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Abstract: Diesel acts as a main energy source to complement human activities in Antarctica. However,
the increased expedition in Antarctica has threatened the environment as well as its living organisms.
While more efforts on the use of renewable energy are being done, most activities in Antarctica
still depend heavily on the use of diesel. Diesel contaminants in their natural state are known to
be persistent, complex and toxic. The low temperature in Antarctica worsens these issues, making
pollutants more significantly toxic to their environment and indigenous organisms. A bibliometric
analysis had demonstrated a gradual increase in the number of studies on the microbial hydrocarbon
remediation in Antarctica over the year. It was also found that these studies were dominated by those
that used bacteria as remediating agents, whereas very little focus was given on fungi and microalgae.
This review presents a summary of the collective and past understanding to the current findings of
Antarctic microbial enzymatic degradation of hydrocarbons as well as its genotypic adaptation to the
extreme low temperature.

Keywords: Antarctica; diesel; bioremediation; microbial degradation; psychrophiles

1. Introduction

The ever-increasing Antarctic expeditions have rendered the environment more vulner-
able to diesel pollution. Due to its remoteness, one of the notable challenges in sustaining
human presence in Antarctica is the enormous amount of energy required to empower
transportation, research stations and activities concentrated at the coastal ice-free rocky ar-
eas. This energy demand is typically met by producing energy with diesel combustion. The
transportation and long-term storing of fuels in bulk quantity have elevated the occurrence
of contamination [1]. The most common diesel contamination in Antarctica is descended
from leakages during refuelling from a ship to a land-based facility, unmaintained fuel
storage or pipe infrastructure and minor accidents in fuel handling processes. In addition to
that, the extreme climate in the Southern Ocean has caused boating and aviation accidents,
which also led to fuel leakages in the Antarctic environments [2].

Given that human activities in Antarctica are prospected to intensify and diversify, the
Antarctic environmental conservation is pressured. The utmost challenge in protecting the
polar environment is the effective management of hydrocarbon contaminants emerging
from oil spills. Diesel pollutants tend to be more persistent in the subzero temperature
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compared to those of warmer climes. This is due to decreased volatility and evaporation at
low temperature, amalgamated with innate nutrient limitations that significantly inhibit
metabolic activity of hydrocarbon-degrading microbes [1,3]. Policies, attitude and aware-
ness on the environmental protection have improved in recent years; however, the risk of
diesel pollution remains. If left untreated, the toxicity of diesel will cause negative effect on
the living organisms in this polar region. Several studies have reported the toxicity effect
of diesel fuel on the species richness, evenness and phylogenetic diversity on Antarctic
and sub-Antarctic soil biota [4]; retarded germination and early growth of sub-Antarctic
plants [3]; and lethal or behavioural effects on Antarctic aquatic organisms [5,6].

The Antarctic environment possesses significant intrinsic values that hold a great
potential in bridging a large scientific and historic knowledge gap [7]. This remote region
has been deemed worthy of protection and is presently under the scrutiny of several
nongovernment organisations. After the Madrid Protocol was established in 1991 under
the Antarctic Treaty System (ATS), Antarctica has been designated as a “natural reserve,
devoted to peace and science” [8]. Among the content of this agreement is the Protocol
on Environmental Protection to the Antarctic Treaty. Article 8 of the protocol requires all
activities to go through prior environmental assessment, whereas Article 5 necessitates
the inauguration of environmental monitoring procedures [7–9]. The current Antarctic
regimes encompass the Antarctic Treaty Consultative Parties (ATCPs) and Antarctic Treaty
Consultative Meeting (ATCM) as decision makers; whereas Committee for Environmental
Protection (CEP), Conservation of Antarctic Marine Living Resources (CCAMLR) and
Antarctic and Southern Ocean Coalition (ASOC) as special subsidiary bodies that govern
the implementation of the Antarctic Treaty [7,10]. Other international organisation such as
United Nations and Scientific Committee on Antarctic Research (SCAR) also participate in
the environmental protection policy by further processing the transparency, legitimacy and
effectiveness of the Antarctic governance [10].

Under the Madrid Protocol, all treaty nations are obligatory to establish contingency
plans for accidental fuel spills as well as to minimise pollution unless the removing of
contaminants can cause more detrimental effects to the environment [8]. Nonetheless,
fuel management and contaminants regulation are solely dependent on self-regulation by
national operators and their interpretation of the protocol [11]. Moreover, the availability of
machinery and facilities are limited, and constructions of such are also restrained by virtue
of the frigid temperature; therefore, the catabolic capacities of indigenous microorganisms
capable of degrading hydrocarbons has emerged as one of the most important tools to
eliminate or reduce diesel contamination in Antarctica [6,12,13]. This paper was aimed
at reviewing diesel uses in Antarctica, hydrocarbon pollution, its toxicity as well as the
roles and adaptation of microbes in the polar climate for remediating diesel along with its
bibliometric analysis.

