
entropy

Article

Deep Learning-Based Security Verification for a
Random Number Generator Using White Chaos

Cai Li 1,2, Jianguo Zhang 1,2,*, Luxiao Sang 1,2, Lishuang Gong 1,2, Longsheng Wang 1,2,
Anbang Wang 1,2 and Yuncai Wang 3,4,*

1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education,
Taiyuan University of Technology, Taiyuan 030024, China; licai0759@link.tyut.edu.cn (C.L.);
sangluxiao0134@link.tyut.edu.cn (L.S.); gonglishuang0122@link.tyut.edu.cn (L.G.);
wanglongsheng@tyut.edu.cn (L.W.); wanganbang@tyut.edu.cn (A.W.)

2 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
3 Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou 510006, China
4 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
* Correspondence: zhangjianguo@tyut.edu.cn (J.Z.); wangyc@gdut.edu.cn (Y.W.)

Received: 10 August 2020; Accepted: 4 October 2020; Published: 6 October 2020
����������
�������

Abstract: In this paper, a deep learning (DL)-based predictive analysis is proposed to analyze the
security of a non-deterministic random number generator (NRNG) using white chaos. In particular,
the temporal pattern attention (TPA)-based DL model is employed to learn and analyze the data from
both stages of the NRNG: the output data of a chaotic external-cavity semiconductor laser (ECL) and
the final output data of the NRNG. For the ECL stage, the results show that the model successfully
detects inherent correlations caused by the time-delay signature. After optical heterodyning of two
chaotic ECLs and minimal post-processing are introduced, the model detects no patterns among
corresponding data. It demonstrates that the NRNG has the strong resistance against the predictive
model. Prior to these works, the powerful predictive capability of the model is investigated and
demonstrated by applying it to a random number generator (RNG) using linear congruential algorithm.
Our research shows that the DL-based predictive model is expected to provide an efficient supplement
for evaluating the security and quality of RNGs.

Keywords: deep learning; security analysis; random number generator; white chaos; semiconductor laser;
predictive model

1. Introduction

Random number generators (RNGs) are extensively applied in the field of cryptography and
security communications that require fast and trusted random numbers [1]. So far, there are two types
of RNGs—deterministic random number generators (DRNGs) and non-deterministic random number
generators (NRNGs). The output sequence of a DRNG is generated with a deterministic algorithm and
a provided seed. Despite its good statistical characteristic, the DRNG is not suitable for information
security applications, because the deterministic pattern of the DRNG may be identified by adversaries,
which incurs malicious attacks and causes the destruction of security system, as in [2–5]. On the contrary,
a NRNG produces the random sequence by using physical entropy sources, such as electrical noise [6–8],
quantum fluctuations [9–12] and chaotic semiconductor lasers [13–15]. In particular, an ultra-fast
NRNG using white chaos was proposed and demonstrated in [16,17], which has significant potential
for improving the information security and securing the communications. However, any NRNG
should not be assumed to be fully trusted or secure by default in the real world, because the presence
of environmental noise or the unideal characteristics of the physical devices that construct the entropy
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sources may compromise the integrity of NRNGs [15,18]. Therefore, we deem security evaluation for
random numbers necessary.

The security analysis of RNGs is an important issue, since the security of cryptographic systems
depends on the randomness and unpredictability qualities of RNGs. In most studies, the randomness of
random numbers is evaluated by using standard statistical test suites, such as NIST Special Publication
800-22 [19], AIS 31 [20], Diehard [21], and TestU01 [22], which can detect whether there are obvious
statistical defects among random numbers. However, limited by the ability of pattern recognition and
data analysis, the standard statistical tests have shown the insufficiency in the security evaluation of
RNGs. For instance, some DRNGs with good randomness can pass most statistical tests successfully,
although there are weak but inherent correlations among them [23]. It is necessary to further investigate
the security analysis methods and tools for RNGs.

Recently, deep learning (DL) has attracted great attention because of its powerful capability
in recognizing patterns and discovering intricate structures in large data sets [24]. Considering its
strength in learning nonlinear manifolds of data [25], researchers have explored several security
analysis methods of random numbers by DL. In [26,27], the authors implemented feedforward neural
network (FNN) structures for detecting hidden patterns among pseudo-random numbers from DRNGs.
Wen et al. [28] constructed a long short-term memory (LSTM)-based DL to evaluate the randomness of
a new DRNG that consists of both regular DRNGs and a physical unclonable function (PUF). However,
the above works did not study and prove the performance of DL models in detecting inherent
correlations among data. Yang et al. [29] proposed a novel min-entropy estimation method based on DL
models composed of a FNN and a recurrent neural network (RNN) to estimate min-entropy of entropy
sources of RNGs. Unfortunately, the estimator is easily given to overestimation for data with subtle
correlations. In addition, Zhu et al. [30] improved the min-entropy estimation on time-varying data by
applying a change detection method to a FNN-based estimator. Truong et al. [18] developed a recurrent
convolutional neural network (RCNN)-based predictive model, which detected prominent inherent
correlations of deterministic noise sources in a quantum random number generator. Although DL has
promising applications in evaluating the quality of random sequences, there are few studies on the
security analysis for NRNGs based on white chaos by deep learning.

