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Abstract

For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or
following endocytosis at low pH. In contrast, vaccinia virus (VACV) enters cells by both neutral and low pH routes; four
proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses
are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages
of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components,
we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase
fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion
membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined
that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells
but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and
membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions
lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-
lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1
and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a
post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an
unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for
initiation of virus-cell membrane fusion during poxvirus entry.
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Introduction

Entry of enveloped viruses into cells can be divided into three

steps: (i) close apposition of viral and cellular membranes, (ii) lipid

mixing of the outer membrane leaflets leading to formation of a

hemifusion intermediate, and (iii) formation and expansion of a

fusion pore allowing entry of the viral nucleoprotein or core into

the cytoplasm [1]. One or two glycoproteins that provide cell

binding and membrane fusion are sufficient to mediate entry of

many enveloped viruses [2]. The process is more complex for

members of the herpesvirus family, which employ four to five

glycoproteins for entry [3]. Poxviruses represent an extreme case,

as at least sixteen unglycosylated vaccinia virus (VACV) proteins

participate in this process (referenced below). The large number of

poxvirus proteins and the absence of any that resemble

conventional membrane fusion proteins by sequence suggest a

novel entry mechanism. For mature virions (MVs), the basic and

most abundant infectious VACV particle, entry can occur by

fusion at the plasma membrane [4,5] or in a low pH-dependent

manner from within an intracellular vesicle, depending to some

extent on the virus strain [6,7] and cell type [7–9]. Endocytosis of

MVs is believed to occur by macropinocytosis [10–15] or

dynamin-mediated fluid phase uptake [16], consistent with a role

for actin dynamics and cell signaling. Progeny virions that depart

the cell by exocytosis contain an additional membrane that helps

escape antibody neutralization and is ultimately ruptured to allow

fusion of the enclosed MV with the plasma membrane or

endocytic vesicle [17,18].

Four VACV proteins are involved in attachment of MVs [19–

22] and twelve, conserved in all members of the poxvirus family,

participate in subsequent entry steps [23–34]. Initial binding to

target cells occurs via interactions of the MV attachment proteins

with cell surface glycosaminoglycans or laminin. A cellular

protein, referred to as VACV penetration factor, appears to be

important for entry but exactly how is not yet understood [16].

The twelve conserved VACV entry proteins are mostly small,

ranging in size from 35 to 377 amino acids, and have a N- or C-

terminal transmembrane domain. The proteins are all compo-

nents of the MV membrane, which is formed within the

cytoplasm by incompletely defined mechanisms rather than by

budding as typically occurs with other viruses [35]. This feature,

as well as the association of most or all the proteins in a complex

[31], makes it difficult to investigate the roles of individual entry

proteins. A useful approach has been to construct conditional

PLoS Pathogens | www.plospathogens.org 1 December 2011 | Volume 7 | Issue 12 | e1002446



lethal mutants, with one putative entry gene controlled by the

Escherichia coli lac operator/repressor system and positively

regulated by ß-D-isopropylthiogalactopyanoside (IPTG) inducer,

or with an analogous tetracycline-inducible system. These

mutants share similar phenotypes: in the presence of inducer,

replication proceeds normally and the progeny virions contain

the protein product of the inducible gene and are infectious; in

the absence of inducer, progeny virions appear indistinguishable

from wild type by electron microscopy and protein analysis

(except for the missing entry protein) but have very low

infectivity. Although the non-infectious virions bind to cells,

immunofluorescence microscopy studies show reduced numbers

of cores in the cytoplasm. With the exception of I2 [30], repressed

expression of the individual proteins does not significantly reduce

the trafficking of the others to the MV membrane. However,

when expression of an individual component is repressed, the

formation or stability of the complex is reduced, as determined by

detergent extraction and immunoaffinity purification [31]. The

proteins A16, A21, A28, G3, G9, H2, J5, L5 and O3, make up

the central components of the so-called entry fusion complex

(EFC). The L1 and F9 proteins are also required for entry;

although they physically interact with the EFC, they are not

required for assembly or stability of the complex, and

consequently have been referred to as EFC-associated proteins

[26,32]. The overall structure of the EFC has not been

elucidated, though several pair-wise protein interactions have

been identified [36–38].

The mechanisms involved in poxvirus entry are poorly

understood. Previous studies have depended on post-membrane

fusion assays and a specific role of the EFC in fusion could only be

inferred from the inability of cells infected with the mutant viruses

made in the absence of IPTG to undergo low pH-induced syncytia

formation. Thus, direct evidence for a role of EFC proteins in

membrane fusion during entry of virions has been lacking. Here,

we used a variety of approaches including cell binding, membrane

lipid mixing, core entry and reporter gene expression (Figure 1) to

evaluate the roles of host components and individual MV

membrane proteins.

Results

VACV-Cell Membrane Fusion and Core Entry
Fusion of viral and cellular membranes involves lipid mixing,

which can be studied by loading a self-quenching fluorescent

probe such as octadecylrhodamine (R18) into viral membranes

(Figure 1). Fusion of viral and cell membranes results in dilution of

the probe and increased fluorescence [39]. Dequenching does not

require full fusion of the viral and cell membrane but can occur at

the initial step in which only the outer leaflets of the viral and

cellular membranes fuse, known as hemifusion [1]. Therefore,

dequenching could signify the occurrence of hemifusion alone or

full fusion with pore formation. In a 2-step membrane fusion

model (see Discussion), inhibitors that prevent dequenching must

operate at or prior to the hemifusion step, which precedes full

fusion.

In the present experiments, sucrose gradient purified VACV

MVs were incubated with R18 at room temperature for 20 min.