2. Review Methodology

This review presents the dependency of diesel in Antarctica and its pollution effect
on the environment, as well as bioremediation by Antarctic indigenous microorganisms,
that was supported by a bibliometric study as a systematic approach. Research documents
from the time phase 1990 until 2020 were retrieved from the Scopus database using the
following keywords: diesel OR hydrocarbon * AND biodegradation OR bioremediation
OR phytoremediation OR “microbial degradation” AND Antarctic * filtered in article
title, abstract and keywords, which resulted in 207 documents. Biblioshiny was used to
analyse the annual and country scientific production; while VOSviewer was chosen as a
visualisation tool for the co-occurrence keyword analysis.

3. Diesel and Its Use in Antarctica

Diesel oil is a petroleum product that supplies fuel for automobiles, aircraft and ships,
as well as generates electricity in some areas to power homes and commercial buildings.
According to Speight [14], diesel fuel is one of the middle distillates of petroleum with the
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boiling point of 175 ◦C to 375 ◦C in approximate, which is higher than gasoline but not
more than gas oil. The full composition of diesel fuel is complex, varied and beyond the
scope of this report. Nevertheless, the main components of diesel include 25% to 50% of
alkanes, 20% to 40% cycloalkanes and 10% to 57% of aromatic contents [15,16]. Diesel fuel
also contains a trace amount of polar organic compounds including sulphur, nitrogen and
oxygen, as well as metals such as nickel, vanadium, iron and copper [17].

As mentioned, diesel is extensively used to complement human activities in Antarctica.
Traditionally, heavy and intermediate grade fuel oils are used for larger vessels to operate
in Antarctic waters; however, in response to concerns on the persistence of contaminants
in the case of oil spill, International Maritime Organisation (IMO) implemented a ban on
the use of heavy fuel oil (HFO) in water bodies governed by the Antarctic Treaty [17].
Subsequently, the heaviest grade fuel oil that is currently allowed for large vessels is the
intermediate grade fuel oil (IFO 180), except for government vessels or those that are
engaging in search and rescue operations [2,18]. On the other hand, most research stations
in Antarctica use Special Antarctic Blend (SAB) diesel, which is exclusively blended for
better performance in cold temperature. SAB has a lower heating value of 35,274 kJ/L, a
density of 0.805 kg/L at 15 ◦C and sulphur content of 10 mg/kg max [19].

As encouraged by The Antarctic Treaty System, many Antarctic research stations
are currently opting for the use of renewable energy sources like solar, ocean and wind
energy. However, most stations in the region still require the combustion of diesel and
other hydrocarbons to accommodate their power requirements. This is mainly due to
the complications regarding wind and ocean turbines or the absence of sunlight during
certain seasons in the region. Furthermore, most nations are still in early stages of research
in enacting the use of renewable energy in their Antarctic research stations [20–22]. To
date, only Belgium’s Princess Elisabeth Antarctica Research Station has been reported to be
fully depending on renewable energies to meet its energy requirement [23]. A collective
summary of reported approximate annual fuel consumption and endeavours on renewable
energies in some Antarctic research stations is shown in Table 1. Most renewable energy
undertakings in Antarctica focus on reducing instead of eliminating fuel consumption.
While this might conserve the polar environment, it is unlikely to significantly reduce
diesel pollution risk.

Table 1. Annual fuel consumption in Antarctic research stations.

Research Station Country Annual Fuel
Consumption (L) 1 Alternative Energy Source (s) Reference (s)

McMurdo Station United States
of America 5,000,000

• A three-turbine wind farm was built on Ross
Island, accounting for 15% of the station’s
annual electricity demand.

• The United States Antarctic Program (USAP)
has been exploring a few renewable energy
sources including solar, wind, geothermal,
waste wood, paper products, and recently,
tidal energy.

[24,25]

Casey Station;
Mawson Station;

Davis Station;
Macquarie Island

Station

Australia 1,933,000

• Two commercial-size wind turbines at
Mawson station resulted on 30% fuel
savings annually.

• A 105-panel solar array provided 10% of
Casey Station total annual electricity demand.

[26,27]

Amundsen-Scott
South Pole Station

United States
of America 1,916,448

• Wind and photovoltaic solar energy systems
have been experimented and found to be very
limited due to the location remoteness.

[28,29]

Syowa Station Japan 607,000
• Solar panels, solar collectors and solar hot

water system provide energy for electricity
and heating.