In this paper, a DL-based predictive analysis is proposed to analyze the security of RNGs.
In particular, the temporal pattern attention (TPA)-based DL model is employed to detect hidden
correlations that may exist among the long random sequence from RNGs, and then predict the next
random number, based on observed random numbers in an input sequence. Next, we investigate
the learning capability of the DL model in detecting deterministic correlations, which is applied to
the liner congruential DRNG with different periods. In addition, compared with the existing related
works, the performance of the model is further evaluated on the prediction accuracy and the length of
the training data. Finally, we implement a white chaos-based NRNG, and analyze the security of the
NRNG by DL. In particular, the predictive model is used to analyze the security of the data extracted
from both stages of the NRNG: the output of a chaotic external-cavity semiconductor laser (ECL) and
the final output of the NRNG. Additionally, we investigate the reasons behind the advantage provided
by DL.

2. Experimental Scheme

In this section, the overall experimental scheme is illustrated in Figure 1, mainly comprising data
collection and preprocessing (Section 2.3), model training and validation (Section 2.5), and system
evaluation (Section 2.6). In the data collection and preprocessing, the datasets are firstly collected from
different stages of RNGs that are described in Sections 2.1 and 2.2. Then, the raw data is standardized
in the form of N-bit integers, labeled in the supervised learning approach, and split into three sets
including training set, validation set, and test set. In the model training and validation, the predictive
DL model is provided and depicted in Section 2.4. After its parameters are configured, the model is
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trained and validated in this process. In system evaluation, the performance of the model, and the
security of the data are evaluated by the prediction accuracy.
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each laser to adjust the polarization of the feedback light, and a variable attenuator is placed in front 
of the corresponding mirror to tune up the intensity of the feedback light. After optical isolators, the 
outputs of both lasers are coupled by a 3-dB fiber coupler, and then two optical signals are injected 
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Experimentally, the lasers DFB1 and DFB2, respectively operating at bias currents of 15.6 mA and 
15.3 mA, have threshold currents of 10.9 mA and 11.1 mA, respectively. The center wavelengths of 
DFB1 and DFB2 are 1549.73 nm and 1549.62 nm, respectively. The feedback strength is set to −8.1 dB 

Figure 1. Experimental scheme for evaluating the security of RNGs, which comprises data collection
and preprocessing, model training and validation, and system evaluation.

2.1. White Chaos-Based NRNG Setup

The structure of a white chaos-based NRNG consists of an entropy source and entropy extractor,
as illustrated in Figure 2 and described in detail in [16]. The generation of white chaos [17], a physical
process, can be taken as an entropy source for the NRNG. Two ECLs are introduced into the entropy
source, each of which contains a distributed feedback semiconductor laser (DFB) with optical feedback.
It is noted that the optical feedback is implemented by a feedback external cavity composed of the
laser facet and a fiber mirror. In the feedback cavity, a polarization controller is inserted behind each
laser to adjust the polarization of the feedback light, and a variable attenuator is placed in front of the
corresponding mirror to tune up the intensity of the feedback light. After optical isolators, the outputs
of both lasers are coupled by a 3-dB fiber coupler, and then two optical signals are injected into a
balanced photo-detector, in which both identical photodetectors and an electronic circuit are integrated
to detect the heterodyne signal. For the entropy extractor, the heterodyne signal is quantized by an
8-bit analog-to-digital converter (ADC), and then the random numbers are generated by selecting N
consecutive least significant bits (LSBs) at each sampled value.
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Experimentally, the lasers DFB1 and DFB2, respectively operating at bias currents of 15.6 mA and
15.3 mA, have threshold currents of 10.9 mA and 11.1 mA, respectively. The center wavelengths of
DFB1 and DFB2 are 1549.73 nm and 1549.62 nm, respectively. The feedback strength is set to −8.1 dB
for ECL1 and −7.9 dB for ECL2. In addition, the feedback delays of both ECLs are 91.7 ns and 91.9 ns,
respectively. With these parameters of the entropy source, the white chaos is generated by optical
heterodyning. After quantization with the 8-bit ADC, a 320 Gb/s white chaos-based NRNG is realized
by selecting 4 LSBs at 80-GHz sampling rate.

For security analysis of the NRNG, we investigate the quality of data collected from the output of
the ECL1 and the final output of the NRNG. These are done by applying a novel DL model to data
extracted at both stages of the NRNG. Note that the security of ECL1 is only evaluated due to the
similarity of ECLs.

2.2. DRNG Setup

To demonstrate the robustness of provided DL model, a linear congruential random number generator
(LC-RNG) [31], a typical deterministic mechanism used in many software platforms, is introduced in our
experiments. Because a benefit of the LC-RNG is that with appropriate choice of parameters, the period is
known and long. The algorithm of LC-RNG is described by recurrence relation:

Xn+1 = (aXn + c)mod M, (1)

where X represents the sequence of random numbers, and M, a, and c are integer constants,
which represent the modulus, multiplier, and increment of the generator, respectively. With correctly
chosen parameters, the period of the random values is equal to M for any seed. The generation of
pseudo-random numbers will occur if: (1) M and c are relatively prime, (2) a − 1 is divisible by all
prime factors of M, and (3) a − 1 is divisible by 4 if M is divisible by 4. In our experiments, we collected
the pseudo-random sequences generated by LC-RNG with a = 25214903917, c = 1 and M ∈ (224, 226,
228, 230). It is necessary to study the predictive capability of the DL model in discovering inherent and
intricate dependencies.

2.3. Data Collection and Preprocessing

In the data acquisition stage, we collect several datasets extracted at different stages of the
introduced NRNG, and LC-RNG. At each stage or period of RNGs, 200 million raw random numbers
are gathered and standardized in the form of N-bit integers. Out of these, 40%, 10%, and 50% are used
for training, validating, and testing the provided DL model, respectively. To assess the consistency of
the learning performance of the model, the test dataset is divided into five sub-test datasets, and each
of them comprises twenty million random numbers.

