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Abstract

Many fundamental human behaviors contain multiple sequences performed to reach a desired outcome, such
as cooking. Reward is inherently associated with sequence completion and has been shown to generally en-
hance cognitive control. However, the impact of reward on cognitive sequence processing remains unex-
plored. To address this key question, we focused on the rostrolateral prefrontal cortex (RLPFC). This area is
necessary and exhibits increasing (“ramping”) activation during sequences, a dynamic that may be related to
reward processing in other brain regions. To separate these dynamics, we designed a task where reward was
only provided after multiple four-item sequences (“iterations”), rather than each individual sequence. Using
fMRI in humans, we investigated three possible interactions of reward and sequential control signals in
RLPFC: (1) with the visibility of sequential cues, i.e., memory; (2) equally across individual sequence iterations;
and (3) differently across individual sequence iterations (e.g., increasing as reward approaches). Evidence from
previous, nonsequential cognitive control experiments suggested that reward would uniformly change RLPFC
activity across iterations and may depend on the visibility of cues. However, we found the influence of reward
on RLPFC ramping increased across sequence iterations and did not interact with memory. These results sug-
gest an active, predictive, and distinctive role for RLPFC in sequence monitoring and integration of reward in-
formation, consistent with extant literature demonstrating similar accelerating reward-related dopamine
dynamics in regions connected to RLPFC. These results have implications for understanding sequential behav-
ior in daily life, and when they go awry in disorders such as addiction.
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Significance Statement

We daily perform multiple sequences to achieve rewarding goals, but little is known about how control of
these sequences and reward information interacts in the brain. The rostrolateral prefrontal cortex (RLPFC) is
necessary to perform sequential tasks and contains reward-related signals, making it a key potential site of
integration. We designed a human fMRI experiment to test three possibilities for how reward and sequential
control processes may interact: (1) through a nonsequential process; (2) uniformly across sequences; (3)
nonuniformly across sequences. We found that reward shows greater interaction with sequential control dy-
namics in the RLPFC as the ending reward approaches. These results provide insight into the function of
RLPFC and how rewards are integrated into temporally extended control processes.
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Introduction
A hallmark of goal-directed behavior in everyday life is

the performance of sequential tasks to reach a reward.
For example, when cooking, a series of tasks, such as
chopping, adding ingredients, and stirring, must be moni-
tored and executed before sitting down to a satisfying
meal. Completing these tasks requires cognitive control
over items in the progression (“sequential control”).
Progress has been made in understanding how rewards
generally enhance nonsequential cognitive control behav-
iors and neural dynamics (Braver et al., 2014; Botvinick
and Braver, 2015; Yee and Braver, 2018; Chiew, 2021),
but how rewards may modulate sequential control proc-
esses remains an open question.
Sequential control and reward both underlie dynamics

in the rostrolateral prefrontal cortex (RLPFC; also referred
to as anterior prefrontal cortex or lateral frontal polar
cortex). Human functional magnetic resonance imaging
(fMRI) and transcranial magnetic stimulation (TMS) experi-
ments have shown that RLPFC is necessary for sequential
control and monitoring (Desrochers et al., 2015, 2019).
In nonsequential tasks, RLPFC tracks reward trends
(Kovach et al., 2012), demonstrates increased task-re-
lated activity with increased reward (Pochon et al., 2002),
and correlates with individual differences in reward activa-
tion (Locke and Braver, 2008). Thus, RLPFC is an ideal ini-
tial focus for examining dynamics in a network integrating
reward information with sequential control.
The RLPFC also shares key connections and similarities

in dynamics with regions and reward-related neurotrans-
mitters. In this area, activity increases (“ramps”) from the
first to the last position of the sequence (Desrochers et al.,
2015, 2019). Other reward-related brain regions such as
the anterior cingulate cortex (ACC), striatum, and ventral
tegmental area (VTA) show ramping neural activity as re-
wards approach (Totah et al., 2013; Ma et al., 2014; Wang
et al., 2018) and dopamine concentration increases
(Howe et al., 2013; Hamid et al., 2016). RLPFC is anatomi-
cally connected to these (Desrochers and Badre, 2012;
Haber and Behrens, 2014; Coenen et al., 2018) and other
reward processing regions such as the orbitofrontal cor-
tex (Thiebaut de Schotten et al., 2012) and ventromedial
prefrontal cortex (Haber and Behrens, 2014). Similar

dynamics in RLPFC and connected reward-related re-
gions further raises the potential for interaction of proc-
essing-related activity within RLPFC.
Typically, the influence of reward is studied in associa-

tion with a single action or event. In the less frequent sit-
uation where reward is studied in conjunction with
sequences, it often occurs at the end of a single se-
quence, making the effects of reward and sequence com-
pletion inseparable. Therefore, to disentangle the effects
of reward and sequence on RLPFC activity we designed a
task, described in further detail below, that required par-
ticipants to complete multiple four-item sequences before
receiving reward. We term a single instance of a four-item
sequence as an “iteration.” Participants performed sev-
eral iterations of the same sequence (e.g., cutting up mul-
tiple items while cooking) to obtain reward. With this
paradigm, we examined the interaction between reward
and sequence processing signals in the RLPFC.
Reward and sequential control dynamics could interact in

several ways across multiple sequence iterations. First, re-
ward effects could be uniform but nonspecific to sequence
iterations. For example, several memory processes influenced
by reward have been localized to RLPFC (Shallice et al.,
1994; Christoff et al., 2001; Braver and Bongiolatti, 2002;
Shigemune et al., 2017). Second, reward may have a uniform
influence across items within individual sequences. In nonse-
quential tasks, RLPFC exhibits tonic (Beck et al., 2010) and in-
creasing (Chiew et al., 2016) reward-related activity changes.
Third, rewardmay have an influence that is nonuniform across
sequence iterations (e.g., increasing as reward approaches).
Serial behaviors (Braun et al., 2018) and computational model-
ing (Ott et al., 2020) suggest that reward information represen-
tation changes as temporally distant rewards approach.
Further, dopamine concentrations in the striatum show accel-
erating changes as reward approaches (Howe et al., 2013),
but only in regions directly involved in task completion (Hamid
et al., 2021). Thus, the nature and distribution of potential in-
teractions has consequences for how RLPFC controls se-
quential processes in the presence of reward.
To test these alternatives, human participants monitored

multiple sequence iterations under differing reward and cue vis-
ibility conditions to manipulate memory demand. Based on re-
ward influence on nonsequential cognitive control (Beck et al.,
2010; Chiew et al., 2016), we hypothesized that reward would
change RLPFC sequence monitoring dynamics uniformly
across individual sequences. We found that reward did not
change the slope or magnitude of individual sequence ramping
or interactwithmemory demand inRLPFC. Instead,we provide
novel evidence that reward interacts with sequential dynamics
only as the end reward approaches. These results suggest that
nonlinear increases in activity proximal to reward outcome real-
ization is important for assigning value to temporarily extended
cognitive control processes, and further implicate RLPFC as a
crucial node in processing abstract sequence information.