[27,30]
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Table 1. Cont.

Research Station Country Annual Fuel
Consumption (L) 1 Alternative Energy Source (s) Reference (s)

King Sejong
Station

Republic of
Korea 380,000

• No reported use of renewable energy but
installation of solar panels is currently
being designed.

[31]

Comandante
Ferraz Antarctic

Station
Brazil 358,985

• Integration of renewable energies and
cogeneration systems have the potential to
reduce annual fuel consumption.

[32]

Scott Base New Zealand 320,000

• Share the three-turbine wind farm with
McMurdo Station in Ross Island, wind
energy accounted to 87% of the station’s
electricity demand.

[21,25,33]

SANAE IV
Station South Africa 297,872 • Wind energy has the potential to meet 100% of

the station’s energy demand.
[21]

Zhongshan
Station China 272,689

• A power system generated by wind turbines
and photovoltaic arrays was proposed but not
yet commenced.

[22]

Great Wall Station China 169,492 • Solar panels were installed but were no longer
operational due to damage over strong winds.

[31]

Bellingshausen
Station Russia 150,000 • The station does not use renewable energies. [31]

1 Annual fuel consumption data exclude the energy produced by renewable sources.

4. Diesel Pollution and Toxicity

Unlike in the North Pole, there is no permanent human population in Antarctica since
the inhabitants are mostly tourists, scientists or support staff of the Antarctic research
programs. Hydrocarbon contaminations are very common throughout the continent,
especially areas close to research stations where anthropogenic activities are mainly con-
ducted. Consequently, high concentration of petrogenic hydrocarbon contaminants and
their biomarkers have been reported in soil and surface sediment samples close to fuel
tanks and boat storeroom where fuel combustion and storing have occurred [34,35]. These
contaminants can seep into porous soils up to the barrier of impermeable permafrost, while
slowly migrating with every summer melting, releasing the petroleum products to the
surrounding area and eventually reaching the marine environment [36]. One of the most
widespread environmental impacts of human activities in Antarctica occurred in King
George Island, South Shetland Islands which contains nice operating research stations.
This island is severely polluted due to poor fuel management [37,38]. In 1990, a huge
amount of oil has leaked from storage tanks at Marsh Station, which apparently was an
unintended issue for an ongoing period [37]. Another major oil spill from storage tank
has been recorded in 2009 where an unknown amount of diesel fuel was discharged into
the snow, which then rippled into Maxwell Bay during snowmelt [38]. In winter 2015, a
pipeline has spilled 4000 L of SAB diesel fuel in Casey Station, Antarctica; however, due
to heavy snow, the contaminated site was unseen, therefore covering the spreading of the
fuel spill for more than three months [39].

Another main source of diesel pollution, particularly in the marine and coastal areas
comes from boating accidents. A detailed review of oil spillage incidents into the marine
environment was reported by Lim et al. [40]. Hitherto, the most significant oil spill incident
in Antarctica water is the sinking of Bahía Paraíso in Arthur Harbour, Antarctica in January
1989. This tragedy had released 600,000 L of diesel fuel arctic (DFA) into the Southern
Ocean due to a 10-m tear in the ship’s hull [41]. Aside from that, in the last two decades,
the number of cruise ships voyaging the Atlantic Ocean has escalated [42]. Inevitably, an
increase in accidents involving cruise ships has also been reported. This has been a growing
concern to the Antarctic and Southern Ocean Coalition (ASOC) as well as members of the
Antarctic Treaty as the conservation of the Antarctic region had been jeopardised [43]. In
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February 2007, the hull and fuel tanks of M.S. Nordkapp have been damaged, causing the
vessel to ground at Deception Island spilling around 1000 L of diesel [44–46]. Later that
year, cruise ship M.S. Explorer was holed by ice causing 189,271 L of diesel consequently
leaked into the ocean [47,48].

The pristine and sensitive environment of the Antarctic continent prompts a significant
impact of hydrocarbon pollution, even at a local level [34]. Hydrocarbon contaminants have
been proven to be long-lived in the region, except in high-energy marine environments
where dispersion occurs rapidly [49]. Furthermore, the low temperatures and abundant
snow in some regions favour the atmospheric deposition and persistence of hydrocarbon
pollutants in soils and vegetation besides delaying the biological degradation of hydrocar-
bons in contaminated soils due to slower mitochondrial function and higher lipid storage
of organisms, [34,50–52]. In addition, response to oil spill in Antarctica is constrained
due to extreme weather and remote location, causing the clean-up procedures to often be
delayed. For instance, after the grounding of Bahía Paraíso, the emergency spill-response
team organised by the United States National Science Foundation (NSF) took 10 days to
arrive with fuel-spill response equipment for initial survey and clean-up [41].