Our task is to learn hidden correlations among the random numbers of RNGs and predict the next
number, based on observed random numbers in an input sequence. Therefore, supervised learning
with a neural network is performed in data preprocessing. The sequence of collected random numbers
is arranged in a conventional approach, as shown in Figure 3. Specifically, ten consecutive adjacent
numbers within the random sequence are used as one input sequence, whereas the next number after
the input sequence is used as the output (label). Next, the sequence is shifted by three positions and is
updated as another input. Similarly, the next number after the new input sequence also is used as the
new output. The shifting process continues until all input sequences and corresponding outputs are
generated. In addition, the neural network is trained and tested in the processed datasets in the format
of pairs.
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2.4. Deep Learning Model

Since the output of RNGs is a typical time series, we prefer to focus on recurrent neural
networks (RNNs) [32], which are typical deep neural networks designed for sequence modeling.
Nevertheless, simple RNNs are subject to the problem of vanishing gradients during training, and have
difficulty discovering deterministic correlations [33]. In recent years, long short-term memory
(LSTM) and gated recurrent unit (GRU), two popular variants of RNNs, have overcome the limited
shortcoming of discovering long-term dependencies to some extent, and have achieved success in
various applications [34–36]. To further solve time series prediction problems, some researchers have
introduced attention mechanisms into deep neural networks [37–39]. Inspired by [40], a temporal
pattern attention (TPA)-based LSTM is applied to the DL model to capture inherent correlations among
random numbers in this paper. Compared with the typical attention mechanism, the provided TPA
mechanism can learn the hidden correlations in the intricate time series data with advantage.

The structure of a TPA-based DL model mainly consists of a one-hot encoder, a LSTM layer,
a TPA layer, and a fully connected (FC) layer, as depicted in Figure 4. Specifically, after data collection
and preprocessing, ten N-bit numbers are firstly encoded into one-hot vectors, each of which is a
binary vector that has all zeros values except a significant value used to distinguish different numbers.
Then the encoded vectors are sequentially fed to a LSTM layer with 256 output size, which can output
the hidden states corresponding to each time step in an input sequence. Afterwards, the output of
the LSTM layer is connected to the TPA layer. The attention layer analyzes the information across all
previous time steps and selects relevant information to help generate the output. Finally, the attention
output configured to size 256 goes to a fully connected (FC) layer, with a softmax activation function
because of the multi-classification problem. The output size of the FC layer is configured to 2N, which is
the number of all possible N-bit numbers in predicting the next value.
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In the temporal pattern attention mechanism [40], given the previous LSTM hidden states H =

(h1, h2, . . . , ht-1) ∈ Rm×(t-1), a convolutional neural network (CNN) is used to improve the predictive
performance of the model by employing CNN filters on the row vectors of H. The CNN has k filters,
each of which has length of T. In addition, the CNN with a rectified linear unit activation function yield
HC
∈ Rm×k, where Hi denotes the convolutional value of the i-th row vector of H. Then, the context

vector is calculated as a weighted sum of row vectors of HC. The score function ƒ is defined to evaluate
relevance between Hi and ht:

f (Hi, ht) = (Hi)
TWaht, (2)

where ht is the present state of the LSTM output, and Wa ∈ Rk×m. The attention weight αi is realized by
introducing a sigmoid activation function:

αi = sigmoid( f (Hi, ht)). (3)

To obtain the context vector vt ∈ Rk, the row vectors of HC is weighted by αi:

vt =
m∑

i=1

αiHi. (4)

Finally, we integrate vt and ht to yield the output of the attention layer,

h′t = Whht + Wvvt, (5)

where Wh ∈ Rm×m, Wv ∈ Rm×k.
In our experimental model, we set the time steps of an input sequence t = 10, the output size of

the LSTM m = 256, the number of filters k = 256, and the length of a filter T = 10.

2.5. Model Training and Validation

In addition to the appropriate DL model as a solution for maximizing the probability of predicting
the next value successfully, the DL model needs to be configured with several key parameters.
The predictive model is regarded as a solution to a multi-classification problem, so the cross-entropy
is used as an objective function, which can calculate the bias between the labels and the predicted
values. In addition, an Adam optimizer [41] with a manually set 0.0005 learning rate is introduced
to minimize the objective function during training phase. A batch of examples of size 256 is fed into
the model during both of the training and the testing. The maximum number of epochs is set to 200,
and the training is discontinued once the validation error stops decreasing after 5 successive epochs.
The validation error and corresponding trained weights are recorded in the training phase, and the
trained weights with the least validation error are used as the final trained weights for evaluating the
corresponding test set.

2.6. System Evaluation

Not only the learning capability of the predictive model, but also the security of the data is
evaluated by comparing the probability of correct prediction, Ppred, against the baseline probability,
Pb, which is the highest probability of guessing a variable in the data. For a DL model, Ppred is the
probability of predicting the eleventh number correctly in the test set, according to the preceding ten
consecutive numbers. That is, Ppred is a percentage of all the correct predictions out of the total number
of test predictions,

Ppred =
NT

NT + NF
× 100%, (6)

where NT is the number of correct classifications, and NF is the number of incorrect classifications.
The baseline probability Pb is related to the minimum entropy of the distribution from which a random
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value is generated. In NIST Special Publication 800-90B [42], the min-entropy of an independent
discrete variable X that takes values from a set A = (x1, x2, . . . , xk) with probability Pr(X = xi) = pi,
for i = 1, . . . , k is described as:

H = log2 max
1≤i≤k

pi, (7)

= log2(Pb). (8)

If a random variable has min-entropy H, the probability of observing any specific value for X is
no greater than Pb, which is why it is considered to be the baseline probability. For instance, an N-bit
random number from datasets extracted at a certain stage of the NRNG or LC-RNG has a uniform
probability distribution, which means that the highest probability of guessing the output of RNGs is
1/2N. If the DL-based predictive model could give a higher prediction probability compared to the
baseline probability, there exist hidden correlations in the data from the corresponding stage of RNGs.
Contrarily, little is learned by the model, and the random numbers have strong resistance against the
predictive DL model. On the other hand, compared with the statistical property tests, the performance
of the predictive model is studied by learning deviations in the data with different level of complexity.