Incorporation of R18 into MVs minimally affected infectivity as

shown in Figure 2A. After removal of excess R18, the MVs were

incubated with HeLa cells for 1 h at 4uC to allow adsorption and

then the temperature was raised to permit fusion. R18

fluorescence was more rapid at the physiological temperature of

37uC than at 20uC (Figure 2B), consistent with an active transfer

process. We used WRvFire, a recombinant VACV that expresses

firefly luciferase (LUC) regulated by an early promoter, to

compare the kinetics of fusion and reporter gene expression.

Whereas fusion occurred within a few minutes after incubation of

virus-bound cells, LUC expression was detected at 40 min

(Figure 2C) and was routinely assayed after 1 or 2 h.

The above results supported the use of the fluorescent R18

probe for analyzing VACV-cell membrane fusion. In subsequent

experiments we compared the effects of inhibitors on binding of

virions to cells, fusion, and core entry as measured by LUC

expression and in some cases by transmission electron microscopy.

Fusion Was Not Enhanced by Low pH or Greatly Reduced
by Cholesterol Depletion

An earlier study had shown that fusion of VACV strain WR was

not enhanced at low pH [40], which in retrospect seemed

surprising in view of the subsequent demonstration of low pH

enhancement of core entry and reporter gene expression [6].

Nevertheless, we confirmed the similar rates of VACV WR fusion

following a brief incubation with a pH 7.4 or pH 5.0 buffer and

return to neutral pH (Figure 2D). Furthermore, we found that

bafilomycin A1, which prevents endosomal acidification and

reduces firefly LUC expression, had little effect on binding of MVs

containing a Gaussia LUC core protein chimera or membrane

fusion (Figure 3A), similar to previous findings of membrane fusion

in the presence of ammonium chloride and chloroquine [40].

Thus, low pH promotes an entry step beyond membrane lipid

mixing.

Depletion of cellular cholesterol reversibly prevents the

accumulation of VACV cores in the cytosol at a post-attachment

step [41]. Treatment of HeLa cells with methyl- ß-cyclodextrin

(mßCD) resulted in up to a 74% reduction in total cellular

cholesterol levels (Figure S1A) without reducing cell viability over

the time-course of the experiment (Figure S1B), although some cell

rounding occurred. Nevertheless, MVs efficiently bound to

cholesterol-depleted HeLa cells and R18 fluorescence was only

mildly reduced, whereas LUC expression was greatly inhibited

(Figure 3A). These data indicated that the lowered level of cellular

cholesterol was sufficient for membrane lipid mixing but impaired

a later step in entry or reporter gene expression.

Author Summary

Poxviruses are large DNA viruses that cause diseases in
humans and other animals. To initiate infection, the core of
the large, membrane-enveloped particle must penetrate
into the cytoplasm where replication occurs. For most
enveloped viruses only one or two proteins are needed for
attachment and penetration. However, at least sixteen
poxvirus proteins are dedicated to entry: four for
attachment and twelve for penetration. The latter proteins
form the entry fusion complex (EFC) and are conserved in
all poxviruses indicating that the entry mechanism has
been retained since the origin of the family. The purpose
of the present study was to determine the cellular
processes and poxviral proteins needed for fusion of the
viral and cellular membranes. We found that a variety of
inhibitors that interfered with cell signaling and reorgani-
zation of the actin cytoskeleton prevented membrane
fusion as determined by lipid mixing, whereas others
targeted the subsequent stage in entry. In addition, seven
viral protein components of the EFC were required for the
initial membrane fusion step, whereas three were not. A
neutralizing monoclonal antibody to one of the latter also
did not interfere with membrane lipid mixing but still
prevented core entry supporting a 2-step poxvirus entry
model.

Vaccinia Virus Membrane Fusion and Entry
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Cellular Components Required for Virion Attachment,
Membrane Fusion and Core Entry

Inhibitors targeting membrane blebbing, dynamin function,

actin dynamics, and the activities of certain protein kinases have

been shown to reduce VACV entry to varying extents as measured

by reporter gene expression or detection of cytoplasmic cores [11–

13,16,42]. In the present experiments, HeLa cells were preincu-

bated for 30 min with inhibitors at previously used concentration

ranges and the drugs were maintained in the medium during and

after virus adsorption. Infection with VACV induces actin-

enriched protrusions or cellular blebs [42] and entry can be

partially reduced by blebbistatin, a small molecule specific

inhibitor of myosin-II-dependent blebbing, virus movement along

filopodia and macropinocytosis [11,43,44]. Blebbistatin was

without effect on virion attachment but reduced LUC reporter

expression by about 50% (Figure 3A), similar to the value

previously reported for a GFP reporter assay [11]. However, we

found little or no effect on dequenching of the R18 probe

(Figure 3A), indicating that membrane fusion can occur

independently of cell membrane blebbing.

Dynasore is a small molecule inhibitor of the GTPase activity of

dynamin1, dynamin2 and the mitochondrial dynamin and is a

rapid and potent inhibitor of dynamin-dependent endocytic

pathways [45]. Dynamin also directly interacts with actin and

regulates the actin cytoskeleton [46–48]. The effect of dynasore on

VACV entry is ambiguous as it was reported not to influence entry

in some studies [11] but to inhibit entry in another [16]. We found

that dynasore had no effect on virion binding to HeLa cells but

severely decreased LUC expression (Figure 3A). Moreover,

dynasore potently inhibited membrane fusion (Figure 3B). These

results implicated cellular dynamin as a critical factor in promoting

VACV entry into HeLa cells at the membrane fusion step.