Diesel toxicity is a great concern in Antarctica due to the aforementioned polar envi-
ronmental factors. Petrogenic contaminants’ toxicity effects toward different organisms in
the region have been widely reported [2,17,44,45]. Bacterial community commonly serves
as an indicator of diesel fuel toxicity in the sub-Antarctic soil [4]. Soils in polar climates
usually have tiny amounts of natural attenuation capacity, allowing contaminants to persist
longer than they could in warmer environments [39]. Upon the occurrence of diesel fuel
contamination, the total species richness, diversity and evenness in the Antarctic soils
significantly declined, while the population of hydrocarbon-degrading bacteria, especially
Pseudomonas, Rhodococcus and Parvibaculum drastically increased [4,53]. Oil-contaminated
soils are also reckoned to be able to trap more heat due to the decreased surface albedo and
that their hydrophobicity might increase, subsequently decreasing soil moisture holding ca-
pacity [54]. On the contrary, spilled oil also shrank the species diversity of microorganisms
in the marine environments, where population is dominated by Oleisprisa, Granulosicoccus,
Cycloclasticus and Rhodococcus genus [55–57].

Penguins and Antarctic seabirds are also heavily affected by diesel pollution. Most
reports of diesel toxic effects on birds are of the aftermath of the grounding of Bahia Paraiso.
Oiled Adelie penguins and blue-eyed shags have been found dead in Biscoe Bay which is
adjacent to the grounding site [58]. Additionally, Eppley [59] reported a total reproductive
failure of South Polar Skuas that occurred at Palmer Station and the death of all skua
chicks in the local population. Diesel also presents indirect effect on seabirds specifically
through food webs, where poisoning might occur due to hydrocarbon-contaminated fishes
or changes in their prey and predator’s population [59]. Most vessels that sunk in the
Southern Ocean occurred in close proximity within foraging ranges of breeding penguins
from their colony such as those at Cape Hallett, Ross Sea and Nightingale Island, and oil
leakage from a pipe in Marsh Station that had caused contamination in Elephant Valley,
an important breeding area from some birds and penguin species [37,44]. Penguins are
known to have a great capacity of lipid storage. Brown [17] explained that while this
higher lipid content can provide initial protective effect to oil contaminants, diesel is mostly
hydrophobic, therefore can be stored in the lipid of these species contributing to more
toxic effects.

Apart from that, invertebrates of Antarctica are heavily affected by diesel contam-
inations. The soil invertebrate community is mostly dominated by nematodes worms,
rotifers and tardigrades, whereas marine invertebrates include bivalves, echinoderms
and isopods [2,17,60]. Due to their physiochemical and ecological adaptations to extreme
environment, soil and marine invertebrates might be the most affected compared to other
classes of livings [17]. In 1987, the grounding of Nella Dan had affected many marine
invertebrates where they were found washed up dead along the shoreline of Macquarie
Island [61]. Diesel has also been proven to be mutagenic to several species of isopods and



Int. J. Environ. Res. Public Health 2021, 18, 1512 6 of 18

springtails and shown to limit reproduction rate in annelid worms [2]. In addition, among
the lifecycles of marine invertebrates such as bivalves and echinoderms, it has been found
that embryonic and larval stages are more affected by oil due to the rapid cell growth and
differentiation [17]. Heretofore, the sensitivity estimates of diesel pollutants that may affect
these Antarctic communities are still not adequately assessed.

5. Role of Antarctic Microbes in Diesel Remediation—A Bibliometric Analysis

Presently, bioremediation has emerged as a superior and the most ecofriendly ap-
proach in removing or neutralising contaminants [62,63]. As mentioned, the remoteness
of Antarctica has led to limited availability of machinery and facilities. Thus, response to
accidental oil spill tends to delay or is absent. In this context, the catabolic capacities of
Antarctic indigenous microorganisms hold a great potential in removing contaminants
while leaving minimal or no side effects [12]. Antarctic hydrocarbon-degrading microor-
ganisms have optimum enzymatic activity in low temperature and could excellently adapt
to the polar temperature [64]. Natural attenuation potential of autochthonous microorgan-
isms has been proven but very limited [65]. Therefore, several types of bioremediation
techniques have been applied at the region to accelerate biodegradation rate, thus minimis-
ing the toxicity effect of diesel fuel to the indigenous organisms. These methods, along
with their feasibility and limitations, are shown in Table 2.

Table 2. Proven or potential feasibility and limitations or bioremediation application in Antarctica.