3. Experimental Results

In this paper, the DL model is implemented based on Keras and the backend of TensorFlow with
Python language. In addition, all experiments are performed on a Windows 10 system with an Intel i9
10900X CPU and two NVIDIA RTX 2080Ti GPUs.

For the first scenario, we investigate the learning capability of the predictive model, which is applied
to random numbers collected from the LC-RNG with different periods. Before that, the probability
distribution of the 8-bit random numbers at different periods is measured to calculate the corresponding
baseline probability. Specifically, the raw values of the intensity of the temporal waveforms are
standardized in the form of 8-bit integers between −128 and 127 to generate the corresponding
histogram. From these histograms, the 8-bit standardized numbers at different stages are basically
subject to the same uniform probability distribution. That is, the baseline probability is 0.39%.
In particular, the probability distribution of random integers from LC-RNG with the period of 224 is
shown in Figure 5a.
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Figure 5. Distribution of standardized numbers from RNGs with different stages. (a–c) represent the
probability distribution of the data from the output of LC-RNG with the period of 224, the output of the
ECL1, and the output of the NRNG, respectively.

Then, the model shows the predictive capability in learning the inherent and long-term correlations
among pseudo-random numbers, as manifested in Figure 6. The model achieves 98.478 ± 0.07%,
98.256 ± 0.06%, 0.45 ± 0.01%, 0.39 ± 0.01% accuracy in predicting the next random number given
precedent consecutive 10 numbers when the period of the LC-RNG, M, is 224, 226, 228, 230, respectively.
Please note that the seed for generating pseudo-random numbers in a training set is different from
that in the corresponding test set. Evidently, the probability of correct prediction by the model, Ppred,
surpasses the baseline probability, Pb, when the length of the training set exceeds the period of LC-RNG,
i.e., M is less than 228. In addition, the provided model still has Ppred better than Pb by more than



Entropy 2020, 22, 1134 8 of 15

6 standard deviations, even if M is 228, which is much larger than the length of the training set.
Meanwhile, Ppred decreases when M increases given the same size of training set. When M is 230 or
larger, Ppred is approximately equal to Pb. It could be that the datasets with higher level of complexity
make the model more difficult to detect the correlations among random numbers.
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LC-RNG and the white chaos-based NRNG.

To substantiate the performance of the attention-based DL model, the NIST Special Publication
800-22 test suite [19] is employed for evaluating random numbers extracted from the LC-RNG. The test
suite is a standard statistical package composed of 15 tests to evaluate the security of random values
generated by any RNG. These tests reporting P-values within the range of 0.01–1.00 are considered to
accept the hypothesis that the tested random numbers exhibit no characteristics of order or structure.
The test results of random numbers with different periods are shown in Table 1. The number of passing
tests increases as M increases. The test suite can detect deviations among the data when M is 224,
226, respectively. However, the random numbers can pass 15 tests of the test suite when M is 228, 230,
respectively. Compared with the corresponding results from Figure 6, the DL model still achieves a
higher prediction probability than the baseline probability, when random numbers with the period of
228 can pass the NIST test suite successfully. Briefly, the DL-based predictive model has the advantage
in detecting correlations among random numbers to some extent, compared to the results of the NIST
test suite.

Furthermore, the learning performance of the TPA-based model is further evaluated on
the prediction accuracy and the length of the sequence used for training, compared with the
existing typical DL methods of evaluating the security of RNGs, including RNN-based model [29],
FNN-based model [26,27,29], RCNN-based model [18]. These models are trained and tested using the
same experimental strategy (see Sections 2.3–2.6). The configuration of the models we compared is
shown in Table 2 and described in detail in [18,26,27,29]. It is noted that the hyperparameters of the
models are modified and optimized to fit the provided strategy, and improve the prediction accuracy.
To evaluate the performance, the average prediction accuracy in the five test subsets is taken as the
evaluation criterion.
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Table 1. Results of NIST statistical test suite on the datasets at different stages of LC-RNG and the
white chaos-based NRNG.

Statistical Tests
LC-RNG NRNG

M = 224 M = 226 M = 228 M = 230 Data1 Data2

Frequency Success Success Success Success Failure Success
Block Frequency Success Success Success Success Success Success

Cumulative Sums Success Success Success Success Failure Success
Runs Success Success Success Success Failure Success

Longest Run Success Success Success Success Success Success
Rank Success Success Success Success Success Success
FFT Failure Success Success Success Success Success

Non-overlapping Template Failure Failure Success Success Failure Success
Overlapping Template Success Success Success Success Success Success

Universal Success Success Success Success Success Success
Approximate Entropy Failure Success Success Success Failure Success
Random Excursions Success Success Success Success Success Success

Random Excursions Variant Success Success Success Success Success Success
Serial Failure Success Success Success Failure Success

Linear Complexity Success Success Success Success Success Success

Total successful tests 11/15 14/15 15/15 15/15 9/15 15/15

Table 2. Model configuration of neural networks.