Materials and Methods
Participants
Thirty-six (n=20 female) adults between the ages of

18–35 years of age [M (mean) = 24; SD (standard devia-
tion) = 5] were included for analysis in the experiment. An
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additional 18 participants performed the task but were ex-
cluded from analyses because of poor participant per-
formance, poor data quality, and equipment malfunction
issues and are detailed as follows. Five participants were
unable to complete the task and/or fell asleep. One partic-
ipant had a previously undetected brain abnormality and
was subsequently excluded from analysis. One partici-
pant had very low signal-to-noise ratio (SNR), and four
participants had excessive head motion (.3 mm). Post
hoc it was discovered that seven participants completed
the task when the response button box began malfunc-
tioning (MR compatible four button response pad, Mag
Design and Engineering). This malfunction resulted in an
inability to dissociate participant error from response box
malfunction and a large number of trials that had to be
excluded for incorrect responses (.30%). Therefore,
we excluded these seven participants and the button
box was replaced with a fiber optic response pad (five
button handheld device, Cambridge Research
Systems) for the remaining participants. We confirmed
there were no differences in reaction times (RTs) be-
tween participants based on the response device for
all behavioral analyses reported below (all Fs ,3.92,
ps. 0.07).
All participants were right-handed, had normal or

corrected-to-normal vision, and reported they were
not colorblind. Individuals with neurologic or psychiat-
ric conditions, brain injury, or reported use of psycho-
active medications or substances were excluded from
participating. Participants were recruited from the
Brown University campus and the surrounding com-
munity. Participants were compensated $20/h for their
time. Additionally, participants received up to a $10
bonus based on task performance. Specifically, partic-
ipants were instructed before scanning that one run
would be randomly selected after task completion to
determine the performance bonus. This instruction
was used to motivate and encourage task performance
across all scanning runs. In reality, all participants received a
$10 bonus for task completion. All participants gave in-
formed, written consent as approved by the Human
Research Protections Office at Brown University.

Task design and procedure
Overview
Participants completed a modified version of the se-

quence monitoring task published in Desrochers et al.
(2019). Participants monitored serially presented four-
item sequences and for each item, indicated whether it
was in or out of the preinstructed order with a button
press (Fig. 1). Each participant completed a single session
that included task training, a short sequence preference
test, task performance while undergoing fMRI scanning,
and post-scanning sequence preference test and
questionnaires.

Trial structure
Sequences were composed of four unique visual stimuli

drawn from a pool of common objects (Desrochers et al.,
2019). Four image sets were drawn randomly for each

participant. Task stimuli were displayed using an Apple
computer running macOS. Experiment scripts were pro-
grammed using the Psychophysics Toolbox in MATLAB
(MathWorks; RRID:SCR_001622). On each trial, a stimu-
lus was displayed in the center of the screen on a gray
background. Participants were asked to press a button to
indicate whether the displayed image was in or out of the
instructed sequence order while the image was presented
on the screen for 1 s. An intertrial interval (ITI) followed
each image and displayed a fixation cross centrally. The
ITI timing was jittered and optimized across trials for
scanning (0.25–8 s, mean 2 s).
Participants responded with the index and middle

fingers on their right hand. One key was assigned the
“in sequence” response and the other was the “out of
sequence” response. Response options were counter-
balanced across participants. Participants were in-
structed to respond as quickly and accurately as
possible while the stimulus was displayed on the
screen (1 s). Occasional responses (mean 8%, across
participants) that occurred in the ITI were included in
analyses to avoid unnecessary data loss.

Block structure
Rewards were infrequent in the task structure because

participants completed multiple four-item sequences be-
fore obtaining reward. Therefore, we adopted a nested
block structure to maximize the number of sequence and
reward trials within a reasonable amount of time for the
participant to perform the task in the scanner (; 1 h). This
nested structure saved time by allowing two blocks to be
completed with only one instruction period. An overview
of the terminology and structure follows:

• Condition: one of the four possible combinations of the
two-reward by two-visibility type design: Visible High,
Visible Low, Occluded High, Occluded Low (Fig. 1A–D).

• Image set: one of four prelearned sets of image orders
(see below, Training). Each image set was only associ-
ated with either High or Low value. However, each
image set was used for both Occluded and Visible tri-
als (Fig. 1D).

• Hyperblock: two, consecutive blocks of the same con-
dition (Fig. 1C). Consecutive hyperblocks would not
be the same condition, as the order was randomized
(Fig. 1E).

• Block: a group of monitoring trials, probe, and reward
(Fig. 1A–C).

• Red screen: signal to get ready at the beginning of the
first block of a hyperblock, and that a new condition
was starting (Fig. 1A–C).

• Instruction images: only occurred in the first block of a
hyperblock after the red screen. The four images from
one image set were displayed, in order, for 0.75 s each
with no time between images. The participant did not
respond to these images (Fig. 1A–C).

• Green screen: signal to get ready at the beginning of
the second block of a hyperblock. Because it was the
same condition as the first block, no value cue was
shown, no instruction images followed it, and
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participants pressed the button to proceed immedi-
ately to monitoring trials (Fig. 1A–C).

• Monitoring trials: participants responded to indi-
cate whether each image was in or out of sequence

(as described above, Trial Structure) for a total of
13–16 consecutive trials (Fig. 1A–C). In the Visible
condition, these images were all from the image
set, and in the Occluded condition, all images were

Figure 1. Sequence monitoring task with reward. Across all conditions, the first block starts with a red instruction screen (re-
ward indicated by amount of dollar signs, $$$ or $). Instruction images (Instr), that participants do not respond to, are serially
presented to show the correct order of the current image set. Participants then respond on each monitoring trial (1 s) with an
in or out of sequence button press. After the last image (probe) of the block, feedback (Feed) is given for that trial in the form
of a check mark (correct; dollar signs above to indicate reward) or an X for an incorrect response. A, Example Visible condi-
tion block that is Low value (indicated by one $) and has correct feedback (check mark and $). The instructed image set stim-
uli are visible across all monitoring trials. B, Example Occluded condition (Low value, same image set as in A) and has error
feedback (X). The “occluder” image is displayed for monitoring trials after instruction. Participants monitor the stimuli as if
the images from the sequence are occluded by this placeholder image. Only the probe image is a member of the instructed
image set. C, Hyperblock structure. A “hyperblock” is two consecutive blocks of the same condition (High value, indicated
by $$$, illustrated here), created to maximize the number of monitoring trials (by eliminating the instruction images from
the second block). The second block begins with a green screen to indicate the continuation of the same condition.
Individual blocks contain multiple sequence “iterations” (Iter), defined as one four-item sequence or ordered image set. All
iterations within the same block are from the same image set. D, Schematic of experimental conditions. Four image sets are
randomly chosen for each participant. Each image set is only associated with either High or Low value and both Occluded
and Visible conditions. E, Example run structure. Each run contains eight hyperblocks (16 blocks), one of each condition by
image set combination such that there are two hyperblocks for each of the four conditions (Visible/Occluded � High/Low).
Numbers in the schematic indicate the image set as in D. The order of hyperblocks was counterbalanced within and across
runs. Vis = Visible condition. Occ = Occluded condition. Solid lines with darker shades indicate the visible condition. Dashed
lines with lighter shades indicate the Occluded condition. Red tints and shades are High value. Blue tints and shades are
Low value.
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the placeholder image. Monitoring trials can be fur-
ther grouped into:

8 Sequence iterations: one set of four items that made
up the instructed sequence (Fig. 1C). All iterations
within a block were from the same image set.

