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A B S T R A C T

Nosocomial infections are a major threat to modern therapeutics. The major causative agent of these infections is
multidrug-resistant gram-negative bacteria, which impart high morbidity and mortality rate. This has led to an
urge for the development of new antibiotics. Antimicrobial photodynamic therapy is a promising strategy to
which till date no resistant strain has been reported. Since the efficacy of photodynamic therapy largely depends
on the selection and administration of an appropriate photosensitizer, therefore, the realization of clinically
active photosensitizers is an immediate need. Here, by using E. coli as a study model we have demonstrated the
antimicrobial photodynamic potential of riboflavin. Intracellular ROS formation by DCFH-DA assay, lipid per-
oxidation, protein carbonylation, LDH activity was measured in treated bacterial samples. Enzymatic (SOD, CAT,
GSH) antioxidants and non-enzymatic (GSH) was further evaluated. Bacterial death was confirmed by colony
forming assay, optical microscopy and scanning electron microscopy. The treated bacterial cells exhibited
abundant ROS generation and marked increment in the level of oxidative stress markers as well as significant
reduction in LDH activity. Marked reduction in colony forming units was also observed. Optical microscopic and
SEM images further confirmed the bacterial death. Thus, we can say that photoilluminated riboflavin renders the
redox status of bacterial cells into a compromised state leading to significant membrane damage ultimately
causing bacterial death. This study aims to add one more therapeutic dimension to photoilluminated riboflavin
as it can be effectively employed in targeting bacterial biofilms occurring on hospital wares causing several
serious medical conditions.

1. Introduction

Nosocomial infections are an enormous health hazard with an es-
timated frequency of 1 in every 10 patients [1]. Although around one-
third of nosocomial infections are preventable, still they pose a major
threat to patient’s health so much so that these infections were marked
as the sixth leading cause of death in the United States [2]. The in-
creasing magnitude of these infections owes to the emergence of mul-
tidrug-resistant bacteria exhibiting resistance to a broad range of anti-
bacterial chemotherapeutic drugs [3]. This emerging medical and social
catastrophe has prompted the development of alternative pathogen
inactivation techniques, hence, marking the closure of the “antibiotic
era” [4].

Reportedly, gram-negative bacteria account for more than 30% of
nosocomial infections predominantly causing ventilator-associated
pneumonia and urinary tract infections [5]. More so, infections arising

in intensive care units (ICUs) have been predominantly caused by gram-
negative bacteria [6]. E. coli is the most rampant nosocomial gram-
negative pathogen causing many health issues [7]. It is a common co-
lonizer of many medical devices [8] which makes it one of the promi-
nent pathogen of this global health concern. E. coli thus serves as a
model for determining alternative antibacterial strategies.

Among several antibacterial strategies including UV radiation, hy-
drogen peroxide, chlorination, and photodynamic inactivation, only
photodynamic inactivation or photodynamic therapy (PDT) is relatively
milder and human-friendly. It has emerged as an excellent non-invasive
therapeutic modality against various bacterial infections [9]. PDT in-
volves generation of reactive oxygen species by a photosensitive com-
pound upon photoillumination. These reactive oxygen species then
drive cell towards its death [10]. The photodynamic killing is primarily
dependant on the efficacy of the applied photosensitizer and its che-
mically inert behavior in absence of light. Antimicrobial photodynamic
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therapy is, therefore, best possible answer to this growing global health
concern, as till date, no reports have shown the existence of a PDT
resistant bacterial strain [11].

Riboflavin or vitamin B₂ is an essential micronutrient, which ex-
hibits excellent photosensitive characteristics [12]. Its usage in devel-
oping pathogen inactivation technology has shown significant results
[13]. In this study, we are showing the significant photodestruction of
E. coli in presence of photoilluminated riboflavin. We have carried out
this work in anticipation of the development of vitamin-based photo-
therapy against E. coli born nosocomial infections.

2. Material and methods

2.1. Bacterial strains and growth conditions

Riboflavin photosensitivity was evaluated against E. coli provided
by the Department of Microbiology, AMU. Bacteria were harvested
from their colonies by centrifugation and their suspensions were made
using phosphate buffer saline (pH 7.4) with a final concentration of 10⁷
CFU/ml. The isolated E. coli strains were tested against cefepime, ce-
foperazone, sulbactam, ceftriaxone, cefixime, ceftazidime, cefpo-
doxime, levofloxacin, ofloxacin, and amikacin using the classical disc
diffusion method.

2.2. Irradiation procedure

All the reactions were performed by irradiating samples with visible
white light [Philips, India] kept at 10 cm. Irradiation rate at this point
was 38.6W m−² as measured by a power meter (model: Laser Mate
Coherent).