We also tested several specific inhibitors of actin dynamics: CK-

636 and CK-548 bind to the Arp2/3 complex and prevent actin

nucleation whereas latrunculins and cytochalasins bind actin and

inhibit polymerization [49,50]. These drugs had little effect on

Figure 1. Virion binding, lipid mixing and core entry assays. VACV Gauss-A4, a recombinant VACV with Gaussia LUC fused to a core protein,
was used to measure the binding of virions at 4uC by assaying cell-associated LUC activity. For virus-cell membrane fusion, R18-loaded virions were
bound to target cells at 4uC, shifted to 37uC, and the dequenching of R18 due to lipid mixing was measured by increased fluorescence. WRvFire, a
recombinant VACV that expresses firefly LUC under an early promoter, was used to infect cells and newly synthesized LUC was measured. Direct
visualization of virions fusing with the plasma membrane and quantification of viral cores in the cytosol were achieved by transmission electron
microscopy. The times used for pretreatment, binding and entry are depicted at the bottom of the figure.
doi:10.1371/journal.ppat.1002446.g001
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virion attachment but severely blocked LUC expression

(Figure 3B). CK-548 and CK-636 were also very effective

inhibitors of membrane fusion, whereas latrunculin A and

cytochalasin D inhibited fusion by approximately 50% at the

concentrations used (Figure 3B). These studies indicated a role for

actin rearrangement in membrane fusion and raised the possibility

that the effect of dynasore was related to its influence on the actin

cytoskeleton rather than endocytosis.

Cell signaling has been reported to have a role in VACV entry

at the stage of blebbing and macropinocytosis [11]. Genestein,

gefitinib (Iressa) and 324674 (PD153035) are small molecule

tyrosine kinase inhibitors [51,52]. These drugs did not reduce

virion binding but profoundly inhibited LUC expression

(Figure 3C). Moreover, they also greatly inhibited membrane

fusion (Figure 3C). The results could be related to the relative

specificity of gefitinib and 324674 for epidermal growth factor

receptor signaling, which causes rapid actin polymerization and

rearrangement [53].

Based on a previous report [11], we attempted to bypass the

effects of inhibitors of actin remodeling and signaling on entry by

Figure 2. Membrane fusion and core entry. (A) Equivalent numbers of purified MVs were untreated or loaded with R18 for 20 min at room
temperature. Unbound R18 was removed by pelleting and washing the virus. Control and R18-labeled virions were resuspended and serial dilutions
made to assay virus infectivity (PFU/ml) by plaque assay. The results of five independent experiments with error bars are plotted. (B) Purified R18-
loaded MV particles were bound to HeLa cells at 4uC for 60 min. The cells were then incubated at 4uC, 20uC, or 37uC for 40 min while R18
fluorescence was monitored and quantified as arbitrary fluorescent units. (C) R18-loaded MVs (recombinant WRvFire) were incubated with HeLa cells
at 4uC to permit binding. Washed cells were then placed in a cuvette containing pre-warmed media at 37uC and fluorescence was monitored over
time (black line; left y-axis). In parallel, unlabeled MVs were bound to cells in the cold and then shifted to 37uC. Cell lysates were prepared at indicated
times and assayed for LUC activity (gray line; right y-axis). (D) An equivalent number of purified R18-loaded MVs were bound to HeLa cells in the cold
for 60 min. Virus-bound cells were then placed at 37uC in a pre-warmed cuvette containing media adjusted to either pH 7.4 or 5.0 while R18
fluorescence was monitored. After 3 min, cell media was adjusted back to neutral \ and R18 fluorescence monitoring continued.
doi:10.1371/journal.ppat.1002446.g002
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brief low pH treatment of cells with attached virions. However, in

our hands, such treatments only alleviated the effects of drugs such

as bafilomycin A1, concanamycin and monensin that prevented

endosomal acidification [6] but did not bypass the effects of several

other inhibitors on entry as measured by LUC expression or R18

dequenching (Figure S2).

Core entry steps were also analyzed by transmission electron

microscopy. The results cannot be precisely compared to the

above assays because a high virus multiplicity and spinoculation

were used to allow counting of a sufficient number of virus

particles in thin sections of infected cells. Hemifusion cannot be

detected by this procedure and the earliest recognizable entry step

consisted of full fusion of the viral and plasma membranes with an

open pore allowing core entry (Figure 4A). Although MVs can be

readily detected in vesicles, full fusion of viral and vesicle

membranes are rarely seen (5). Cores that accumulate in the

cytoplasm (Figure 4B) could have entered through the plasma

membrane or an endocytic vesicle. In the absence of inhibitors, the

number of plasma membrane full fusion images decreased and

cores in the cytoplasm increased between 30 and 90 min

(Figure 4C, D). At both times, the numbers of plasma membrane

full fusion images (Figure 4C) and cytoplasmic cores (Figure 4D)

were reduced when the cells were treated with blebbistatin,

dynasore, latrunculin A or cytochalasin D. These observations

confirmed the results obtained with the LUC assay for measuring

core entry.

In summary, our data are generally consistent with other studies

showing the importance of cell signaling and remodeling of the

Figure 3. Effects of inhibitors on VACV-cell attachment, membrane fusion and core entry. HeLa cells were left untreated or pre-treated
for 30 min at 37uC with: (A) mßCD (10 mM), blebbistatin (75 mM), dynasore (100 mM) and bafilomycin A1 (50 nM); (B) latrunculin A (10 mM),
cytochalasin D (10 mM), CK-548 (100 mM) and CK-636 (100 mM); (C) genestein (100 mM), Iressa (40 mM), and 32674 (40 mM). For cell binding (black
bars), control and inhibitor-treated cells were incubated with equivalent numbers of VACV Gauss-A4 MVs at 4uC for 60 min. Unbound virions were
removed by washing and cells lysed to measure cell-associated Gaussia LUC activity. For membrane fusion (white bars), control and inhibitor-treated
cells were incubated with equivalent numbers of R18-loaded WRvFire particles at 4uC for 60 min. Washed cells were then incubated at 37uC for
40 min in the presence of the indicated inhibitor while R18 fluorescence was monitored. For core entry (gray bars), equivalent numbers of WRvFire
MVs were adsorbed to control and inhibitor-treated cells at 4uC for 60 min. Cells were washed and incubated for 2 h at 37uC in the presence or
absence of the indicated inhibitor. Cells were then lysed and firefly LUC activity in cell extracts measured. Data are represented as percent of the
untreated cell control for each assay.
doi:10.1371/journal.ppat.1002446.g003