RNN-Based Model FNN-Based Model RCNN-Based Model

Input layer 1 Input layer 1 Input layer 1

RNN-256 + Tanh FC-256 + Relu CNN 2-64 + Relu + MP-2
FC-256 + Softmax FC-256 + Relu CNN 3-128 + Relu+ MP-2

/ FC-256 + Softmax LSTM-128 + Tanh
/ / FC-256 + Softmax

1 The input layer with a one-hot encoder; 2 the CNN with a filter length of 9; 3 the CNN with a filter length of 3.

On the prediction accuracy, these models are applied to twenty million datasets from LC-RNG
with M ∈ (220, 222, 224, 226). The prediction results of these deep learning models on the LC-RNG with
different periods are shown in Table 3. The baseline probability, Pb, is still 0.39%, since 8-bit random
numbers extracted from different periods follow the same uniform probability distribution. In Table 3,
the simple RNN-based model has no advantage in detecting the intricate correlations among random
numbers when M ≥ 222. We speculate that the RNN-based model is subject to the problem of gradient
disappearance during the training process, and has difficulty in discovering deterministic correlations.
The FNN-based model and RCNN-based model can detect correlations in the data when M ≤ 226,
and give higher prediction accuracy than Pb. However, the TPA-based model consistently achieves a
prediction accuracy of more than 95% when M ≤ 224, which is significantly better than the performance
of other models. The model still detects the correlations, even though the length of the training set is
less than M.

Table 3. Prediction performance of the models on the LC-RNG with different periods.

Model
LC-RNG (Accuracy: %)

M = 220 M = 222 M = 224 M = 226

RNN-based model 44.42 ± 0.02 0.39 ± 0.01 0.39 ± 0.01 0.39 ± 0.01
FNN-based model 99.81 ± 0.01 88.62 ± 0.05 77.82 ± 0.05 1.88 ± 0.02

RCNN-based model 86.91 ± 0.05 61.45 ± 0.07 18.79 ± 0.06 1.93 ± 0.01
TPA-based model 99.86 ± 0.02 99.38 ± 0.06 95.53 ± 0.05 0.39 ± 0.01
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To compare the effectiveness of these models, we also investigate how the prediction accuracy
depends on the length of the training data, L. We draw the prediction results of these models on the
LC-RNG with the period of 224, which are shown in Table 4. The RNN-based model with simple
configuration still shows the weak learning capability when L increases. The performance of FNN-based
model and RCNN-based model becomes better as L increases. These results show that the longer the
length of the training set is, the higher the prediction accuracy. In addition, the FNN-based model
performs better than others when L = 3.2 × 106, because it consumes most computational resources
(trainable parameters) among these models. The TPA-based model gives an obvious advantage in
learning the correlations when L increases, compared with the performance of others. Specifically,
given the same length of the training data, the model achieves higher prediction accuracy than other
models when L ≥ 6.4 × 106. As shown above, the performance of the predictive model is investigated
and demonstrated in this scenario.

Table 4. Prediction performance of the models on the LC-RNG with different length of training data.

Model
Length of Training Data (×106)

1.6 3.2 6.4 8.0

RNN-based model 0.39 ± 0.01 0.39 ± 0.01 0.39 ± 0.01 0.39 ± 0.01
FNN-based model 0.39 ± 0.01 67.62 ± 0.05 74.65 ± 0.03 77.82 ± 0.05

RCNN-based model 0.39 ± 0.01 0.39 ± 0.01 10.37 ± 0.03 18.79 ± 0.06
TPA-based model 0.39 ± 0.01 1.03 ± 0.02 92.80 ± 0.03 95.53 ± 0.05

For the second scenario, we investigate the security of datasets extracted at different stages of
the NRNG based on white chaos from the perspective of DL. Because of the retention of four LSBs
in quantization of white chaos, the security of 4-bit data is evaluated in this scenario. Prior to this,
the probability distribution of 4-bit datasets extracted at different stages of the NRNG is verified,
as shown in Figure 5b,c. Obviously, the 4-bit integers at different stages are basically subject to the
same uniform probability distribution. That is, the baseline probability is 6.25%. Then, the same
procedure is used to learn the hidden correlations in the datasets, which are gathered from the output
of the ECL1 (denoted as Data1) and the final output of the NRNG (denoted as Data2). The results of
the prediction are also shown in Figure 6. For the ECL1 stage, the predictive DL model achieves 9.54 ±
0.05% accuracy, which obviously surpasses Pb in guessing the next random value. For the final output
of the NRNG, Ppred is extremely close to Pb, i.e., the provided model learns no patterns in the training
dataset. For both stages of the NRNG, the results given the DL model are consistent with these of the
NIST test suite in Table 1. In other words, the predictive model does as well as the NIST test suite in
this scenario.

To further investigate the reasons behind the advantage provided by the DL model, temporal
properties of the white chaos of the NRNG as well as the chaos of the ECL1 are depicted in Figure 7,
including the radio-frequency (RF) spectrum, and the autocorrelation function. The RF spectra of the
chaos of the ECL1 and the white chaos are depicted in Figure 7a1,b1, respectively. For the spectrum
map of the chaotic ECL1, a dominant peak approximately at the relaxation frequency can be clearly
observed, which is detrimental to the bandwidth and flatness of chaos of ECL1 [17]. Furthermore,
we can observe an obvious pattern of periodic modulation from the insert of Figure 7a1. Please note
that the period equals the reciprocal of the feedback delay time. The periodic modulation is actually
the time-delay signature (TDS) that destroys the unpredictability and randomness of entropy source.
However, in Figure 7b1, the spectrum of the white chaos is flat and broadband, which is not subject to
the dominant peak and the periodic modulation pattern. That is, the white chaos generated by optical
heterodyning has the great potential in extracting high-speed and trusted random numbers.
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Figure 7. Temporal properties of the chaos of the ECL1 as well as the white chaos-based NRNG.
(a1,b1) respectively represent the RF spectra of the chaos of the ECL1 and the white chaos.
(a2,b2) respectively represent the autocorrelation traces of the chaos of the ECL1 and the white chaos.