8 Iteration 1: trials 1–4 were not different from subse-
quent monitoring trials for the participant, but we ex-
cluded them from behavior and fMRI analyses to
avoid block initiation effects.

8 Iteration 2: trials 5–8. The first iteration used in
analysis.

8 Iteration 3: trials 9–12. The second iteration used in
analysis.

• Probe trial: the probe trial occurred, with equal proba-
bility, during the fourth iteration on trial 13, 14, 15, or
16. In other words, the probe trial occurred with equal
probability across the four positions (1–4) in the se-
quence iteration. Probe trials did not occur at any
other place in the block, and only the probe trial could
be out of order (50% of the time). In the Occluded con-
ditions, this probe trial image was one of the instructed
image set, rather than the occluder image. In the
Visible condition, an image from the same set as in the
preceding monitoring trials could be displayed out
of order. As in the monitoring trials, participants
respond(ed) to indicate whether the probe image was
in or out of sequence.

• Feedback and reward: displayed (0.75 s) after the
probe trial to indicate whether the participant’s re-
sponse was correct (check mark) or not (X). The value
of the condition was also displayed as $ (Low) or $$$
(High) on correct trials.

A single hyperblock was composed of two blocks of the
same condition. The order of events in a hyperblock was
as follows. The first block of a hyperblock began with a
red screen that displayed the value. Participants pressed
the assigned “in sequence” key to initiate the block (i.e.,
the block did not proceed without this response). After ini-
tiation, the red screen was followed by the four instruction
images from a single image set, the monitoring trials (iter-
ations 1–3), the probe trial during iteration 4, and then the
feedback and reward. Between the first and second block
of a hyperblock, a fixation cross was displayed for a vari-
able ITI (0.25–8 s) before the green screen appeared.
Participants pushed the “in sequence” button to start this
second block, which proceeded immediately to the moni-
toring trials (iterations 1–3), the probe trial during iteration
4, and then the feedback and reward. A fixation cross was
displayed during a variable ITI (0.25–8 s) before the start
of the next hyperblock. For all blocks, if participants re-
sponded incorrectly on a monitoring trial before the probe
trial (e.g., pressing the out of sequence key prematurely),
the block was terminated: no further images and incorrect
feedback (X) was immediately displayed.

Run structure
During scanning, participants completed six runs of the

task. Each run lasted approximately 6 min and contained

eight hyperblocks (16 total blocks). Each run included two
hyperblocks of each of the four conditions (Occluded
High, Occluded Low, Visible High, Visible Low). The two
hyperblocks of each condition within each run used differ-
ent image sets (e.g., Visible High set 1 and Visible High
set 2; Fig. 1D). The order of the hyperblocks was random-
ized such that consecutive hyperblocks were not of the
same condition and were counterbalanced across the six
runs (Fig. 1E). In between runs, the scanner was stopped,
and participants had the option of taking a brief break.
Participants’ error rate (ER) on the previous run was dis-
played on the break screen to encourage correct
performance.

Training
Participants were trained on the order of the four image

sets immediately before scanning. During training (;45
min), participants learned the reward value ($= Low, $$$ =
High) and the correct ordering of the four images in each
set by completing trials of the task. The meaning of the
dollar signs was intentionally abstract to avoid partici-
pants explicitly “tallying” reward amounts across trials or
blocks. Participants were instructed that they could earn
a bonus of up to $10 based on their performance on a sin-
gle run chosen at random, but they were not instructed a
direct correspondence between dollar signs and bonus
payment amount. We ensured that participants neverthe-
less understood and used the values associated with the
sequences by training them before scanning and using a
preference test described in further detail below.
To learn the correct order of the four image sets used

for each participant, participants first completed the task
without time constraints. The first time a new sequence
was introduced, participants viewed the images serially
without a response deadline, i.e., the image remained on
the screen until a button press was made. Participants re-
sponded with the “j” and “k” keys on the keyboard to se-
lect a response with the index and middle finger of their
right hand. Participants practiced two blocks with re-
sponse times recorded, similar to the actual experiment.
Training was conducted on the Visible condition of a se-
quence first, followed by practice of the Occluded ver-
sion. Participants then completed two blocks of Occluded
trials with response times recorded. This was repeated for
each of the four sequences. Training was completed
twice for each participant before moving on to completing
the task in the scanner.
After training, participants completed a sequence pref-

erence test where they were instructed to select the high
value sequence of each pair presented. Two of the four
ordered image sets were displayed at a time: one set of
four images across the top and one image set across the
bottom of the screen relative to a central fixation spot.
The image sets remained on the screen until one of the
image sets was chosen with a button press (i.e., no re-
sponse deadline), and there was a 1-s ITI between trials.
All 24 combinations of image set pairs were displayed,
and the location on the screen was counterbalanced
across pairs and presentations. These trials were used to
verify that participants had learned the associated reward
value of the image sets.
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After scanning, participants again completed the se-
quence preference test to verify that they had retained the
learned image set reward values. A post-task question-
naire was administered to determine any factors that may
have impacted performance and experience with the task
during scanning (fatigue/sleep, sequence difficulty, re-
sponse deadline, etc.), participants were debriefed and
compensated for their time.

Experimental design and statistical analysis
fMRI data acquisition and preprocessing
A Siemens 3T PRISMA MRI scanner with a 64-channel

head coil was used for whole-brain imaging. Functional
data were acquired using a fat saturated gradient-echo,
echo planar imaging (EPI) pulse sequence (repetition
time, TR=2 s; echo time, TE=28ms; flip angle 90°; 38 in-
terleaved axial slices; 3 � 3 � 3 mm). Anatomical scans
included a T1-MPRAGE (TR, 1900ms; TE, 3.02ms; flip
angle, 9°; 160 sagittal slices; 1 � 1 � 1 mm) and a T1 in-
plane scan (TR, 350ms; TE 2.5ms; flip angle, 70°; 38 in-
terleaved transversal slices; 1.5� 1.5� 3 mm).
Preprocessing and analysis were conducted in SPM12

(http://www.fil.ion.ucl.ac.uk/spm, RRID:SCR_007037).
Two participants had one run of data removed because of
excessive head motion (.3 mm). EPI images were slice
time corrected and realigned to correct for head motion.
Images were normalized to Montreal Neurologic Institute
(MNI) stereotaxic space and smoothed with an 8-mm iso-
tropic Gaussian kernel.

fMRI data analysis
Subject-specific models of condition effects were

constructed in SPM12 under assumptions of the general
linear model (GLM). Regressors were generated by con-
volving events of interest with the canonical hemody-
namic response function and included the temporal
derivative. If any trial in the block was incorrect or the par-
ticipant stopped responding to the images, then the entire
block was coded as an error because it was unknown
whether the participant was correctly performing the
monitoring trials. All models include a duration regressor
based on the time the participant waited to start the trials
at the block start screen (red or green) and an onset re-
gressor modeled as a stick function for the feedback
screen. Other conditions of interest are described below
for each model. Nuisance regressors for all participants in
all models included: instruction images, the first four mon-
itoring trials in a block (iteration 1), error trials, the duration
of the probe trial (including RT), a run regressor, and six
motion parameters (translation and rotation).
For each participant, runs were entered as a single ses-

sion and the first level was estimated as a fixed effects
model. Whole-brain estimates of within subject effects
were entered into second level random effects analyses.
One-sample t tests were used to test for significance
against zero (p, 0.001). Results were corrected for multi-
ple comparisons based on whole-brain group effects with
extent thresholds set at the cluster level, yielding a family-
wise error (FWE) correction (p,0.05). Group contrasts
are displayed on an inflated MNI canonical brain using