Bioremediation Method Feasibility and Limitations Reference (s)

Biostimulation (nutrient
amendment)

As the success of bioremediation heavily depends on its biotic and abiotic
parameters, biostimulation enhances degradation by balancing the C:N:P. The

addition of ad hoc nutrients will amplify the removal of hydrocarbon contaminants,
therefore minimising the toxicity effect of diesel on the environment.

Notwithstanding, this in-situ method might lead to the dominance of bacterial
classes with the highest diesel tolerance in a community, which might affect the soil

diversity in due course.

[66–68]

Bioaugmentation

Bioaugmentation includes the addition of pre-adapted strain to polluted site, which
has been found to significantly shorten remediation period. This in-situ technique

aims to maintain a high microbial biomass. Optimisation is usually performed
before bioaugmentation, where actual environmental conditions, soil features,

predation and competitive effects are not inferred. Moreover, the Antarctic Treaty
legislates forbid any introduction or release of nonindigenous species to the area;

therefore, the use of commercially available bioremediation non-Antarctic bacteria
to help in cleaning up pollutants is not an option.

[65,69]

Aeration

This in-situ method was pioneered in Macquarie Island by enhancing aeration
through microbioventing. This trial was conducted on the postulation that the

buried oxygen sensor array would be uniform throughout the subsurface. However,
buried organic and beach cobble horizons were found to limit the distribution of

oxygen and nutrients in the system. In addition, a diesel-generated air compressor
was required to run constantly to supply air, which hold its own

environmental risks.

[1,70]

Biopile

A large-scale biopile system was successfully carried out at Casey Station and
reckoned to be replicable across the Antarctic region. Biopile operation encompasses

the combination of aeration via mechanical turning, fertiliser application and
leachate to increase soil moisture. While this in-situ technique is promising,

large-scale biopile operation is costly and requires a large amount of energy, which
reduces its feasibility in remote regions. Disturbance on soil profile should also

be considered.

[2,68,71]
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Table 2. Cont.

Bioremediation Method Feasibility and Limitations Reference (s)

Biocells or bioreactors

This ex-situ technique involves the containerisation of contaminated soil or water in
an enclosed system with monitored biotic and abiotic parameters, thus expediting
the biodegradation rate. The application of biocells or bioreactors in Antarctica is yet
to be reported despite its proven practicality in several studies. However, extensive
site excavation is required to relocate the contaminants to the degradation system,

risking more damage to the sensitive environment.

[1,40,72,73]

Permeable reactive
barriers (PRBs)

PRBs are an in-situ containment technique that is mainly used to remediate water
that passes through them. It is viable in remote and cold regions due to the passive
low-power system required to operate by allowing the adsorption of contaminants
from flowing water to the barrier. Additionally, PRBs have the least impact on the
environment since a complete removal of the system can be done at the end of site
operation. Nonetheless, the viability of PRBs is limited as they do not remediate

contaminated source soils.

[1,68,74]

A bibliometric analysis on microbial diesel remediation in Antarctica was conducted
to analyse the growth or lack thereof of research attention of this topic. In the last three
decades, an annual growth of 9.97% has been observed in the publication with the keyword
query mentioned in Section 2. The increasing trend indicates the growing attention of
microbial hydrocarbon remediation in the South Pole region (Figure 1). Data earlier than
1990 was not found from the search, and the annual production was put into groups of a
decade to avoid flatness. The steep rise in the number of publications in 2001 until 2010
coincided with the enforcing of the Environmental Protocol of the Antarctic Treaty in 1998
that was meant to enhance the protection of the Antarctic environment [75].

Figure 1. Documents published from 1991 to 2020 grouped into decades.

Upon further breakdown of literature growth, it has been found that the top 10 most
productive countries in this research theme are Australia, Argentina, United States of
America (USA), Malaysia, Italy, Canada, United Kingdom (UK), Brazil, France and New
Zealand. The pie chart depicts each country’s domination in the research of microbial
hydrocarbon remediation (Figure 2). Other countries with more than 10 publications that
are not shown in the figure are China, Germany, Chile and Japan. This also coincides with
the Antarctic Treaty as all the countries mentioned are the members of the Environmental
Protocol. This indicates the continuous effort of researchers in preserving the Antarctic
environment, which indirectly implies the important role of Antarctic indigenous microbes
in the cleaning-up of fuel pollutants in the region as the protocol requires contaminated
sites to be cleaned after all expeditions. This analysis also suggested that bioremediation is
the preferred method in keeping the environment clean while adhering to the protocol.