To examine the existence of TDS, we plot the autocorrelation traces of the chaos of the ECL1 and
the white chaos, as depicted in Figure 7a2,b2, respectively. The autocorrelation trace of the chaotic
ECL1 shows an apparent correlation peak at the feedback delay in Figure 7a2. We speculate that the
retention of four LSBs still preserves the TDS in raw data, which precludes its use as a random number
generator. By comparison, after optical heterodyning, the correlation trace of the heterodyne signal
has no correlation peak in Figure 7b2, which indicates the elimination of such time-delay signature by
heterodyning of two chaotic ECLs. In addition, other methods [43–45] of eliminating the TDS also
significantly improve the randomness of RNGs.

In the predictive model, the CNN is introduced into the TPA mechanism. As demonstrated
in [46], the CNN filters play a role of bases in the discrete Fourier transform (DFT), which is used
to reveal significant temporal characteristics in the intricate time series. Originally, the frequency
domain in DFT serves as a powerful representation for CNN to use in training and modeling [40].
The frequency-domain representation from CNN filters can reveal the signature of the time delay of the
data from the chaotic ECL1 stage. Thus, we believe that TDS of the chaotic ECL1 causes the correlations
among the data, and then gives the predictive model more chances to learn any temporal information
among the data. For the white chaos, TDS is eliminated by heterodyning of two chaotic ECLs, and no
characteristics are shown in the frequency domain. Evidently, the model cannot learn any temporal
pattern in the training dataset collected from the final output of the NRNG, i.e., Ppred ≈ Pb. Therefore,
the NRNG has the strong resistance against our predictive DL.

4. Discussion

It is surprising that the DL-based predictive model can perform our task quite meaningfully,
as evidenced above. Specifically, the model can learn inherent correlations among random numbers,
and gives obvious and consistent prediction accuracy better than the baseline probability in five
sub-test sets, when M ≤ 228. Note that random numbers with the period of LC-RNG of 228 can pass
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the NIST test suite successfully. Additionally, the model can also detect deterministic patterns caused
by TDS in the ECL1 stage of the NRNG. However, little is learned by the model when the period of
LC-RNG is larger than 228. The prediction ability of the model is limited by the basic DL architecture
and its parameters, such as the length of the training set, the size of the input sequence, and so on.
Apparently, the optimization of the parameters and the sophisticated and advanced neural networks
can improve the prediction accuracy.

On the other hand, it is essential to pursue higher prediction accuracy by using all technical
methods. The higher probability of correct prediction indicates the more powerful capability of
the model in detecting inherent correlations of random numbers. In cryptography and security
communications, in order to avoid attacks by adversaries, RNGs ought to comply with more stringent
test requirements, including the DL-based predictive models.

5. Conclusions

In conclusion, a predictive analysis using DL based on TPA is proposed to evaluate the security
of RNGs. The predictive model has powerful learning capability in detecting inherent correlations
among random numbers, which is investigated and demonstrated by applying it to the LC-RNG with
different periods. Compared with the existing related works, the learning performance of the model is
further verified on the prediction accuracy and the length of the training data. After that, we analyze
the security of data extracted at both stages of the NRNG based on physical white chaos. In particular,
for the ECL1 stage, the model learns deterministic correlations among the dataset, and achieves higher
accuracy than the baseline probability in guessing the next random number. After optical heterodyning
of both chaotic ECLs and minimal post-processing are introduced, the predictive model detects no
patterns in the data; this is the first work showing that the NRNG has the strong resistance against DL.
By analyzing the temporal properties of both stages, we find that TDS, causing the inherent correlations
among the data, is the key to be learned and detected by DL. Finally, we conclude that DL-based
predictive model is expected to provide an efficient supplement for evaluating the security and quality
of RNGs.

Even though we confirmed the powerful learning capability of our predictive model, it is still
worthwhile further optimizing the predictive performance of the model, and deeply investigate the
potential of DL in cryptanalysis of RNGs in the future. In addition, we will apply the advanced DL
technologies to construct the predictors for entropy estimation of RNGs. Moreover, the DL-based
predictors will be employed for real-time health testing of entropy sources of RNGs in our future work.
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Abbreviations

The following abbreviations are used in this manuscript:

DL Deep Learning
NRNG Non-deterministic Random Number Generator
DRNG Deterministic Random Number Generator
TPA Temporal Pattern Attention
ECL External-Cavity Semiconductor Laser
RNG Random Number Generator
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FNN Feedforward Neural Network
RNN Recurrent Neural Network
RCNN Recurrent Convolutional Neural Network
DFB Distributed Feedback Semiconductor Laser
PC Polarization Controller
FC Fiber Coupler
OI Optical Isolator
VA Variable Attenuator
BPD Balanced Photo-Detector
ADC Analog-to-Digital Converter
LSBs Least Significant Bits
LC-RNG Linear Congruential Random Number Generator
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
FC Fully Connected
CNN Convolutional Neural Network
MP Max-Pooling
RF Radio-Frequency
TDS Time-Delay Signature
DFT Discrete Fourier Transform
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5. Lambić, D. Security analysis and improvement of the pseudo-random number generator based on piecewise
logistic map. J. Electron. Test. 2019, 35, 519–527. [CrossRef]

6. Garipcan, A.M.; Erdem, E. Implementation of a digital TRNG using jitter based multiple entropy source on
FPGA. Inf. Midem-J. Microelectron. Electron. Compon. Mater. 2019, 49, 79–90.