Caret software (Van Essen et al., 2012; RRID:SCR_
006260).
Five GLMs were estimated from the data as follows:

1. Sequence position onsets model. To assess the univar-
iate effects of sequence position, cue visibility, and re-
ward, we constructed a model using instantaneous
stimulus onset regressors based on the factors of cue
visibility (Occluded/Visible) � reward (High/Low) � se-
quence position (i.e., position within iteration, 1–4). We
provide a simplified version of the regressors for the on-
sets in Figure 2A. All regressors shown were separated
by visibility and reward conditions (e.g., a model con-
taining onsets would contain 16 regressors: Occluded
High positions 1–4; Occluded Low positions 1–4;
Visible High positions 1–4; Visible Low positions 1–4).

2. Parametric sequence position (ramping) model. This
ramping model tests for activation that increases with
sequence position (Desrochers et al., 2015, 2019).
Onset regressors were constructed by crossing the
factors of cue visibility (Occluded/Visible) � reward
(High/Low) to result in the four condition combinations.
Sequence position (1–4) was added as a parametric
modulator of the onsets for the positions. Temporal de-
rivatives of the parametric regressors were also in-
cluded. The parametric regressors are estimated
hierarchically to account for variance above and be-
yond that explained by the onsets alone. Additionally,
we included a separate nuisance regressor for the last
image in a block (probe trial; Fig. 2B).

3. Sustain versus unique ramp model. We sought to iden-
tify whether variance in the fMRI signal was uniquely
explained by sustained versus ramping activation.
Models that included both sustained and ramping acti-
vation were constructed to allow the regressors to
compete for variance within the same model. Sustain
and ramp regressors (separate for each combination of
cue visibility � reward) were included in addition to a
single regressor for stimulus onset at each position.
Sustain and ramp regressors started at stimulus onset
of each sequence (position 1) and ended at the stimulus
offset (button press) to sequence position 4. This initial
model was used to identify variance uniquely explained
by the ramp regressor. The sustain and ramp regres-
sors were orthogonalized (spm_orth.m) within the con-
dition combinations to remove shared variance from
the ramp regressors (and assign it to the sustain regres-
sors; Fig. 2C,D).

4. Unique sustain versus ramp model. This model com-
plements the one above to identify variance uniquely
explained by the sustain regressor (independent of
ramp). The shared variance from the sustain regressors
was removed and assigned to the ramp regressor. This
model was used to identify variance uniquely explained
by the sustain regressor. All other aspects of the model
were the same as the previous sustain versus unique
rampmodel (Fig. 2C,D).

5. Block trial number onsets model. To determine how the
fMRI signal evolves throughout the course of trials with-
in a block, we modeled two complete sequence itera-
tions (iterations 2 and 3) of each block as individual
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trials (excluding iteration 1 to avoid block initiation ef-
fects, see above, Block structure). Regressors were
modeled as onsets as in Figure 2A but classified by trial
across the block (5–12), for a total of eight regressors,
instead of only four regressors for sequence position
(1–4) as in Model 1.

a. Individual regressors were included for sequence posi-
tions (trials 5–12). Onset regressors were again included
as nuisance regressors for the first four trials of the block
to remove block initiation effects. For the remaining trials
(13–16) in iteration 4 at the end of a block where the
probe image could appear, an onset regressor of the
same condition for each trial was included as a nuisance
effect. All other aspects of the model were the same as
Model 1. For the initial model, we collapsed across all
conditions to examine overall block dynamics.

b. To examine monitoring without visible position cues,
we created a model that included the same regressors
above (5a) but included separate regressors for the
Occluded and Visible conditions collapsed across re-
ward conditions.

c. To examine reward influence, we created a model that
included the same regressors as above (5a) but in-
cluded separate regressors for the High and Low re-
ward conditions collapsed across visibility conditions.

d. To examine the interaction between monitoring with-
out visible position cues and reward, we created a
model that included the same regressors above (5a)
but included separate regressors for the combinations
of Visible/Occluded and High/Low reward conditions.

Region of interest (ROI) analysis
ROIs were primarily defined from activation in the para-

metric ramp . baseline contrast in Desrochers et al.
(2019). MNI coordinates for the RLPFC ROI defined by the

cluster of activation in the parametric ramp . baseline
contrast in Desrochers et al. (2019) are at x = �36, y=42,
z=34 (center of mass) and will be hereafter referred to as
the “D19” ROI. Limited post hoc supporting analyses
were performed using the RLPFC cluster from the same
contrast in the present study (across all conditions). The
mean b values were extracted from the parametric ramp
regressor across all voxels in the ROI using the Marsbar
toolbox (MarsBar SPM toolbox, RRID:SCR_009605) in
SPM. Ramping activation across models and regions
were compared using repeated measures RMANOVA and
paired t tests where appropriate. For the sequence posi-
tion onsets and block trial number onsets models, the
time course of activity across positions was extracted
using an eight-timepoint (16 s) finite impulse response
(FIR) model in the MarsBar toolbox in SPM that contained
the same regressors as the onset model.

Behavioral analysis
As in previous studies (Desrochers et al., 2015, 2019),

we excluded the first four trials of every block (iteration 1)
from analysis to remove bias in RTs from block initiation
effects (Schneider and Logan, 2006). RT analyses ex-
cluded error trials. To match data for examining trials
across blocks, responses in the ITI (mean 8%, across par-
ticipants), were included to avoid unnecessary data loss.
For ER, we also conducted analyses to determine detec-
tion of an out of sequence item. We defined detection
types as hits, correct rejections, misses, and false alarms
to calculate d-prime. Hits were defined as correct re-
sponses to an out of sequence item. Correct rejections
were correct responses to in sequence trials in both
Visible and Occluded conditions. Misses were button
presses indicating in sequence to an out of sequence
item. False alarms were out of sequence responses to an
in-sequence item. D-prime (d’) was calculated:

Figure 2. Example model regressors. A, Onsets were modeled separately for each position as instantaneous (zero duration) events
corresponding to the sequence position onsets model (Model 1; see Materials and Methods). B, Parametric ramp regressors were
used for the parametric sequence position (ramping) model. Linear increase across positions 1–4 with instantaneous onsets (Model
2). C, Sustain regressors were constructed as a square wave from the onset of position 1 to the offset (response) of position 4 (mod-
els 3 and 4). D, Ramp regressors linearly increased from the onset of the position 1 to the offset of position 4 (Models 3 and 4). All
regressors shown were separated by visibility and reward conditions (e.g., a model containing onsets would contain 16 regressors:
Occluded High positions 1–4; Occluded Low positions 1–4; Visible High positions 1–4; Visible Low positions 1–4). s = seconds.
Figure adapted from Desrochers et al. (2015).
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d9 ¼ Zðhit rateÞ � Zðfalse alarm rateÞ;
where ZðpÞ;p 2 ½0;1�; is the inverse of the normal cumu-

lative distribution function (Macmillian and Creelman, 2004).
Extreme rates of zero or one were converted to 1/(2N) and
1–1/(2N), with N being defined as the number of trials, to
prevent an infinite D-prime (Macmillian and Creelman, 2004).
RMANOVA and paired t tests were used to test for differen-
ces as described in Results. Analyses were conducted
usingMATLAB (MathWorks; RRID:SCR_001622).