Figure 4. Effects of inhibitors on entry determined by transmission electron microscopy. Purified MVs (350 PFU per cell) were
spinoculated onto inhibitor-treated HeLa monolayers at 4uC for 60 min. Virus-bound cells were then incubated for either 30 or 90 min at 37uC in the
presence or absence of the indicated inhibitor, fixed and processed for transmission electron microscopy. Representative images from untreated cells
at 30 min showing full fusion of virion and plasma membranes resulting in pore formation (A) and cores in the cytosol (B). White arrowheads point to
cores; scale bars indicate magnification. For each infection, a total of 90 randomly-selected cell sections were visualized and the number of plasma
membrane full fusion events (C) and viral cores in the cytosol (D) were determined at 30 and 90 min.
doi:10.1371/journal.ppat.1002446.g004
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actin cytoskeleton on VACV entry [10–15], and importantly

further demonstrate that these activities are necessary for the

membrane fusion step. Low pH, cholesterol and membrane

blebbing appear to be more important for entry steps beyond

membrane lipid mixing.

Roles of EFC Proteins in Virus-Cell Membrane Fusion
Most or all of the MV membrane proteins required for entry, as

distinguished from cell attachment, are components of the EFC

(A16, A21, A28, G3, G9, H2, J5, L5, O3) or physically associated

with the EFC (L1, F9). We employed conditional lethal mutants

for all EFC and EFC-associated proteins except J5, for which a

stringent mutant was unavailable. As a control, we tested a mutant

with a deletion of the gene encoding the I5 MV membrane protein

that is not required for entry [54]. The recombinant viruses were

replicated in the presence or absence of the IPTG inducer and the

MVs were purified by sucrose gradient sedimentation. For each

mutant, the number of purified virions was determined from the

optical density. In some cases, virions were inactivated at 56uC
prior to adsorption to cells as an additional control [55].

Equivalent numbers of particles were loaded with R18 and

washed by sedimentation to remove excess dye. Dye transfer to

HeLa cells was determined by increased fluorescence as in the

preceding sections. In addition parallel cultures were maintained

for 48 h and the yield of infectious virus determined by plaque

assay. As expected, R18-loaded MVs lacking the I5 protein (I52)

promoted R18 probe transfer as efficiently as wild type MV (I5+),

whereas transfer was reduced with the heat-inactivated MVs

(Figure 5A). Virions deficient in individual EFC and EFC-

associated proteins had very low infectivity and except for A28,

L1 and L5 mutants exhibited severely reduced R18 dequenching

as well (Figure 5B-K), providing the first evidence of a direct role

of EFC proteins in the membrane fusion step of virus entry.

Previous studies had only shown that the EFC was required for

fusion of infected cells.

We used transmission electron microscopy to monitor core

entry steps, following attachment of H2+, H22, A28+ and A282

virions. We chose H2 and A28 as examples of mutants that

reduced and allowed R18 dequenching, respectively (Figure 5G,

I). As indicated earlier, a high multiplicity and spinoculation was

needed because of the thin cell sections. The lower numbers of full

fusions with pore formation at the plasma membrane and

cytoplasmic cores in cells infected with H22 virions compared to

H2+ virions were expected in view of the inability of the former to

mediate R18 dequenching (Figure 6A,B). However, there was a

similar reduction in full fusion images at the plasma membrane

and cytoplasmic cores after infection with A282 virions compared

to A28+ virions (Figure 6C, D) despite the greater ability of the

former to allow membrane fusion as determined by lipid mixing.

Inhibition of core entry was previously shown using a confocal

microscopy assay for virions deficient in L1 [32] and L5 [34]

confirming an entry block despite their ability to allow lipid mixing

as shown here.

Neutralizing Antibody to L1 Inhibits Entry at a Step
Beyond Membrane Lipid Mixing

The above results showing that L1-deficient virions allowed

membrane fusion but not core entry led us to investigate the effect

of a potent L1-neutralizing monoclonal antibody (MAb) [56]. We

found that a concentration of L1 MAb that severely inhibited core

entry as determined by LUC expression and formation of

infectious virus had minimal effect on membrane fusion as

determined by R18 dequenching (Figure 7). This result was

confirmed by a flow cytometry-based 1,19-dioctadecyl-3,3,39,39-

tetramethylindodicarbocyanine (DiD) lipid mixing assay using a

wide-range of MAb concentrations (Figure S3).

Attempt to Trans-Complement an EFC Mutant
We still needed to consider the possibility that the role of the

EFC is to activate the cell for virion entry rather than to directly

participate in the entry step per se. In this context, Mercer and

Helenius [11] had reported that very few VACV particles are

needed to induce widespread blebbing and actin rearrangement.

To further investigate the role of the EFC in entry, we

coinfected cells with wild type VACV and either A28+ or

A282 virions that expressed firefly LUC. We used a particle/cell

multiplicity of approximately 200 for the A28+ and A282 virions

and varied the multiplicity of the wild type virions from 9 to

1840 particles/cell (equivalent to 0.1 to 20 plaque forming units

(PFU)/cell). Coinfection with wild type virions caused a two-fold

increase in LUC expression by A28+ virions and raised

expression about four-fold for A282 virions (Figure 8A).

However, the latter was still only 3% of the value for A28+

virions indicating that efficient trans-complementation had not

occurred. We also determined that soluble A28 protein [57]

mixed with virions had no effect on entry of either the A28+ or

A282 virions (Figure 8B).