The studies on hydrocarbon bioremediation in Antarctica have mostly focused on
bacteria. This was concluded upon analysing the keywords in these publications, which
implied their research themes. The co-occurrence networks of the most relevant keywords
are shown in Figure 3. The visualisation map depicts the thematic focus in the field of
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research by grouping keywords into different clusters, which are colour-coded. A total
of eight clusters can be observed showing a diverse range of research focus using varies
microorganisms in bioremediation. The size of the circle represents the frequency of
the keyword co-occurrence, whereas the thickness of the line indicates the strength of
relevance. As illustrated, the keyword “bacteria (microorganisms)” was the largest as
compared to other microbes, which indicates the highest frequency of co-occurrence. The
commonly used hydrocarbon-degrading bacteria include Rhodococcus, Pseudomonas and
Arthrobacter [53,76]. Other important keywords shown in the network visualisation aside
from bacteria and its derivative keywords are “fungi” and “algae”, which demonstrated
the feasibility of performing bioremediation using microbes besides bacteria.

Figure 2. Top ten active countries in publishing Antarctic microbial hydrocarbon remediation
related literature.

Figure 3. Network visualisation map of keywords in literature related to Antarctic bioremediation of diesel created by
VOSviewer ©2021 Centre for Science and Technology Studies, Leiden University, The Netherlands
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6. Microbial Diesel Degradation and Its Metabolic Pathways

As depicted in Figure 3, articles on microbial remediation in Antarctica were centred
on bacteria. Bacteria are the most favoured microbes in hydrocarbon degradation due to
their versatility and ability to utilise diesel as their sole carbon source while leaving no side
effects [77]. The feasibility of microbial remediation relies heavily on the optimised process
parameters. Therefore, plenty of studies involving optimisation of diesel degradation have
been documented. These reports on hydrocarbon-degrading bacteria in low temperature
as well as their brief research summaries are shown in Table 3. Based on this finding, it can
be concluded that most Antarctic bacterial species have the highest enzymatic activity at
temperature lower than 25 ◦C, noting them as either psychrophilic or psychrotolerant.

Table 3. Hydrocarbon-degrading bacterial species isolated from Antarctica.

Microbial
Species

Isolation
Place

Substrate
Degraded Research Summary Reference (s)

Arthrobacter spp.
AQ5-05

King
George
Island

Diesel
• Up to 3% (v/v) diesel was degraded at 10 ◦C within 7 days
• Upon optimisation, metabolic activity was maximum at

16.3 ◦C, pH 7.67 and 1.12% (w/v) salinity.
[76,78]

Planococcus sp.
NJ41

Antarctic
Ocean Diesel

• Optimum growth at 10 ◦C and did not survive
temperature higher than 25 ◦C

• Extracellular enzyme oxidase degraded long straight-chain
hydrocarbons into shorter chains

• Abundant β-carotene was found in bacterial cells

[79]

Shewanella sp.
NJ49

Antarctic
Ocean Diesel

• Optimum growth at 10 ◦C and did not survive
temperature higher than 25 ◦C

• Abundant β-carotene was found in bacterial cells
[79]

Rhodococcus sp.
AQ5-07

King
George
Island

Diesel

• 90.39% degradation efficiency was obtained at 1%
(v/v) diesel

• Degradation activity was optimum at 23.5 ◦C and 0.75%
(w/v) salinity

[50]

Waste
canola oil

• 87.61% degradation efficiency was obtained at 3.5% waste
canola oil within 3 days of incubation

• Optimum cellular activity occurred when incubated with
1.05 g/L ammonium sulphate and 0.28 g/L yeast extract

• Highest degradation rate at 12.5 ◦C

[64]

Sphingomonas sp.
Ant 17

Scott
Base,
Ross

Island

Aromatic
fraction of

crude oil, jet
fuel and

diesel

• Growth was optimum at 22 ◦C in pH 6.4, with extended
lag phase in higher pH media

• A great tolerance to UV irradiation and freeze-thaw cycles
were displayed

• Genes encoding aromatic degradation enzymes are located
at chromosomal level

[80]

Pseudomonas sp.
ST41

Signy
Island Hydrocarbons

• High growth observed at 4 ◦C in a wide range of
hydrocarbons

• Cellular activity was the highest when bioaugmentation
and biostimulation techniques were applied
simultaneously

[81]

Sphingobium
xenophagum

D43FB

King
George
Island

Phenanthrene

• Capable of assimilating diesel fuel as sole carbon source.
• Up to 95% phenanthrene degradation was observed.
• Degradation was not disrupted with the presence of

cadmium as co-pollutant

[82]