Results
Behavioral results
To determine the effects of reward and cue visibility on

sequence monitoring dynamics in the RLPFC, we used a
sequence monitoring task [based on (Desrochers et al.,
2019)] with value and visibility manipulations to create a
two-by-two design (Fig. 1). Additionally, to separate proc-
esses related to sequence and reward, reward was pro-
vided after multiple sequences were performed (rather
than one). Here, we use the term “iteration” to indicate
one instance of the ordered image set, or one four-item
sequence. In other words, rather than reward being associ-
ated with one iteration (as is typical), reward was provided
after multiple sequence iterations, at the end of the block.
During each block, participants monitored the sequential
order of Visible or internally tracked (Occluded) items that
were members of High or Low value sequences.

We first assessed RT on sequence monitoring trials (be-
fore the final probe trial) using a RMANOVA including fac-
tors for visibility (Visible/Occluded), reward (High/Low),
and position [first position/subsequent positions (2–4)].
We replicated previous observations (Desrochers et al.,
2015, 2019) that the RT at the first position in the se-
quence was slowed with respect to the subsequent posi-
tions in the sequence (2–4; RMANOVA, position:
F(1,35) = 25.7, p, 0.001; hp

2 = 0.42; Fig. 3A). This se-
quence initiation cost provides evidence that partici-
pants were monitoring the items as sequences
(Schneider and Logan, 2006). Participants performed
the task well (mean ER, 12.5%), and as in previous
studies there was no evidence of a sequence initiation
cost in ER (RMANOVA, position: F(1,35) = 0.02, p = 0.90,
hp

2 = 0.001; Fig. 3B).
Next, we assessed the effect of the cue visibility manip-

ulation, Visible and Occluded conditions, on task perform-
ance. During monitoring, participants were faster on
Occluded trials than Visible trials (RMANOVA, visibility:
F(1,35) = 83.9, p, 0.001, hp

2 = 0.71; Fig. 3A). This RT dif-
ference could have resulted from the explicit cue (the oc-
cluder image) that indicated no further decision was
necessary on Occluded monitoring trials. To test this
prediction, we examined RT on probe trials, when cues
were visible across both conditions. There were no re-
liable differences between the Visible and Occluded
conditions on probe trials (RMANOVA, visibility:
F(1,35) = 0.12, p=0.73, hp

2 = 0.003), and we again replicated

Figure 3. Behavioral results. A, Mean RT across sequence position for monitoring trials. B, Mean ER across sequence position for
probe trials. C, Mean RT across sequence position for probe trials. Solid lines depict the Visible condition and dashed lines depict
the Occluded condition. Red color indicates High reward and blue color indicates Low reward. SEM = standard error of the mean.
Vis = Visible condition. Occ = Occluded condition. **p, 0.001.
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slower RT for the first relative to other positions in the se-
quence (RMANOVA, position: F(1,35) =15.3, p, 0.001, hp

2 =
0.30; Fig. 3C). Errors during monitoring trials terminated the
block of trials, and happened relatively infrequently (mean
0.73% of trials, across participants). Therefore, we examined
ER on probe trials and found a greater ER for Visible com-
pared with Occluded trials (RMANOVA, visibility: F(1,35) =5.2,
p=0.03, hp

2 = 0.16). To further examine these differences in
ER, we analyzed trials with respect to detecting an out of se-
quence item. There were no reliable differences in d’ across
conditions (RMANOVA: visibility, F(1,35) =3.3, p=0.08, hp

2 =
0.09; reward: F(1,35) =0.77, p=0.39, hp

2 = 0.02; interaction,
F(1,35) =0.008, p=0.93, hp

2 = 0.0002). There were also no reli-
able differences in hits (RMANOVA: Fs, 0.37, ps. 0.54) or
false alarms (RMANOVA: Fs, 1.01, ps. 0.32). In sum,
although a difference existed in ER between Occluded and
Visible conditions, this difference did not result in a reliable
difference in the detection of out of sequence items.
To examine the effects of the reward manipulation on

behavior, we compared High and Low value trials.
Participants responded faster on High versus Low value
sequences during monitoring trials (RMANOVA, reward:

F(1,35) = 4.9, p=0.03, hp
2 = 0.12) in a manner that did

not interact with cue visibility (RMANOVA interaction:
F(1,35) = 0.60, p=0.44, hp

2 = 0.02; Fig. 3A). Note that while
the effect of reward value on RT appears numerically
small, the effect size could be interpreted as medium to
large. This effect is consistent with a substantial literature
illustrating faster RTs with increased reward (Niv, 2007;
Guitart-Masip et al., 2011; Beierholm et al., 2013; Otto
and Daw, 2019), and illustrates the efficacy of our reward
manipulation. There was no effect of reward on probe trial
ER (RMANOVA, reward: F(1,35) = 3.6, p=0.07, hp

2 = 0.09)
or any interaction between Occluded and Visible condi-
tions (RMANOVA interaction: F(1,35) = 1.7, p=0.20, hp

2 =
0.05; Fig. 3B). We also found no RT differences between
reward conditions on probe trials (RMANOVA, reward:
F(1,35) = 2.7, p=0.12, hp

2 = 0.07) or interaction between
reward and visibility conditions (RMANOVA, interaction:
F(1,35) = 0.02, p=0.90, hp

2= 0.0004; Fig. 3C). We con-
firmed that participants had learned and retained the
values associated with the four image sets from the
sequence preference test. Participants reliably se-
lected the higher value image sets relative to chance

Figure 4. Ramping activity in ROI and whole-brain fMRI analyses. A, Mean parametric ramp regressor b values for the D19 ROI in
the parametric sequence position (ramping) model. Solid lines depict the Visible condition and dashed lines indicate the Occluded
condition. B, Ramping activation shown for the parametric ramp regressor over baseline contrast in the parametric sequence posi-
tion (ramping) model (see Materials and Methods). FWE cluster corrected p=0.05 (height p=0.001, extent = 191 voxels). C, Same
model as in A but for the parametric ramp regressor for the Occluded condition over baseline contrast (FWE cluster corrected p =
0.05, height p =0.001, extent = 169 voxels). D, Same model as in A, B but for the parametric ramp regressor for the Visible condition
over baseline contrast (FWE cluster corrected p=0.05, height p=0.001, extent = 180 voxels). Note that the direct contrast of para-
metric ramping in the Occluded and Visible conditions did not yield any clusters that survived statistical correction. SEM = standard
error of the mean. Vis = Visible condition. Occ = Occluded condition.
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during training (t(35) = 45.4, p, 0.001) and after scan-
ning (t(35) = 54.1, p, 0.001). Further, there was no dif-
ference in preference between training and after
scanning (t(35) = 0.77, p = 0.45, d = 0.10).