Discussion

Viral and cellular membranes each consists of two leaflets and in

principal membrane fusion could occur by two different pathways

as discussed by Chernomordik [1]. The direct fusion model posits

that pores form in each of the apposing membranes and the pore

rims join forming a fusion pore that allows lipid and content

mixing in a single step. In contrast, the 2-step model posits fusion

of the outer leaflets of the apposing membranes to form a

hemifusion intermediate followed by merging of the inner leaflets

to form the fusion pore. In the latter model, lipid mixing and

content mixing occur sequentially. Evidence to support the second

model involving a hemifusion intermediate has been obtained for

several different viruses by demonstrating membrane lipid mixing

without content mixing by mutation of viral fusion proteins,

slowing or interrupting fusion with inhibitors and decreasing the

surface density of viral fusion proteins [58–61]. In the present

study of VACV, we showed that membrane lipid mixing could

occur without core entry under three circumstances: depletion of

certain EFC proteins (A28, L1 or L5), neutralization of VACV

with a MAb to the L1 EFC-associated protein, and partial

cholesterol depletion of the cell membrane. These findings are

consistent with a 2-step entry model with a hemifusion

intermediate for VACV.

In the first part of the Results, we described the effects of

inhibitors of cell processes on virion attachment, membrane fusion

and core entry. Most of the inhibitors had previously been shown

to reduce entry as determined by reporter gene expression or

detection of cytoplasmic cores [11–13,16,42]. We found that none

of these inhibitors prevented binding of virions to cells, many

reduced membrane fusion, while others only acted at the core

entry step (Figure 9). The membrane fusion inhibitors were either

directly involved with actin polymerization or remodeling (CK-

636, CK-548, latrunculin A, cytochalasin D) or blocked tyrosine

kinases that can modulate actin cytoskeletal changes (genestein,

Iressa, 324674). The action of dynasore, a specific inhibitor of

dynamin GTPase, could be due to its known effect on actin since

there is evidence against a role for caveolae-mediated endocytosis

in VACV entry [16]. Further evidence for dynamin2 in VACV

core entry has been obtained with siRNA [16]. Extensive actin

Vaccinia Virus Membrane Fusion and Entry
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remodeling and mobilization has been observed during MV

binding to cell surfaces [11,16,42] suggesting that actin-enriched

membrane protrusions increase the intimacy of membrane contact

and promote virus-cell membrane fusion. Actin remodeling has

been suggested to facilitate fusion by forcing membranes together

and enlarging pores in a variety of systems [62–64] including virus

entry and viral protein-induced cell-cell fusion [65–70]. With

human immunodeficiency virus, actin remodeling appears to have

a more important role in pore expansion and content mixing than

in hemifusion [71,72]. We found that cytochalasin D and

latrunculin A had a greater inhibitory effect on core entry

(determined by LUC expression) than membrane fusion as

determined by lipid mixing, suggesting that actin dynamics may

be required for multiple steps in VACV entry.

In contrast to the role of actin rearrangement, inhibitors that

prevented membrane blebbing involved in virus surfing and

macropinocytosis or that interfered with the reduction in pH of

endosomes, had a much greater effect on core entry than

membrane lipid mixing (Figure 9). It will be important to

determine whether lipid mixing is occurring at the plasma

membrane or in endosomes at neutral pH. Similarly, a 74%

reduction of cellular cholesterol with mßCD had little effect on

membrane fusion but had a major effect on core entry as

measured by LUC expression. A previous study had shown that

MVs associate with cholesterol-rich regions of the plasma

membrane and that cholesterol depletion reduced VACV entry

as measured by visualizing cores in the cytoplasm [41]. In

studies with influenza virus and Semliki Forest virus in insect

Figure 5. Effects of deficiencies of individual virion membrane proteins on membrane fusion and virus infectivity. In each panel,
equivalent numbers of purified R18-loaded MVs were bound to HeLa cells at 4uC for 60 min and unbound virions were removed by washing. Virus-
bound cells were then incubated at 37uC for 40 min and R18 fluorescence was monitored and plotted as arbitrary units. Parallel cultures were
incubated for 48 h and the yield of virus was determined by plaque assay. Recombinant viruses were as follows: (A) DI5L, (B) IPTG-inducible A16, (C)
IPTG-inducible G9, (D) IPTG-inducible G3, (E) IPTG-inducible A21, (F) IPTG-inducible O3, (G) IPTG-inducible H2, (H) IPTG-inducible F9, (I) IPTG-inducible
A28, (J) IPTG-inducible L1, and (K) IPTG-inducible L5. For panels B-K, the plus and minus signs in the upper left signifies the virus was grown in the
presence or absence of IPTG, respectively. For panel A, the plus and minus refer to wild type virus and a deletion mutant, respectively. As a negative
control, 56uC heat-inactivated I5+ virions (panel A) were assayed for hemifusion and infectivity (,105 PFU/ml; data not shown).
doi:10.1371/journal.ppat.1002446.g005

Figure 6. Entry of virions lacking H2 or A28 protein determined by transmission electron microscopy. Purified MVs (350 PFU per cell or
equivalent number of particles) possessing (+) or lacking (-) H2 or A28 protein as indicated were spinoculated onto pre-chilled HeLa cell monolayers
at 4uC for 60 min. Virus-bound cells were then incubated for either 30, 60 or 180 min at 37uC, fixed and processed for electron microscopy. For each
infection, a total of 90 randomly-selected cell sections were inspected and the number of full fusion events (A and C) and free viral cores in the
cytosol (B and D) were determined as described in the legend to Figure 4.
doi:10.1371/journal.ppat.1002446.g006
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cells, which can be more stringently depleted of cholesterol than

mammalian cells, both hemifusion and pore widening were

affected [73,74]. The cell surface receptors for certain viruses

reside in cholesterol-rich lipid rafts, but receptors for VACV

have not been identified.

The VACV EFC proteins were previously shown to be required

for virus core entry and cell-cell fusion but evidence for a role in

the fusion of viral and cell membranes had been indirect. Of the

ten EFC or EFC-associated mutants tested in the present study, all

were blocked in core entry as determined by infectivity or

transmission electron microscopy and seven of these were unable

to mediate membrane fusion. The three proteins apparently not

required for membrane fusion were A28, L1, and L5. It is possible

that these proteins have a specific role at a later step in entry such

as pore formation. However, in other systems it has been shown

that the density of activated fusion proteins has to be higher for the

formation and expansion of a fusion pore than for hemifusion [1].