7. Nebhen, J. A low power CMOS variable true random number generator for LDPC decoders. In International
Conference on Modelling, Simulation and Intelligent Computing; Springer: Berlin/Heidelberg, Germany,
2020; pp. 495–503.

8. Park, B.K.; Park, H.; Kim, Y.-S.; Kang, J.-S.; Yeom, Y.; Ye, C.; Moon, S.; Han, S.-W. Practical true random
number generator using CMOS image sensor dark noise. IEEE Access 2019, 7, 91407–91413. [CrossRef]

9. Huang, M.; Chen, Z.; Zhang, Y.; Guo, H. A Gaussian-distributed quantum random number generator using
vacuum shot noise. Entropy 2020, 22, 618. [CrossRef]

10. Hurley-Smith, D.; Hernandez-Castro, J. Quantum leap and crash: Searching and finding bias in quantum
random number generators. ACM Trans. Priv. Secur. 2020, 23, 1–25. [CrossRef]

11. Michel, T.; Haw, J.Y.; Marangon, D.G.; Thearle, O.; Vallone, G.; Villoresi, P.; Lam, P.K.; Assad, S.M.
Real-time source-independent quantum random-number generator with squeezed states. Phys. Rev. Appl.
2019, 12, 034017. [CrossRef]

12. Guo, X.; Cheng, C.; Wu, M.; Gao, Q.; Li, P.; Guo, Y. Parallel real-time quantum random number generator.
Opt. Lett. 2019, 44, 5566–5569. [CrossRef]

13. Wang, Y.; Xiang, S.; Wang, B.; Cao, X.; Wen, A.; Hao, Y. Time-delay signature concealment and physical
random bits generation in mutually coupled semiconductor lasers with FBG filtered injection. Opt. Express
2019, 27, 8446–8455. [CrossRef]

http://dx.doi.org/10.1016/j.future.2019.08.034
http://dx.doi.org/10.1007/s10836-019-05818-8
http://dx.doi.org/10.1109/ACCESS.2019.2926825
http://dx.doi.org/10.3390/e22060618
http://dx.doi.org/10.1145/3398726
http://dx.doi.org/10.1103/PhysRevApplied.12.034017
http://dx.doi.org/10.1364/OL.44.005566
http://dx.doi.org/10.1364/OE.27.008446


Entropy 2020, 22, 1134 14 of 15

14. Wang, L.; Wang, D.; Gao, H.; Guo, Y.; Wang, Y.; Hong, Y.; Shore, K.A.; Wang, A. Real-time 2.5-Gb/s correlated
random bit generation using synchronized chaos induced by a common laser with dispersive feedback.
IEEE J. Quantum Electron. 2019, 56, 1–8. [CrossRef]

15. Yoshiya, K.; Terashima, Y.; Kanno, K.; Uchida, A. Entropy evaluation of white chaos generated by
optical heterodyne for certifying physical random number generators. Opt. Express 2020, 28, 3686–3698.
[CrossRef] [PubMed]

16. Wang, A.; Wang, L.; Li, P.; Wang, Y. Minimal-post-processing 320-Gbps true random bit generation using
physical white chaos. Opt. Express 2017, 25, 3153–3164. [CrossRef] [PubMed]

17. Wang, A.; Wang, B.; Li, L.; Wang, Y.; Shore, K.A. Optical heterodyne generation of high-dimensional and
broadband white chaos. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–10.

18. Truong, N.D.; Haw, J.Y.; Assad, S.M.; Lam, P.K.; Kavehei, O. Machine learning cryptanalysis of a quantum
random number generator. IEEE Trans. Inf. Forensic Secur. 2019, 14, 403–414. [CrossRef]

19. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications; National Institute of Standards and Technology:
Gaithersburg, MD, USA, 2001.

20. Killmann, W.; Schindler, W. AIS 31: Functionality Classes and Evaluation Methodology for True (Physical) Random
Number Generators, Version 3.1; Bundesmat fur Sicherheir in der Informationtechnik (BSI): Bonn, Germany, 2001.

21. Brown, R.G.; Eddelbuettel, D.; Bauer, D. Dieharder: A Random Number Test Suite. Available online:
http://www.cs.hku.hk/diehard (accessed on 18 May 2020).

22. Lecuyer, P.; Simard, R. TestU01: AC library for empirical testing of random number generators. ACM Trans.
Math. Softw. 2007, 33, 1–40. [CrossRef]

23. Hurley-Smith, D.; Hernandez-Castro, J. Certifiably biased: An in-depth analysis of a common criteria EAL4+

certified TRNG. IEEE Trans. Inf. Forensic Secur. 2017, 13, 1031–1041. [CrossRef]
24. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
25. Zhang, R.; Chen, Z.; Chen, S.; Zheng, J.; Büyüköztürk, O.; Sun, H. Deep long short-term memory networks

for nonlinear structural seismic response prediction. Comput. Struct. 2019, 220, 55–68. [CrossRef]
26. Maksutov, A.A.; Goryushkin, P.N.; Gerasimov, A.A.; Orlov, A.A. PRNG assessment tests based on neural

networks. In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering, Moscow, Russia, 29 January–1 February 2018; pp. 339–341.