fMRI results
Effect of reward on individual sequences
To determine whether the task engaged ramping in the

RLPFC as observed in previous studies (Desrochers et
al., 2015, 2019), we defined a ROI from the parametric
ramping cluster in RLPFC from Desrochers et al. (2019)
during the sequence monitoring task (experiment 2) on
which this task is based (“D19” ROI; see Materials and
Methods). In the D19 ROI, we found that parametric
ramping betas were significantly different from zero (t
test: t(25) = 3.0, p=0.005, d=0.5; Fig. 4A). Next, we exam-
ined whether variance in RLPFC could be better ac-
counted for by ramping or sustained activation. We
constructed a pair of models where ramp and sustain re-
gressors competed for variance (see Materials and
Methods) and then examined the variance in the MR

signal in RLPFC that each regressor could uniquely ac-
count for (Fig. 2C,D). We found that variance in the D19
ROI was better accounted for by ramping, beyond what
could be accounted for by sustained activation (t test:
t(35) = 6.1, p, 0.001, d=2.5). These results were sup-
ported by a whole-brain voxelwise contrast of parametric
ramping activity across all sequence conditions. We
found ramping activation in the RLPFC that extended lat-
erally into orbitofrontal cortex, as well as ramping in visual
cortex, midcingulate, and SMA (Fig. 4B; Table 1). Thus,
we replicated ramping activity during sequence monitor-
ing with changes in reward value.
To determine whether monitoring without visible se-

quence position cues influenced RLPFC ramping in the
context of changes in reward, we next examined ramping
activity in the Visible and Occluded conditions. These
analyses were performed in the parametric ramping
model that contained all four (two-by-two) conditions.
In the D19 ROI, although the parametric ramp regressor
betas were numerically greater in the Occluded than
the Visible condition (Visible: Mean = 0.04, Occluded:
Mean = 0.08), there was no reliable difference between

Table 1: Parametric ramp greater than baseline contrast activation values and brain areas

Location
Extent
(voxels) BA x y z

Peak
t-value

Insula 952 N/A �38 31 �4 5.3
L RLPFC 10/11 �28 61 1 3.92
L inferior orbitofrontal cortex 47 �48 40 �8 5.21
L middle frontal gyrus 46 �30 52 28 4.59
L lateral orbitofrontal cortex 11 �28 64 4 4.36
L calcarine cortex 18,091 17 �8 �80 14 8.42
R calcarine cortex 17 14 �66 8 7.44
L lingual gyrus 18 �8 �58 �4 6.50
R lingual gyrus 18 20 �76 �16 6.37
L cuneus 19 �6 �84 42 6.44
L superior parietal lobule 7 �4 �62 60 6.29
L supramarginal gyrus 40 �40 �52 54 5.51
L supramarginal gyrus 2 �46 �28 48 3.48
R supramarginal gyrus 40 42 �38 40 5.03
R superior occipital gyrus 19 18 �72 42 5.26
R middle occipital gyrus 19 34 �76 22 3.52
L fusiform gyrus 37 �44 �62 �24 4.82
R fusiform gyrus 37 42 �50 �28 4.35
L cerebellum N/A �24 �76 �18 6.93
R superior frontal gyrus 1898 9 38 32 44 5.23
R SMA 6 26 6 62 5.12
R postcentral gyrus 3 40 �12 40 4.63
IFG, Triangularis 48 48 16 22 4.14
L thalamus N/A �12 �18 �4 5.04
R inferior frontal (orbital) 953 47 36 28 �8 5.42
R lateral orbitofrontal cortex 11 24 66 2 5.02
R middle frontal gyrus 46 42 52 12 3.72
R middle frontal gyrus 46 38 50 24 3.59
R middle cingulate 735 32 2 42 34 5.49
L middle frontal gyrus 657 44 �48 24 38 6.04
L SMA 6 �30 4 38 4.09
R middle temporal gyrus 343 21 46 �34 �8 4.4
L Central Operculum 309 48 �42 �14 32 5
L IFG, opercularis 48 �60 �4 14 3.94
L inferior temporal gyrus 207 20 �40 �6 �16 5.73

All peaks are greater than 25 mm apart (cluster corrected p=0.05 FWE). Extent is the cluster size in voxels, listed for each peak belonging to the same cluster.
BA = Brodmann’s area. x, y, z are MNI coordinates. IFG, inferior frontal gyrus; SMA, supplementary motor area. N/A = not applicable.
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them (RMANOVA, visibility: F(1,35) = 1.2, p = 0.28, hp
2 =

0.03; Fig. 4A). Whole-brain voxelwise contrasts of these
conditions supported these results. Although there
were a greater number of areas, including the RLPFC,
that survived statistical correction in the Occluded con-
dition (Fig. 4C; Table 2) compared with the visible con-
dition (Fig. 4D; Table 3), no clusters survived statistical
correction in the direct contrast of these conditions. A
follow-up test using an ROI defined by the RLPFC clus-
ter in the parametric ramping contrast across condi-
tions in the current experiment (Fig. 4B; Table 1) also

did not show a reliable difference between ramping
betas in Occluded and Visible conditions (RMANOVA,
visibility: F(1,35) = 0.98, p = 0.33, hp

2 = 0.03). These re-
sults replicate previous findings (Desrochers et al.,
2019) and suggest that memory processes that are not
explicitly sequential do not interact with reward-related
dynamics in this task. However, these results do not
rule out the possibility, and we directly test these poten-
tial interactions between reward and memory in the
context of sequence monitoring dynamics in the RLPFC
below.

Table 2: Occluded condition parametric ramp greater than baseline contrast activation values and brain areas

Location
Extent
(voxels) BA x y z

Peak
t-value

R calcarine cortex 11,971 17 10 �78 4 9.76
L calcarine cortex 17 �18 �70 8 6.9
L calcarine cortex 17 �2 �92 2 7.16
R superior parietal lobule 7 4 �64 52 5.63
R superior parietal lobule 7 32 �66 54 4.82
L fusiform gyrus 37 �26 �64 �8 3.67
R fusiform gyrus 37 26 �60 �14 4.8
R lingual gyrus 18 8 �48 2 4.59
R ventral posterior cingulate 23 20 �58 28 4.19
R inferior frontal (orbital) 1251 47 40 28 �6 4.91
R middle temporal gyrus 21 58 �28 �8 4.81
R IFG, opercularis 48 62 �4 8 4.65
L middle temporal gyrus 1046 21 �48 �4 �12 5.7
L superior temporal 48 �48 �24 10 4.45
R IFG, opercularis 48 �40 20 2 4.98
R anterior cingulate 703 32 2 38 30 5.23
L anterior cingulate 32 �14 16 46 3.6
R ventromedial prefrontal cortex 11 10 40 2 3.67
R RLPFC 398 10 18 66 6 5.68
R middle frontal orbital gyrus 47 44 48 �14 4.54
L ventromedial prefrontal cortex 558 11 �12 34 �16 5.23
L RLPFC 10 �22 64 4 5.16
L inferior frontal (orbital) 47 �42 52 �12 4.76
R middle frontal gyrus 376 9 30 36 38 4.71
L supramarginal gyrus 340 2 �42 �28 48 4.52
L middle frontal gyrus 303 46 �38 22 42 4.56
L angular gyrus 227 39 �40 �58 50 4.05

All peaks are greater than 25 mm apart (cluster corrected p=0.05 FWE). Extent is the cluster size in voxels, listed for each peak belonging to the same cluster.
BA = Brodmann’s area. x, y, z are MNI coordinates. IFG, inferior frontal gyrus.

