factors are exhibited in more specific driving tasks.

Although providing strong and perhaps more generalizable results, the clear downside of

direct measures is that they do not translate to modelling efforts in a trivial manner. To be

usable in microsimulation models, future work should study how the driving style can be sys-

tematically related to such mechanistic models and their parameterizations. Also the global

driving style hypothesis predicts more generally that the style should be reflected in variety of

driving behavior, such as gap acceptance, curve negotiation and lane changing tendencies.
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4.3 Limitations of the study

In general, the veridicality of a driving simulator can not be guaranteed without comparison to

on-road studies. Nevertheless, our experiment was kept at minimal complexity and the partici-

pant was not presented with extra tasks or more information that is available to a driver of a

real vehicle. In addition, the task was framed by the instruction to resemble real driving to

prime the participant into using prior knowledge about driving on a highway.

Nevertheless, the possible influence of simulated rather than real driving to the results can

not be ruled out. In understanding the task, drivers may adopt a different mindset than in the

real world. Video games often require the player to find an optimal solution to the task at

hand, and the simulator could have cued behavioral patterns more reminiscent of gaming

experience. If, contrary to instruction, the participant understood the task to be “follow the

leader as closely as you can”, the result might end up in the the small-gap, high-jerk part of the

scale. Conversely, if the participant is trying to optimize for not having to stop or slow down

and reasons that the leading vehicle behaves erratically, an unrealistically large-gap, low-jerk

strategy might occur. However, the dispersion of the participants along the trade-off axis is

quite even, with little extreme behaviour observed. The described behavioral extremes are also

valid for real driving.

The trade-off we observed in our experimental setting concerned between-subject varia-

tion, and can’t provide information on whether such trade-off occurs within-subject, for

example in response to hurry or difficult driving conditions.

We also acknowledge that the magnitude of accelerations and decelerations displayed by

the simulated car may be excessive compared to real driving. Because the participants sat still

in a closed room, they did not experience a vestibular or somatosensory response, which are

produced by real-world accelerations of the body. The kinaesthetic sensations are highly

important in judging one’s own acceleration in real driving, to the extent where decoupling

visual and vestibular stimuli may cause motion sickness.

While we believe that the sample size is sufficient in demonstrating the existence of a rela-

tionship between choice of acceleration, jerk and time headway, it is possible that a larger

sample may have revealed more robust correlations between the observed measures and back-

ground information, e.g. driving experience. It is unlikely that the size of the sample is ade-

quate for making population-level estimates of the parameters of the trade-off line.

5 Conclusions and future directions

In this study we have demonstrated a clear relationship between time headway, acceleration

and jerk at the subject level. If this dependency truly serves as an indicator of “global driving

style”, as has been discussed, it would be useful to investigate whether it extends to other

domains. Visual sampling rate might be a good candidate for future investigation, as closer fol-

lowing distances make it increasingly risky to drive without paying attention to the leader.

Considering visual sampling behavior also raises the question of lateral control. Most models

of visual control of driving deal mainly with lateral control (for reviews see [39, 40]). This

experiment did not have lateral control, but including it in the future could help in integrating

visual control models and car-following models. And should the global driving style of an indi-

vidual turn out to extend to lateral control, lane changing, or curve driving, then this would be

an interesting and important result, bringing further integration between the engineering and

traffic psychology literatures.

We did not try to correlate the “intensity” of driving style to more traditional psychological

measures such as personality, sensation seeking, extraversion or self-reported driving incidents

or accidents. This would be an interesting aspect to study in the future, as these connections
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have been long pursued in traffic psychology. As noted above, it seems plausible that a connec-

tion between driving intensity and accident risk exists, especially if coupled with attentional

variation or mental effort. It is probable, however, that a detailed explanation of accident risk

would need to take into account the driver’s skill as well as driving style—habitual driving pat-

terns alone are likely not sufficient for accurate prediction of risky driving. Even so, we would

contend that at the very least, directly observable behavioral measures can provide new infor-

mation and ultimately contribute to predicting risky behavior.

Another interesting question to study would be the effect of both situational factors and the

vehicle with respect to these results. One might presume that participants might change their

behaviour if pushed to “hurry” or “slow down”, or do anything else which constricts their free-

dom to self-determine the task.

Perhaps the largest undertaking is, however, to establish a clear connection between direct

measures and the parameters of CF models. Given the potential benefits of looking at direct

measures, this could include reformulating the models, or at least demonstrating that the sim-

ulated driver population reflects known relationships and obeys their boundary conditions.

In summary, this article has made an effort to tie together discussions of driver variability

in both psychology and engineering, and demonstrated that relevant measures in longitudinal

speed control vary together—supporting the idea that one or many latent variables underlie

habitual driving.

Supporting information

S1 Table. Participants’ background information. Table describing the relevant background

information collected on the 15 participants. Driving experiences are self-reported estimates,

with 8 discretized categories for lifetime experience (from “Less than 1000 km” to “Over 1 000

000 km”) and 9 categories for the last 12 months (from “None” to “Over 50 000 km”).

(PDF)

S1 File. Figs A-L. Per-transition average acceleration figures. For completeness, we provide

figures for all the per-transition average accelerations.

(PDF)

S2 File. Tables A-C. PCA details. Details of the Principal Component Analysis for variables

containing subject averages (N = 15)—mean acceleration, mean jerk and mean time headway.

They include eigenvalues, eigenvectors and the loadings for each component.

(PDF)

S1 Fig. Jerk vs. time headway—Accelerating and decelerating case. These figures represent

the linear fit for the accelerating and decelerating cases for the subject averages of jerk and

time headway. The lines are Ordinary Least Squares (OLS) fits along with their confidence

intervals at CL 95%.

(PDF)

S2 Fig. Mean jerk and mean time headway with gender. Scatter plot showing mean time

headway on the x-axis and mean jerk on the y-axis. Male participants in orange, females in

green.

(PDF)

S3 Fig. First two PCA components with gender. Scatter plot showing the first two PCA com-

ponents, with gender of the participants differentiated by colour. Should the two groups form

distinct clusters, one would be able to see them here. No such pattern arises with this amount
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