27. Fan, F.; Wang, G. Learning from pseudo-randomness with an artificial neural network–does god play
pseudo-dice? IEEE Access 2018, 6, 22987–22992. [CrossRef]

28. Wen, Y.; Yu, W. Machine learning-resistant pseudo-random number generator. Electron. Lett. 2019,
55, 515–517. [CrossRef]

29. Yang, J.; Zhu, S.; Chen, T.; Ma, Y.; Lv, N.; Lin, J. Neural network based min-entropy estimation for random
number generators. In International Conference on Security and Privacy in Communication Systems; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 231–250.

30. Zhu, S.; Ma, Y.; Li, X.; Yang, J.; Lin, J.; Jing, J. On the analysis and improvement of min-entropy estimation on
time-varying data. IEEE Trans. Inf. Forensic Secur. 2019, 15, 1696–1708. [CrossRef]

31. Boyar, J. Inferring sequences produced by a linear congruential generator missing low-order bits. J. Cryptol.
1989, 1, 177–184. [CrossRef]

32. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures.
Neural Comput. 2019, 31, 1235–1270. [CrossRef] [PubMed]

33. Pienaar, S.W.; Malekian, R. Human activity recognition using LSTM-RNN deep neural network architecture.
In Proceedings of the 2019 IEEE 2nd Wireless Africa Conference (WAC), Pretoria, South Africa,
18–20 August 2019; pp. 1–5.

34. Yuan, X.; Li, L.; Wang, Y. Nonlinear dynamic soft sensor modeling with supervised long short-term memory
network. IEEE Trans. Ind. Inform. 2019, 16, 3168–3176. [CrossRef]

35. McDermott, P.L.; Wikle, C.K. Bayesian recurrent neural network models for forecasting and quantifying
uncertainty in spatial-temporal data. Entropy 2019, 21, 184. [CrossRef]

36. Haidong, S.; Junsheng, C.; Hongkai, J.; Yu, Y.; Zhantao, W. Enhanced deep gated recurrent unit and complex
wavelet packet energy moment entropy for early fault prognosis of bearing. Knowl. Based Syst. 2020,
188, 105022. [CrossRef]

http://dx.doi.org/10.1109/JQE.2019.2950943
http://dx.doi.org/10.1364/OE.382234
http://www.ncbi.nlm.nih.gov/pubmed/32122032
http://dx.doi.org/10.1364/OE.25.003153
http://www.ncbi.nlm.nih.gov/pubmed/28241531
http://dx.doi.org/10.1109/TIFS.2018.2850770
http://www.cs.hku.hk/diehard
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1109/TIFS.2017.2777342
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.compstruc.2019.05.006
http://dx.doi.org/10.1109/ACCESS.2018.2826448
http://dx.doi.org/10.1049/el.2019.0485
http://dx.doi.org/10.1109/TIFS.2019.2947871
http://dx.doi.org/10.1007/BF02252875
http://dx.doi.org/10.1162/neco_a_01199
http://www.ncbi.nlm.nih.gov/pubmed/31113301
http://dx.doi.org/10.1109/TII.2019.2902129
http://dx.doi.org/10.3390/e21020184
http://dx.doi.org/10.1016/j.knosys.2019.105022


Entropy 2020, 22, 1134 15 of 15

37. Li, Y.; Zhu, Z.; Kong, D.; Han, H.; Zhao, Y. EA-LSTM: Evolutionary attention-based LSTM for time series
prediction. Knowl. Based Syst. 2019, 181, 104785. [CrossRef]

38. Niu, Z.; Yu, Z.; Tang, W.; Wu, Q.; Reformat, M. Wind power forecasting using attention-based gated recurrent
unit network. Energy 2020, 196, 117081. [CrossRef]

39. Yuan, Y.; Jia, K.; Ma, F.; Xun, G.; Wang, Y.; Su, L.; Zhang, A. A hybrid self-attention deep learning framework
for multivariate sleep stage classification. BMC Bioinf. 2019, 20, 586. [CrossRef]

40. Shih, S.Y.; Sun, F.K.; Lee, H. Temporal pattern attention for multivariate time series forecasting. Mach. Learn.
2019, 108, 1421–1441. [CrossRef]

41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
42. Turan, M.S.; Barker, E.; Kelsey, J.; McKay, K.A.; Baish, M.L.; Boyle, M. Recommendation for the Entropy Sources Used

for Random Bit Generation; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018.
43. Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.;

Yoshimori, S. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2008,
2, 728–732. [CrossRef]

44. Reidler, I.; Aviad, Y.; Rosenbluh, M.; Kanter, I. Ultrahigh-speed random number generation based on a
chaotic semiconductor laser. Phys. Rev. Lett. 2009, 103, 024102. [CrossRef] [PubMed]

45. Kanter, I.; Aviad, Y.; Reidler, I.; Cohen, E.; Rosenbluh, M. An optical ultrafast random bit generator.
Nat. Photonics 2010, 4, 58–61. [CrossRef]

46. Rippel, O.; Snoek, J.; Adams, R.P. Spectral representations for convolutional neural networks. In Proceedings
of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015;
pp. 2449–2457.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.knosys.2019.05.028
http://dx.doi.org/10.1016/j.energy.2020.117081
http://dx.doi.org/10.1186/s12859-019-3075-z
http://dx.doi.org/10.1007/s10994-019-05815-0
http://dx.doi.org/10.1038/nphoton.2008.227
http://dx.doi.org/10.1103/PhysRevLett.103.024102
http://www.ncbi.nlm.nih.gov/pubmed/19659208
http://dx.doi.org/10.1038/nphoton.2009.235
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Scheme 
	White Chaos-Based NRNG Setup 
	DRNG Setup 
	Data Collection and Preprocessing 
	Deep Learning Model 
	Model Training and Validation 
	System Evaluation 

	Experimental Results 
	Discussion 
	Conclusions 
	References