2.3. Photosensitizer

Riboflavin was purchased from Sigma Aldrich (India). 50 μM ribo-
flavin solution was taken as a working solution. UV spectra of riboflavin
were recorded on Shimadzu dual beam UV spectrophotometer UV-1800
(Japan) before and after 2 h. of photoillumination.

2.4. Detection of superoxide radical in solution

Reduced nitroblue tetrazolium (NBT) method [14] was applied to
measure superoxide generation potential of riboflavin. 50 μM riboflavin
was added to the reaction mixture containing 33μM NBT, 100 μM EDTA
and 50mM sodium phosphate buffer at pH 8.0 and 0.06% Triton X 100
and the mixture was read at 560 nm.

2.5. Preparation of samples

Bacterial cell suspensions were treated with 50 μM riboflavin and
incubated for 2 h. in presence of light; 50 μM riboflavin in absence of
light. Light and dark controls of E. coli were also maintained.

2.6. Detection of ROS in bacterial cell

The intracellular ROS was estimated using DCFH-DA method
[15,16]. The treated bacterial cell suspensions were centrifuged at 4 °C
for 30min at 300 g and the supernatant was treated with 100 μM DCFH-
DA for 1 h. The fluorescence intensity was recorded using Shimadzu
RF5301PC spectrofluorophotometer (Japan) with an excitation and
emission wavelength at 485 nm and 530 nm.

2.7. Preparation of lysates of treated bacterial cells

The treated bacterial cell suspensions were centrifuged at 4 °C for
10min at 5000 rpm. The pellet was collected and resuspended in bac-
terial lysis buffer, lysozyme was added, and the sample was incubated

at 4 °C. After 4 h. of incubation cells were centrifugated at 10,000 rpm,
the supernatant was collected to carry out antioxidant enzyme assays.

2.8. Total protein estimation

Total protein level in the bacterial lysate was determined using the
Lowry Method [17].

2.9. Measurement of SOD enzyme activity

The cell lysate (prepared as described above) of the treated bacterial
cell suspensions was taken to evaluate the activity of SOD [18,19].

2.10. Measurement of catalase activity

To determine catalase activity 100 μl bacterial lysate was mixed
with a reaction mixture containing 0.1M phosphate buffer (pH 7.5) and
0.9% H2O2 solution in a ratio 1:1 (500 μM) and incubated for 3min.
2 N H2SO4 was added at the end of the experiment to stop the reaction
and the activity was calculated as described before [15,19].

2.11. Measurement of total GST activity and GSH level

Total GST activity (μmol/min/mg protein) was evaluated as de-
scribed before [20]. 25 μl of sample is added to the reaction mixture
containing 900ml of 100mM potassium phosphate buffer (pH 6.5),
25ml of 40mM CDNB and 50ml 1mM GSH. The increase in absor-
bance was recorded at 340 nm for a period of 5min. GSH level was
estimated by the DTNB method as described before [21]. The absor-
bance was read at 412 nm.

2.12. Measurement of lipid peroxidation

The amount of lipid peroxidation in bacterial suspensions was de-
termined by assaying thiobarbituric acid-reactive substances formed
[22–24]. 10% SDS was added in treated cell samples and mixed thor-
oughly. After that, freshly prepared TBA was added to them and sam-
ples were incubated at 95 °C for 60min.. Finally, samples were cen-
trifuged at 5000 rpm for 15min., the supernatant was collected to
determine OD at 530 nm.

2.13. Effect of photoilluminated riboflavin on respiratory chain lactate
dehydrogenase activity

The LDH activity was measured by evaluating the reduction of
NAD+ to NADH and H+ as lactate is oxidized to pyruvate [25]. The
treated bacterial cell suspension was centrifuged at 4 °C for 30min at
300 g and pellet was collected in a microplate. To the collected pellet
LDH reaction solution was added and the sample was incubated for
30min at 25 °C. The OD was read at 490 nm.

2.14. Growth inhibition assay by CFU

Survival of bacteria in all the bacterial suspension groups was de-
termined by counting the numbers of colony forming units (CFU) [26].

2.15. Live and dead evaluation by light microscopy

The treated bacterial samples were collected after centrifugation
and suspended in PBS. Methylene blue stock was prepared by dissolving
0.1 mg/ml in sodium citrate solution. Sample and dye were mixed in a
ratio of 1:1 and incubated for 5min at room temperature, followed by
visualization on an optical microscope (Olympus).
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2.16. Morphological evaluation by scanning electron microscopy

The effect of photoilluminated riboflavin on E. coli’s cellular mor-
phology was determined by scanning electron microscope (SEM) [27].
The treated bacterial cells were centrifuged at 4000 rpm. The collected
pellet was fixed with 2.5% glutaraldehyde for 20min. The samples
were then centrifuged and resuspended in PBS and about 20 μl of
sample was placed on a glass slide. The samples on the slide were de-
hydrated using a graded series of alcohol (30%, 50%, 70%, 90%, and
100%). After the final step of drying, slides were observed under the
scanning electron microscope.