Table 3: Visible condition parametric ramp greater than baseline contrast activation values and brain areas

Location
Extent
(voxels) BA x y z

Peak
t-value

R superior parietal lobule 6746 7 14 �68 58 5.86
L calcarine cortex 17 �12 �80 12 5.77
R calcarine cortex 17 12 �64 14 4.98
R calcarine cortex 17 12 �64 14 4.55
L lingual gyrus 18 �12 �58 �12 5.61
L superior occipital gyrus 19 �8 �82 46 4.13
R superior occipital gyrus 18 14 �90 26 3.77
L fusiform gyrus 37 �34 �74 �16 4.55
R fusiform gyrus 37 32 �76 �12 4.37
R supramarginal gyrus 40 42 �36 44 4.75
R fusiform gyrus 37 28 �48 �8 3.55
L supramarginal gyrus 528 40 �40 �50 52 5.62

All peaks are greater than 25 mm apart (cluster corrected p=0.05 FWE). Extent is the cluster size in voxels, listed for each peak belonging to the same cluster.
BA = Brodmann’s area; x, y, z are MNI coordinates.
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To test our central hypothesis that changes in reward
will cause changes in individual sequence RLPFC ramp-
ing dynamics, we examined the High and Low reward
conditions in the same parametric ramping model. In the
D19 ROI, there was no difference between parametric
ramp regressor betas in the High and Low reward condi-
tions (RMANOVA, reward: F(1,35) = 0.01, p=0.91, hp

2 =
0.002; Fig. 4A). A follow-up whole-brain contrast of the
parametric ramping activity in the High and Low reward
conditions revealed no clusters that survived statistical
correction. However, this result does not exclude the pos-
sibility of an interaction such that reward may only exert
an influence on individual sequence ramping dynamics in
RLPFC under particular visibility conditions. Interactions
between memory and other cognitive control processes
have been observed in lateral prefrontal cortex (Jimura et
al., 2010). In the D19 ROI there was no interaction be-
tween parametric ramp regressor b values between the
cue visibility and reward conditions (RMANOVA:
Fs,1.21, ps. 0.28; Fig. 4A). These results were also
consistent with results in the RLPFC ROI defined from the
current experiment parametric ramping contrast, and did
not show a significant difference between ramping betas
in High versus Low conditions (RMANOVA, reward:
F(1,35) = 0.08, p=0.78, d= 0.001) or interaction between
cue visibility and reward conditions (RMANOVA interac-
tion: F(1,35) =1.5, p=0.23, hp

2 = 0.04). Thus, these results did
not support the hypothesis that increased reward would re-
sult in an overall increase in magnitude or change in slope in
the ramping activity in the RLPFC for individual sequences
(iterations). The influence of reward on sequence moni-
toring processes may be more complex than greater
activity potentially indicative of a generally heightened
state of engagement. We therefore next tested whether
reward causes changes in RLPFC sequence tracking
dynamics that change across sequence iterations.

Effect of reward across sequence iterations
To test for changes across sequence iterations as a re-

sult of reward, we first examined RLPFC dynamics on a
longer time scale than single sequences, i.e., across
blocks of trials. Collapsing across conditions, we mod-
eled the two complete sequence iterations of each block
(iterations 2 and 3, trials 5–12) as individual trials to quan-
tify activity in the RLPFC across the block. The first itera-
tion of the block (trials 1–4) was excluded to avoid block
initiation effects (model 5a; see Materials and Methods).
In the D19 ROI, RLPFC activity appeared to increase for
each sequence iteration and through the block overall
(RMANOVA linear contrast: F(1,35) = 7.3, p=0.01, hp

2 =
0.17; Fig. 5A). To test whether ramping activity “resets”
for each sequence iteration independent of the overall in-
crease, we detrended the activity across the block by fit-
ting a simple linear regression across all trials 5–12
and examining the resulting residuals. Because we

Figure 5. Activity in the D19 ROI changes across a block of
trials. A, Block trial number onsets model collapsed across
all conditions. B, Block trial number onsets model by visibil-
ity conditions, collapsed across reward conditions. Solid
lines depict the Visible condition and dashed lines indicate
the Occluded condition. Actual data are shown with error
bars and SEM, standard error of the mean. Line fit based on
sequence iteration is shown in thicker lines of the same type
(solid/dashed). C, Block trial number onsets model by re-
ward condition, collapsed across visibility conditions. Red
color indicates High reward and blue color indicates Low re-
ward. Actual data are shown with error bars and SEM. Line

continued
fit based on sequence iteration is shown in thick and dark-
ened lines of the same color (red/blue). Mean percent signal
change (%) (6SEM) from the peak (2–4 s) of the FIR.
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hypothesized that this “reset” occurs at position 1 of each
sequence iteration, we tested for differences in the first
positions after detrending. In the D19 ROI, there was no
difference between the first position trials in the residuals
(trial 5 vs trial 9; t test: t(35) = 0.68, p=0.50, d=0.15).
Importantly, these results provide evidence that sequence
specific dynamics are separable from more generalized
block dynamics in the RLPFC (see also Wen et al., 2020)
and provide a foundation for further examining the poten-
tial influence of memory and reward across sequence
iterations.
To examine the effects of monitoring sequences with-

out visible position cues on across-block dynamics in the
RLPFC, we created a model that again included individual
regressors for trials 5–12 and separate regressors for
Occluded and visible conditions (collapsed across reward
conditions, model 5b; see Materials and Methods). In the
D19 ROI activity, there was no interaction between trial
number and visibility condition (RMANOVA interaction:
F(7,245) = 0.75, p=0.63, hp

2 = 0.02; Fig. 5B). In addition,
we observed a small but reliable difference between
Occluded and Visible activity across the block
(RMANOVA, visibility: F(1,35) = 4.3, p=0.047, hp

2 = 0.11;
Fig. 5B). This greater RLPFC activation in Occluded trials
across the block contrasts with results presented above
when examining ramping b values collapsed across se-
quence iteration. These results suggest that there is an
overall increase in RLPFC activity in Occluded compared
with Visible trials that does not change the slope of the
ramping activation.
To address the central question of whether ramping ac-

tivity in the RLPFC is affected by reward differently across
sequence iterations, we used the same block trial number
onsets model (iterations 2 and 3, trials 5–12) and included
separate regressors for High and Low reward conditions
(across visibility conditions, model 5c; see Materials and
Methods). Across the block, we found that the difference in
activity in the D19 ROI for the High and Low reward condi-
tions changed across trials such that there was a greater dif-
ference as the ending reward approached (RMANOVA
interaction: F(1,35) =2.3, p=0.02, hp