Int. J. Environ. Res. Public Health 2021, 18, 1512 10 of 18

Bioremediation using fungi and microalgae is not heavily documented as compared
to that using bacteria. Several Antarctic fungal species have been characterised to have
tolerance or ability to degrade hydrocarbons as shown in Table 4. Hitherto, the identifi-
cation on Antarctic microalgal species hydrocarbon remediation is yet to be documented.
Nonetheless, reports discussing the potential of microalgae in degrading petroleum hy-
drocarbons have been found. The hydrocarbon-degrading ability was postulated through
the presence of hydrocarbon degradation intermediates such as propanoic acid, decanoic
acid and dodecanoic acid [83,84]. Moreover, Antarctic terrestrial alga Prasiola crispa was
reported to be tolerant of SAB fuel-contaminated soil, implying the ability of the alga in
assimilating the hydrocarbon contaminants [85].

Table 4. Hydrocarbon-degrading fungal species isolated from Antarctica.

Fungal
Species

Isolation
Place

Substrate
Degraded Research Summary Reference

P. caribbica
Carlini, Potter

Cove, King
George Island

n-alkanes and
diesel fuel

• Showed ability to degrade hydrocarbons and tolerance to-
wards copper, cadmium and hexavalent chromium

• Production of lipase and esterase observed, proving the
ability to degrade aliphatic hydrocarbons

• Reported as a biosurfactant producer, which relates to its
ability in assimilating n-alkanes and fuel oil as carbon source

[86,87]

Pseudeurotium
bakeri

Macquarie
Island SAB Diesel • Cell growth thrived in high concentration of SAB diesel fuel

• Showed hydrocarbons tolerance of up to 1000 mg/kg soil
[88]

Mortierella sp.
Rothera Point,

Adelaide
Island

Dodecane
• Biomass increased when cultured on dodecane
• Decreased hyphal extension rate was observed, indicating

dodecane as readily utilisable carbon source
[89]

Penicillium sp.
CHY-2

Unspecified
Antarctic soil Hydrocarbons

• Considerable degradation was observed in decane, butyl-
benzene and dodecane

• Manganese peroxidase (MnP), a key PAH degradation en-
zyme was purified

[90]

Exophiala
macquariensis

Macquarie
Island Toluene

• A novel Antarctic fungi species with toluene-degrading
ability.

• Growth was maximum at 25 ◦C
[91]

Phenoliferia
glacialis

Carlini, Potter
Cove, King

George Island
n-hexadecane

• Assimilation of n-hexadecane was observed as well as cold-
adapted enzyme: lipase and esterase

• Possessed tolerance against copper, cadmium and hexava-
lent chromium

[86]

The metabolic pathways of bacterial and fungal hydrocarbon degradation are varied;
nonetheless, one critical division of mechanisms is based around aerobic degradation [92].
Biodegradability of oil components increase in the order of polycyclic aromatic hydro-
carbons (PAHs), cyclic alkanes, monoaromatics, low molecular weight n-alkyl aromatics,
branched alkenes, branched-chain alkanes and n-alkanes [93]. The degradation of paraffin,
which comprises straight or branched alkanes, can be classified as terminal, diterminal
or subterminal [94]. Generally, these microbes catabolise diesel into simple organic com-
pounds such as alcohols, acids and fatty acids, which will eventually undergo β-oxidation
to form acetyl-CoA [1]. The general pathways of alkane degradation are shown in Figure 4.
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Figure 4. General microbial peripheral pathways of alkane degradation (adapted from [95,96]).

Cyclic alkanes are relatively more resistant to microbial attack since they lack an
exposed terminal methyl group [94]. Several studies have shown a few species of temperate
bacteria that are able to use cyclic alkanes as their sole carbon source by utilising the alkyl
side chain, thus initiating breakdown process [97,98]. Cyclic alkanes are first converted
to cyclic alcohols, which then undergo dehydrogenation to ketones before finally opened
by the action of lactone hydrolase [95]. The documentation of naphtene degradation
mechanism with fungi was not found. On the other hand, aromatic hydrocarbons are
another major compound of diesel. Due to its nature state, the degradation of aromatic
hydrocarbons is more complex compared to alkane and cycloalkane [96]. Generally, there
are two major steps in the degradation of aromatic molecules namely the activation of the
ring and ring cleavage. The activation of ring is achieved by the presence of two molecular
oxygen atom incorporating into the aromatic ring and leads to the dihydroxylation of
aromatic nucleus, producing a less stable compound [99]. This compound is then further
oxidised to catechol, which serves as a precursor to ring cleavage. Then, a series of reactions
involving several enzymes will eventually produce acetyl-CoA, leading to the formation of
energy for the microbes involved [100]. The bacterial and fungal mechanisms of aromatic
hydrocarbon degradation are shown in Figure 5.
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Figure 5. Summarised biodegradation pathway of aromatic hydrocarbons by bacteria and fungi (adapted from [92]).