Although these three mutants each display stringent repression of

EFC protein expression as shown by Western blotting, undetect-

able differences could affect the sensitive lipid-mixing assay.

Therefore, our main conclusion is that the EFC is required for

membrane fusion and that additional studies are required to

conclude that A28, L1 and L5 have a specific role at a later step of

entry such as pore formation.

The L1 protein is a target of potent neutralizing and protective

antibodies [56,75]. The structure of L1 alone and in association

with a conformation-specific MAb has been solved to high

resolution [76,77]. The Fab fragment binds to a discontinuous

epitope containing two loops that are held together by a disulfide

bond. Here we showed that the MAb prevents VACV entry at a

step beyond lipid mixing, consistent with the effect on entry of

virions deficient in the L1 protein.

Since our inhibitor studies had shown that actin dynamics are

required for membrane fusion and core entry, we considered the

possibility that the EFC indirectly promotes entry by inducing cell

signaling. Indeed, such a role could contribute to the need for

multiple EFC proteins. Since Mercer and Helenius [11] had

shown that cell signaling requires few virus particles, we tried to

rescue EFC protein-deficient virions in trans by coinfecting with

wild type VACV. Although wild type virus enhanced core entry by

four-fold as measured by LUC expression, this value was still only

3% of that achieved by the control virus, suggesting that the EFC

proteins have a direct role in membrane fusion and entry.

Nevertheless, whether EFC protein interactions also cause

signaling is an interesting question for future studies.

Why so many different proteins are needed for poxvirus entry

remains an enigma. None of the proteins resemble type I or type II

viral fusion proteins by sequence so that determination of the 3-

dimensional structure of the VACV EFC may be needed to define

putative fusion loops, if the mechanism of entry involves such

structures. At this time, only the structure of the L1 EFC-

associated protein has been solved [76].

Materials and Methods

Cells and Viruses
African green monkey kidney BS-C-1 and human HeLa cells

were maintained in minimum essential medium with Earle’s salts

(EMEM) supplemented with 2.5% fetal bovine serum (FBS),

2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml strep-

tomycin (Quality Biological). The recombinant VACV WRvFire

expressing firefly LUC under a synthetic early/late VACV

promoter was described previously [6]. Recombinant VACVs in

which expression of individual EFC or EFC-associated proteins

are IPTG-inducible have been previously constructed and

characterized: A16 [23], A21 [24], A28 [25], G3 (A. Townsley

and BM, unpublished), G9 [28], H2 [29], J5 [31], L5 [34], O3

[33], L1 [32], and F9 [26]. The recombinant VACV in which the

I5L gene was deleted has been described [54]. The recombinant

VACV Gauss-A4 (parental strain WRvFire), which expresses the

Gaussia LUC enzyme fused to the A4 core protein was generated

as follows. Overlap polymerase chain reaction (PCR) was utilized

to generate a construct in which the Gaussia LUC gene (New

England Biolabs) was appended to the N-terminal codon of the

VACV A4L gene and the EGFP coding region (and accompa-

nying synthetic early/late VACV promoter sequence) was placed

Figure 7. Effects of anti-L1 MAb on virus-cell membrane fusion, viral core entry and virus infectivity. Equivalent numbers of R18-loaded
virions (WRvFire) were incubated with or without 100 mg/ml of anti-L1 mouse MAb or control anti-HA mouse MAb for 30 min at room temperature.
Virions were then assayed for their ability to mediate virus-cell membrane fusion by R18 dequenching (A) or core entry by LUC expression (B), at
either 37uC or 4uC. Infectivity (C) was assayed by adsorbing each virus sample at 37uC to BS-C-1 monolayers for 60 min and enumerating plaque
formation 48 h later. Data are represented as percent of the no MAb control at 37uC for each assay.
doi:10.1371/journal.ppat.1002446.g007
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downstream of the Gaussia-A4L region. To achieve homologous

recombination, flanking genomic sequences of A4L (approxi-

mately 500 bp in length) were appended to the termini of the

PCR product. HeLa cells were infected with 0.05 PFU of

WRvFire per cell and at 2 h post infection were transfected with

400 ng of purified PCR product using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s protocol. At 24 h

post infection, the infected cells were lysed by five freeze/thaw

cycles and clonally purified five times by picking GFP positive

plaques on BS-C-1 cells. The recombinant VACV in which A28L

is IPTG-inducible and expresses firefly LUC under a synthetic

early/late VACV promoter has been described [25].

Purification and Quantitation of Virus Particles
BS-C-1 cells were infected with VACV in the presence or

absence of the inducer IPTG (Calbiochem) and at 48 to 72 h post

infection MVs were isolated as described [78,79]. Briefly, infected

cells were subjected to Dounce homogenization and MVs were

purified by sedimentation through two 36% (wt/vol) sucrose

cushions followed by one sedimentation on a 25 to 40% (wt/vol)

continuous sucrose gradient; the visible virus band was collected,

and virus was pelleted and stored at 280uC. Upon thawing, virus

was sonicated on ice for 1 min. The infectious viral titer (PFU per

ml) for each purified MV stock of recombinant VACV was

determined by plaque assay on BS-C-1 cells as described [80].