2 = 0.06; Fig. 5C). To fur-
ther examine these dynamics, we compared the slope of
the lines fit to the activity for each condition in the first and
second sequence iteration separately. Interestingly, we
found that for the first iteration of the sequence, ramping ac-
tivity in the D19 ROI for High and Low reward conditions
was very similar (trials 5–8; ANCOVA: F(1,284) =0.65, p=0.42,
hp

2 = 0.002). In contrast, ramping activity had significantly
greater slope for the High compared with the Low reward
condition in the second sequence iteration (trials 9–12;
ANCOVA: F(1,284) =4.8, p=0.03, hp

2 = 0.02). Together,
these results suggest that reward information, although it in-
fluences behavior throughout the block, is reflected in
RLPFC activity only as the end of the block approaches.
Further, these results imply that reward information is inte-
grated into temporally extended control processes closer to
points in time when the information is most relevant.
We also performed an exploratory analysis to determine

whether these across-block reward effects in the RLPFC
changed when participants monitored the sequences

with or without visual cues. For this block trial number on-
sets model, we constructed separate regressors for trials
5–12, Occluded, Visible, High and Low reward conditions
(model 5d; see Materials and Methods). In the D19 ROI,
we found no reliable interactions between reward and cue
visibility conditions (RMANOVA: Fs, 1.13, ps. 0.34).
Although we cannot rule out the possibility that memory
and reward processes may interact during sequence
monitoring, these data do not provide evidence that such
an interaction occurs in the RLPFC.

Discussion
In this experiment, we examined the effects of reward

on ramping dynamics in the RLPFC across the monitoring
of multiple sequence iterations. We tested three possibil-
ities for how changes in RLPFC dynamics might emerge:
through an interaction with a memory process, as a con-
sistent change in all individual sequences, and as a
change across sequence iterations. We provide novel evi-
dence that reward does not affect sequence tracking dy-
namics in the RLPFC as either a tonic increase or a
change in slope consistently across individual sequences.
Further, these effects do not interact with whether se-
quential items are monitored with visible cues. In contrast,
we observed effects of reward that changed across se-
quence iterations, with a rapid increase in amplitude with
proximity to high reward. In other brain areas and in re-
cent computational models (Kim et al., 2020; Ott et al.,
2020; Cruz and Paton, 2021; Hamid et al., 2021) this “ac-
celerating” impact is a hallmark of reward signaling in
specific forebrain representations that are responsible for
task completion, and possess the correct predictive
model of ongoing events. This finding adds to prior imag-
ing, TMS and lesion studies all indicating a distinctive role
for RLPFC in sequence processing.
Similarities between blood oxygen level-dependent

(BOLD) activity in the RLPFC and dopamine dynamics ob-
served in the striatum of rodents performing temporally
extended tasks (Howe et al., 2013; Hamid et al., 2016,
2021) has intriguing implications for RLPFC function.
Dopamine dynamics that bifurcate only in the latter half of
a sequential task between high and low rewards have
been observed in the striatum of rats (Howe et al., 2013).
Dopamine concentration that accelerates to reward in
such studies has also been used as evidence in support
of a single motivational signal for adapting to current and
future behavior (Hamid et al., 2016), in contrast to sepa-
rate tonic and phasic dopamine signaling (Cohen et al.,
2002). Further, in subsequent studies, such dopamine
signaling was only observed in situations where reward
was contingent on action (i.e., instrumental) rather than
not (i.e., Pavlovian), and only in brain areas that were in-
volved in the instrumental actions (Hamid et al., 2021).
Companion computational models suggest these dynam-
ics drive credit assignment specific to involved brain re-
gions. Together, these studies suggest that the RLPFC is
performing an active monitoring function that integrates
reward and sequence information, rather than a passive
observer of signals relayed from elsewhere in the brain.
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An interesting qualitative observation from our data are
that we found ramping dynamics specific to individual se-
quences and that extended throughout task blocks in
RLPFC. This finding further reinforces the idea that
RLPFC simultaneously processes not only local sequen-
ces, but the multiscale sequences that are inherent in
complex behavior. For example, when cooking, it is nec-
essary not only to track the sequence of steps in what you
are currently cutting up, but also to track where in the
overall sequence of meal preparation steps that cutting
exists. These dynamics parallel recent findings from Wen
et al. (2020), who showed that the RLPFC and other “mul-
tiple demand” regions were sensitive to step-level and ep-
isode-level information and preferentially represented
step (rather than task) identity. We extend these results by
illustrating that reward information is also incorporated
into signals in the RLPFC. Further studies are necessary
to determine the mechanisms by which these control sig-
nals are multiplexed during sequences.
Our results are consistent with an integration account

of RLPFC function. In nonsequential tasks, RLPFC has
been shown to integrate multiple sources of task informa-
tion, such as different stimulus dimensions (Nee et al.,
2014), mental arithmetic operations (De Pisapia et al.,
2007, 2012), relational integration in the visuospatial
(Christoff et al., 2001) or semantic domain (Bunge et al.,
2005), and motivation during task updating (Bahlmann
et al., 2015). These cognitive control paradigms re-
quired that context and task goals be flexibly updated
during specific temporal windows dependent on task
demands. We extend these findings to sequential cog-
nitive control by demonstrating that ramping dynamics
accelerate based on temporal context, such as prox-
imity to end reward. In this context, our results suggest
that RLPFC is uniquely suited during temporally ex-
tended behaviors to integrate reward information de-
pendent on task relevance.
There were limitations to the present study. First, we fo-

cused on the RLPFC because, although its general role in
sequential processes has been established, the specifics
of how its dynamics interact with myriad other variables
key to sequential control has only begun to be investi-
gated. The RLPFC is also part of a network of areas that
display ramping dynamics (Fig. 4), and while an investiga-
tion of all these areas is outside the scope of the current
experiment, it remains an important avenue of future re-
search. Second, while the memory manipulation applied
here showed no unique interactions and addressed po-
tential differences in monitoring with and without exter-
nal position cues, there remains the possibility that other
memory processes may interact with reward (Wimmer et
al., 2014; Shigemune et al., 2017) that were not explicitly
tested in this experiment. For example, with visible posi-
tion cues, there is likely a retrieval process that is still
necessary to “check” that the cue is in the correct, re-
membered position. Third, we manipulated a single type
of reward. Primary reinforcers such as foods, intrinsic re-
wards, and the valence of the reward (e.g., avoiding pun-
ishment) have potentially differing effects (Braver et al.,
2014). Fourth, the failure to find interactions between

reward value and the visibility of cues across blocks of
trials should be interpreted with caution, as it is possible
that we were not sufficiently powered to detect such in-
teractions. The present work establishes a foundation on
which to test these and other related variables.
In summary, this study suggests that sequential

control dynamics in the RLPFC reflect an accelerating,
dopamine-related reward signal in addition to both
local and more extended position information.
Understanding how rewards are integrated into more
complex and extended timescale sequential decision
processes has important implications for understand-
ing human behavior in health and in disorders such as
addiction. The multiscale nature of these signals in the
RLPFC and their interaction with dopaminergic neu-
rons in other regions that display similar ramping dy-
namics will be important to examine in the future, both
in human and nonhuman primate models.
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