7. Microbial Adaptation Mechanisms in Cold Region

Microbes are capable in adapting to a wide variety of environments because of their
diverse metabolisms [101]. In a review by Sarmiento et al. [102], the authors demon-
strated the adaptation of cold-active enzymes in maintaining high flexibility and activity
in frigidness. The adaptation includes changes in core and surface hydrophobicity, al-
terations of amino acid compositions, weaker protein interactions, decreased secondary
structures and oligomerisation and increased conformational entropy of unfolded proteins.
Microorganisms have astonishing adaptation to withstand extreme conditions of their
surroundings [103]. Particularly in Antarctica, indigenous microbes are obligated to cope
with subzero temperatures, temperature fluctuations, frequent freeze and thaw process as
well as intense solar irradiations [104,105].

As a response to the cold-stress, Antarctic bacterium Flavobacterium spp. was found
to produce more major fatty acids in its cell membrane compared to the mesophiles and
psychrophiles of this genus [106]. In addition, Antarctic psychrophiles Planococcus sp. NJ41
and Shewanella sp. NJ49 have been found to contain abundant β-carotene in the cells, which
is known to be the key mediator of membrane fluidity in cells, thus explaining the ability of
Antarctic bacteria in excellently adapting to the extreme low-temperature [79,107]. In the
context of hydrocarbon remediation, a reported characteristic of cold-adapted hydrocarbon-
degrading bacteria is the prevalence of alk genes in Rhodococcus, Pseudomonas and Aci-
nobacter species [108,109]. These genes, particularly the alkB genes, are known to encode
for alkane monooxygenase, which is a key enzyme in the degradation of alkane. The
alkB genes are commonly used as a functional biomarker for the characterisation of aer-
obic alkane degradation [110]. Furthermore, the nahAC genes that are closely related to
Pseudomonas, which code for the breakdown of naphthalene, have been also detected in
hydrocarbon-polluted soil community from Carlini station and Potter Peninsula [111].

Commensurable to bacteria, fungi are ubiquitous in nature and possess specific mech-
anisms to thrive in harsh environments [112]. A comprehensive list of adaptation strategies
of psychrophilic fungi to cold-stress has been reported in Buzzini et al. [113]. The contribu-
tion of cold-adapted yeasts in hydrocarbon remediation is crucial under certain conditions
especially when bacterial growth is inhibited as they are usually more resistant to UV radi-
ation, alterations of pressure and salinity [114,115]. Antarctic isolated yeasts Pichia caribbica
and Guehomyces pullulans have been found to have cold-active amylase, cellulases, lipase,
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esterase, protease, pectinase and xylanase [116]. Although the correlation of these enzymes
to hydrocarbon-degrading ability was not specified, it proved that these cold-adapted
yeasts thrive in cold environment, therefore making them an important prospect in the
growing research of polar biotechnology.

Limited amount of microalgal genetic adaptations specific to the cold environmental
circumstances have been documented. Routaboul et al. [117] mentioned that psychrophilic
autotrophs maintain a high content of trienoic fatty acid, which is important in ensuring
proper biogenesis and chloroplasts maintenance in long-term growth at low temperature.
The development of high fluidity biological membranes to avoid loss of ion permeability is
also crucial to ensure optimal photosynthetic function in the polar environment [118]. More
recently, an unusually large number of genes encoding for light harvesting complex (LHC)
protein has been also found in the gene ontology analysis of Antarctic diatom Fragilariopsis
cylindrus when compared to temperate diatom [119].

8. Conclusions

The toxicity of diesel in Antarctica has been an increasing concern as it brings detrimen-
tal effects towards the fragile environments of Antarctica and its living organisms. Natural
components including soil and water as well as a few classes of Antarctic organisms were
heavily affected by diesel due to oil spill and misconduct. As the last pristine environment
on Earth, extra care and precaution steps are needed to ensure that Antarctica will not
become just as polluted as the rest of the world while its organisms, which are crucial to a
balanced ecosystem, do not face extinction. Studies on the feasibility of bioremediation
with autochthonous microorganisms are actively conducted, while several bioremediation
techniques have already been trialled in the area. However, each of the methods devised
comes with its own limitations. Therefore, more knowledge should be obtained especially
on the on-site or off-site bioremediation approach to achieve maximum potential of micro-
bial degradation efficiency. Furthermore, promising prospects like fungal and microalgal
diesel remediation, whether independently or synergistically with bacteria, should also be
studied to support the effort in contributing a new sustainable biotechnology technique.
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