Figure 8. Attempt to trans-complement entry of virions lacking A28. (A) Equivalent numbers of purified A28+ or A282 MVs expressing firefly
LUC (WRvFire) were mixed with varying amounts of purified, wild type (wt) MVs as indicated. Virions were adsorbed to HeLa cell monolayers at 4uC
for 60 min. Cells were washed and placed at 37uC for 2 h to allow virus entry. Cells were then lysed and firefly LUC activity measured. MOI (multiplicity
of infection; PFUs per cell) of wt VACV is indicated. (B) Equivalent numbers of purified A28+ or A282 MVs expressing firefly LUC were mixed with
varying amounts of bovine serum albumin (BSA) or soluble A28 protein as indicated (ng/ml). Virions were adsorbed to HeLa cell monolayers at 4uC for
60 min. Cells were washed and placed at 37uC for 2 h to allow for virus entry. Cells were then lysed and LUC activity measured.
doi:10.1371/journal.ppat.1002446.g008
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Additionally, the number of total virus particles obtained for each

purified MV stock of recombinant VACV was estimated from the

optical density at 260 nm [80].

R18 Loading of Virus Particles and Fusion Assay
Purified MVs (approximately 9.06109 particles) were labeled

with 3 ml of 1 mg/ml of R18 (Molecular Probes) in phosphate-

buffered saline (PBS; Quality Biological) + 0.2% bovine serum

albumin (BSA; Sigma-Aldrich) for 20 min at room temperature in

the dark. Non-incorporated R18 was removed by pelleting virions

(16,000 x g for 10 min at 4uC) and washing several times in PBS +
0.2% BSA. R18-labeled virions were re-suspended in PBS + 0.2%

BSA, vortexed, and sonicated for 15 sec on ice. Virions sufficient

to achieve a multiplicity of 1 to 5 PFU (or the equivalent number

of non-infectious particles) per cell were then incubated with

approximately 1.56106 HeLa cells in suspension for 1 h at 4uC in

cold fusion medium comprised of EMEM without phenol red and

with 10 mM N-2-hydroxyethylpiperazine-N’-2-ethanesulfonicacid

(HEPES) and 10 mM 2-(N-morpholino)ethanesulfonic acid

(pH 7.4) in the dark. Virus-bound cells were washed twice with

cold fusion medium following low-speed centrifugation (750 x g for

3 min at 4uC). Virus-bound cells were injected into a cuvette

containing fusion medium pre-warmed to 37uC and kept in

suspension utilizing a magnetic stir bar. R18 fluorescence (560 nm

excitation and 590 nm emission) was monitored by use of a

Fluoro-Max3 spectrofluorometer (Horiba Jobin Yvon) outfitted

with a Peltier sample cooler (Horiba Jobin Yvon) and a

temperature control unit (Wavelength Electronics model LFI-

3751) to maintain the desired temperature within the chamber

housing the sample cuvette. For graphical presentation, the raw

fluorescence data were plotted versus time. For quantitative

comparisons, we determined the percent fluorescence by dividing

the value obtained at 40 min by the value obtained following

addition of Triton X-100 (1% [wt/vol] final concentration).

LUC Core Entry Assay
HeLa cells seeded in 24-well plates (2.06105 cells per well) were

chilled to 4uC before virus adsorption. WRvFire MVs were

adsorbed in cold EMEM + 2.5% FBS for 1 h at 4uC. Cells were

washed with cold PBS to remove unbound virions and incubated

with pre-warmed EMEM + 2.5% FBS for 2 h (unless indicated

otherwise) at 37uC. Cells were washed with PBS and then

incubated with Cell Culture Lysis Reagent (Promega) for 30 min

at room temperature with gentle agitation. LUC activity in cellular

extracts was measured according to the manufacturer’s protocol

(Promega) and quantified on a Berthold Sirius luminometer

(Berthold Detection Systems).

Cholesterol Depletion of Target Cells
HeLa cells seeded in 24-well plates (2.06105 cells per well) were

left untreated or treated with 10 mM mßCD (Sigma-Aldrich) for

30 min in EMEM at 37uC. Cells were then washed with cold PBS

and cold EMEM was added to cells prior to virus adsorption at

4uC for R18 hemifusion or LUC entry assays as described above.

Cholesterol levels in HeLa cells were determined using the Amplex

Red Cholesterol Assay Kit (Molecular Probes) and was performed

according to the manufacturer’s protocol. The viability of mßCD-

treated cells was assayed using the CellTiter 96 Aqueous One

Solution Cell Proliferation Assay (Promega) and was performed

according to the manufacturer’s protocol.

Inhibitor Treatments
HeLa cells were left untreated or pre-treated with the indicated

concentrations of inhibitors: Sigma-Aldrich: blebbistatin (75 mM),

dynasore (100 mM), bafilomycin A1 (50 nM), latrunculin A

(10 mM), cytochalasin D (10 mM), CK-548 (100 mM), CK-636

(100 mM), genistein (100 mM); LC Laboratories: Iressa (40 mM);

EMD4Biosciences: 324674 (40 mM) for 30 min at 37uC. Cells were

Figure 9. Summary of effects of inhibitors on VACV entry. Cell binding, virus-cell membrane fusion, and viral core entry were assessed as
described in the text and as depicted in Figures 1 and 3. The inhibitors are grouped according to their best-characterized effects but may also perturb
cells in other ways.
doi:10.1371/journal.ppat.1002446.g009
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then chilled to 4uC prior to virus adsorption for virus-cell binding,

R18 hemi-fusion, or LUC assays as described. The indicated drug

concentrations were maintained throughout the assay.

Virus-Cell Binding Assay
Equivalent amounts of VACV Gauss-A4 virions (5 PFU per

cell) were incubated with untreated or inhibitor-treated HeLa cells

in 24-well plates at neutral pH for 1 h at 4uC. Cells were washed

twice with cold PBS to remove unbound virus. Cells were then

incubated with LUC assay lysis buffer (Promega) for 30 min at

room temperature with gentle agitation. Gaussia LUC activity in

cellular extracts was measured according to the manufacturer’s

protocol (Promega) and quantified on a Berthold Sirius luminom-

eter (Berthold Detection Systems).