2.17. Statistical analysis

Experimental values were expressed as mean ± S.E.M. of three
independent experiments. All experiments were statistically analyzed
by one-way analysis of variance. P < 0.05 were considered statistically
significant.

3. Results

3.1. Riboflavin gets excited under photoillumination and generates
superoxide radical

Upon photoillumination, riboflavin gets excited and degrades as
evident from loss of its absorption maxima after 2 h. of incubation
under white light (Fig.1a) whereas there is no change in absorption
maxima without photoillumination (Fig. 1b). NBT assay of riboflavin
also depicted significant superoxide radical production under photo-
illumination (Fig. 2a) whereas no considerable radical generation in
absence of light (Fig. 2b). These results clearly show significant pho-
tosensitive nature of riboflavin.

3.2. Photoilluminated riboflavin generate significant intracellular ROS and
induces oxidative stress

As seen in Fig. 3a E. coli cells when incubated in presence in ribo-
flavin alone, showed no significant ROS generation, however when cells
were incubated with riboflavin and irradiated with white light for 2 h.
significant ROS generation was observed. Also, no considerable ROS
generation was observed when cells were exposed to white light alone
(Fig. 3a). Assessment of lipid peroxidation is one of the prominent
biomarkers of oxidative stress. As seen from Fig. 3b the level of MDA in
E. coli cells treated with riboflavin in presence of light is significantly
higher as compared to MDA levels present in E. coli cells treated with
riboflavin and light separately. This indicates that riboflavin, when il-
luminated with light, induces oxidative stress in bacterial cells.

3.3. Photoilluminated riboflavin alters redox status of E. coli

To determine the physiological impact of ROS generated as a result
of irradiation of riboflavin on bacterial cells, we measured the activity
of ROS related enzymic and non-enzymic parameters namely SOD,
catalase, GST, and GSH. As evident from our data, the activity of SOD
(Fig. 4a.) and catalase (Fig. 4b), significantly reduced in samples which
are exposed to photoilluminated riboflavin as compared to samples
which are exposed to riboflavin without light and exposed to light
alone. The decrease in the level of cellular antioxidant metabolite GSH
was significantly reduced in samples exposed to photoilluminated ri-
boflavin (Fig. 4d). To further validate these observations, we measured
the activity of GST. GST is a GSH utilizing enzyme primarily involved in
detoxification process. As evident from Fig. 4c. the specific activity of
GST enzyme was increased significantly in cells exposed to photo-
illuminated riboflavin.

3.4. Oxidative stress induced by photoilluminated riboflavin burst
respiratory chain and causes bacterial death

LDH is a mitochondrial enzyme which readily gets denatured under
oxidative stress conditions and is a reliable protein to evaluate the ROS
generated damaging effect on the respiratory system of the bacterial
cell [28]. As shown in Fig. 5a the LDH activity in cells treated with
photoilluminated riboflavin is considerably reduced as compared to
riboflavin and light treated cells separately. As shown in Fig. 5b the
colony number in the bacterial group exposed to photoilluminated ri-
boflavin is significantly low as compared to the number of colonies
present in the bacterial group exposed to riboflavin or light separately.
This shows that photoilluminated riboflavin induces oxidative stress
which burst respiratory chain leading to the denaturation of LDH en-
zyme as well as ultimately succumbing bacterial cells to death.

3.5. Analysis of live and dead bacteria using optical and scanning electron
microscopy

Methylene blue staining is a conventional and reliable method to
analyze bacterial cell death. Its fundamental lies on the fact that live
bacteria appears unstained due to the enzymatic reduction of the dye
into a colorless product, on the other hand, dead cells appear blue due
to the staining [29]. As shown in Fig. 6a, the bacterial sample which
was treated with riboflavin and exposed to light exhibited blue stain
(panel D) under optical microscope, whereas, samples exposed to ri-
boflavin (panel C) or light (panel B) separately were similar to control
live bacterial sample (panel A) not exhibiting blue stain. As evident
from the obtained scanning electron microscopic images (Fig. 6b), clear
disrupted membrane integrity and altered cellular morphology were

Fig. 1. Absorption spectra of riboflavin (50 μM) (a) Rf illuminated for 2 h in white light (b) Rf without the illumination of light.
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observed in the cells treated with photoilluminated riboflavin (panel
D). The control cells (panel A) and the cells treated with light (panel B)
and riboflavin (panel C) alone showed no significant change in cellular
morphology. Thus, it was confirmed that riboflavin under photo-
illumination induces bacterial cell death.