Stimulation of Virus Entry by Low pH Treatment
Low pH stimulation of virus entry was performed as described

previously [6]. Following a wash to remove unbound virions, cells

were incubated for 3 min in 37uC PBS with Ca2+ and Mg2+ at

pH 7.4 or PBS with Ca2+ and Mg2+ supplemented with 1 mM 2-

morpholinoethane-sulfonic acid adjusted to pH 5.0 with HCl.

After removal of buffers, the pH was neutralized by one wash with

EMEM + 2.5% FBS. Cells were incubated in pre-warmed EMEM

+ 2.5% FBS for 2 h at 37uC and then prepared for the LUC entry

assay as described above.

Transmission Electron Microscopy
BS-C-1 cells in six-well tissue culture plates (1.06105 cells per

well) were pre-chilled at 4uC for 30 min prior to virus spinoculation.

Purified MVs (350 PFU per cell or equivalent number of particles)

in cold EMEM + 2.5% FBS were sedimented onto the BS-C-1 cells

at 4uC for 1 h at 650 x g in a Legend RT centrifuge (Sorvall). Cells

were washed with cold PBS to remove unbound virions and

incubated with pre-warmed EMEM + 2.5% FBS for varying

amounts of time at 37uC. At the indicated time, the samples were

fixed on ice with 4% paraformaldehyde (Electron Microscopy

Sciences) in 0.1 M phosphate buffer for 10 min and processed for

transmission electron microscopy as described previously [6]. For

quantitation of virus entry events, ninety randomly selected cell

sections were visualized and particles therein counted.

MAb Neutralization
Equivalent numbers of R18-loaded MV particles (recombinant

strain WRvFire) were incubated with 100 mg/ml of anti-L1 mouse

MAb 7D11 [56] or control anti-HA mouse monoclonal (clone

16B12, Covance) for 30 min at room temperature. Virion and

antibody mixtures were then divided and used for R18-based fusion,

LUC core entry, or plaque formation assays as described above.

DiD Loading of Virus Particles and Fusion Assay
Purified MVs (approximately 9.06109 particles) were labeled

with 3 ml of DiD (Molecular Probes) in phosphate-buffered saline

(PBS; Quality Biological) + 0.2% bovine serum albumin (BSA;

Sigma-Aldrich) for 20 min at room temperature in the dark. Non-

incorporated DiD was removed by pelleting virions (16,000 x g for

10 min at 4uC) and washing several times in PBS + 0.2% BSA.

DiD-labeled virions were re-suspended in PBS + 0.2% BSA,

vortexed, and sonicated for 15 sec on ice. Virions sufficient to

achieve a multiplicity of 1 to 5 PFU per cell were then incubated

with approximately 8.06104 HeLa cells in a 48-well plate for

90 min at 37uC in minimum essential medium with Earle’s salts

(EMEM) supplemented with 2.5% FBS, 2 mM L-glutamine,

100 U/ml penicillin, and 100 mg/ml streptomycin. Cells were

washed with PBS, trypsinized, spun and fixed in 4% paraformal-

dehyde/PBS for 2 h at 4uC. DiD-positive cells were quantified

using a FACSCalibur (BD Biosciences). DiD loading had minimal

effect on virus infectivity as measured by plaque assay.

Supporting Information

Figure S1 Effects of mßCD treatment of cells on
cholesterol levels and cell viability. HeLa cell monolayers

were left untreated or treated with 0 to 10 mM mßCD for 30 min

at 37uC. (A) Cholesterol levels of mßCD-treated cells were

determined as described in Materials and Methods. (B) Viability

of mßCD-treated cells was assayed using the CellTiter 96 Aqueous

One Solution Cell Proliferation Assay (Promega) according to the

manufacturer’s protocol and plotted as arbitrary units. The assay

background value (b.g.) is indicated.

(PDF)

Figure S2 Attempt to bypass effects of inhibitors by
brief low pH treatment. (A – C) Equivalent numbers of WRvFire

MVs were adsorbed to control and inhibitor-treated (latrunculin A

(lat.A), cytochalasin D (cyto.D), dynasore, or genistein) cells at 4uC for

60 min. Cells were washed, incubated for 3 min in 37uC PBS Ca++/

Mg++ pH 7.4 or pH 5.0 buffers, and incubated in 37uC media at

neutral pH for 2 h at 37uC. Cells were then processed for

determination of LUC expression. LUC arbitrary units are shown

on the y-axis and concentrations of inhibitors on the x-axis. (D and E)

Untreated and inhibitor-treated cells were incubated with equivalent

numbers of R18-loaded WRvFire MVs at 4uC for 60 min. Washed

cells were then incubated at 37uC for 3 min at neutral pH or pH 5.0

while R18 fluorescence was recorded. After 3 min, cell media was

adjusted to pH 7.4 as described in Materials and Methods; R18

fluorescence was monitored for the next 37 min. Virus-bound

untreated control cells at neutral pH incubated exclusively at 4uC
(4uC cntrl) served as a negative control and as described for Figure 2B.

The extent of virus-cell membrane fusion was calculated by dividing

the R18 fluorescence observed at 40 min for each sample by that of the

untreated cell pH 7.4 control value at that time.

(PDF)

Figure S3 Effects of anti-L1 MAb on virus-cell mem-
brane fusion, viral core entry and virus infectivity.
Equivalent numbers of DiD-loaded virions (WRvFire) were

incubated with or without increasing amounts (four-fold dilutions)

of either anti-L1 mouse MAb 7D11 or control anti-HA mouse

MAb (clone 16B12, Covance) for 30 min at room temperature.

Virions were then assayed for ability to mediate virus-cell

membrane fusion by DiD dequenching (A) or LUC core entry

(B) at 37uC. Virus infectivity (C) was assayed by adsorbing each

virus sample at 37uC to BS-C-1 monolayers for 60 min and

enumerating plaque formation 48 h later. Data are represented as

percent of the no MAb control for each assay.

(PDF)
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