4. Discussion

Nosocomial infections pose a serious threat to the patient’s health
and recovery and involve a lot of expenditure in their control by the
hospital. Among these infections, the hospital-acquired infections
caused by gram-negative bacteria draws major concern because these
microbes are highly efficient in acquiring antibiotic resistance with a
plethora of different mechanisms targeting existing antibiotics [5].
Development of safe antibiotics is the only remaining option to combat
this hospital-acquired health hazard and therefore insights into this
area have been a concern for a considerable time [30].

Antimicrobial photodynamic therapy represents an excellent ther-
apeutic modality against drug-resistant microbes [31]. An optimal

photosensitizer is pre-requisite for efficient photodynamic activity. Ri-
boflavin on account of having different meso-atoms possess excellent
photo-physical and photochemical properties [32]. This study adds
another dimension to the use of photoactivated riboflavin, demon-
strating that clinically important multi-drug resistant bacteria are sus-
ceptible to ROS generated by photoactivated riboflavin. Significant NBT
reduction by riboflavin in presence of light (Fig. 2) confirmed photo-
sensitivity of this vitamin whereas increased DCF level in the bacterial
sample treated with photoilluminated riboflavin (Fig. 3a) showed sig-
nificant intracellular ROS generation. Our results are supported by
studies from our lab [33–35] and those of others [36,37] that photo-
activated riboflavin does produce ROS. Riboflavin absorbs photons
from the illuminated light and undergoes intersystem conversion i.e.
from singlet state to triplet state. This triplet state reacts with molecular
oxygen, thereby producing reactive oxygen species. Thus, we can say
that this generated ROS attacks cellular macromolecules and disin-
tegrates membrane integrity, thereby, killing the organism (Fig. 7).

The altered level of cellular antioxidants (Fig. 4), decreased LDH
activity (Fig. 5a) and lipid peroxidation (Fig. 3b) confirmed significant

Fig. 2. NBT Assay: Time-dependent in vitro superoxide radical production by (a) Rf (50 μM) under photoillumination (b) without photoillumination. Sodium
phosphate buffer (50mM, pH 8) was used as a control. Values reported are mean ± S.E.M. of the three independent experiments.

Fig. 3. (a). DCFH- DA assay to determine ROs generation by photoilluminated riboflavin inside E. coli cell. (b). Lipid peroxidation: as measured by assaying TBA
adducts formed. Values reported are mean ± S.E.M. of the three independent experiments. *p < 0.5 as compared to control E. coli cells.
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macromolecular damage, which is in accordance with previous reports
of macromolecular damage due to extensive ROS production in bac-
terial cells [38,39]. Thus, it can be suggested that due to extensive
macromolecular damage the E. coli cells are drifted towards cellular
death as evident from colony forming data (Fig. 5b). The obtained
optical microscopic (Fig. 6a) and the electron microscopic images
(Fig. 6b) further validated the toxic effect of photoilluminated ribo-
flavin. Our results can be correlated with previous findings of antibiotic
lethality due to altered redox status [40]. The effect of ROS scavengers
on oxidative damage induced by photoilluminated riboflavin generated
oxygen radicals has already been explored previously in our lab [34,41]
and it has been clearly observed that if any protein/compound/enzyme
is added that can quench generated ROS, then the detrimental effect of
ROS is inhibited. Therefore, if any ROS quencher will be present in
solution the bacterial inactivation will be hindered. This provides a
clear evidence that the exhibited antibacterial effect is irrefutably ROS
mediated.

It has not escaped our notice that the mechanism used by photo-
activated riboflavin does not target any protein (s) and/or a sequence
but uses a fundamental chemical property of riboflavin to generate
ROS. This is particularly important since most mechanisms of drug
resistance [42] are mediated by specific genes and gene products and
therefore chances of the bacterial cell evolving ahead of antibiotic de-
velopment may possibly be ruled out in our case as the target of ROS is
randomly selected. Therefore, we can say that photoilluminated ribo-
flavin is an efficacious in vitro approach to target nosocomial infection-
causing microbes.

4.1. Conclusion

We propose a resistance proof photodynamic mechanism using ri-
boflavin as a photosensitizer to target bacterial nosocomial infections
and conclude our work in anticipation of developing photodynamic
therapy as a first line therapy for combatting nosocomial infectious

Fig. 4. Effect of photoilluminated riboflavin on antioxidant parameters of E. coli. (a) SOD activity (b) catalase (c) GST (d) GSH. Values reported are mean ± S.E.M. of
the three independent experiments. *p < 0.5 as compared to control E. coli cells.

Fig. 5. (a) LDH assay: Effect of photoilluminated riboflavin on the level of respiratory chain enzyme LDH. (b). Colony forming assay: Antibacterial effect of
photoilluminated riboflavin on E. coli cell suspensions. Values reported are mean ± S.E.M. of the three independent experiments. *p < 0.5 as compared to control
E. coli cells.
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health hazard.
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